
Mock Exam

Formal Languages and Compilers

(A.Y. 2014/2015)

February 2nd, 2015

1 Semantic Analysis

1.1

Answer to the following requests:

1. define a grammar for generating bynary numbers with no fractional part
that can be parsed by an LL(1) parsing algorithm

2. define attributes and the corresponding calculating rules to be able to
derive the corresponding number in the base ten codification

1.2

Consider the following grammar to generate binary numbers with no fractional
part:

S → SD | D D → 0 | 1 (1)

Answer to the following requests1:

1. define an SDD for the grammar in order to transform the corresponding
number in the base ten codification

2. transform the grammar so that it can be parsed by an LL(1) parsing
algorithm

1Note that to transform an attributed grammar with left recursion you can operate ac-
cording to the following scheme for a general left recursive grammar G:

A→ A1Y {A.a = g(A1.a, Y.y)} A→ X {A.a = f(X.x)}
can be transformed in:

A→ X {R.i = f(X.x)} R {A.a = R.s} R → Y {R1.i = g(R.i, Y.y)} R1 {R.s = R1.s}
R → ε {R.s = R.i}

1

Solution :
(1). Define an SDD for the grammar in order to transform the corresponding
number in the base ten codification

The grammar is structured in a way that a simple SDD can be defined
to make the transformation. In particular the following attribure grammar
correctly calculate the requested value:

• S → SD s.value = s′.value ∗ 2 + d.value

• S → D s.value = d.value

• D → 0 d.value = 0.lexval

• D → 1 d.value = 1.lexval

(2). Transform the grammar so that it can be parsed by an LL(1) parsing
algorithm

In the footnote 1 the rule to apply is reported. The grammar should be
transformed using the “standard” approach. Therefore the resulting grammar
is:

• S → D {r.inh = d.value} R {s.value = r.value}

• R→ D {r′.inh = r.inh ∗ 2 + d.value} R {r.value = r′.value}

• R→ ε {r.value = r.inh}

• D → 0 d.value = 0.lexval

• D → 1 d.value = 1.lexval

2

