

Rule-Based Systems I: Decision Modeling, Decision Tables, Decision Trees

Knut Hinkelmann

Holger Wache

n 1

Rule-based Systems

Rule-based Systems consist of

- Rule base
 Fact base
 Inference engine
 Facts
 Rules are of the form
- IF <antecedent> THEN <consequent>

Different Types of Rule-based Systems

- Condition-Action Rules (Production Rules)
 - <consequent> is a set of actions
 - <antecedent> is a set of conditions
 - Example: IF car X has been sold THEN delete X from the catalogue
- Logical rules
 - <antecedent> and <consequent> are formulas of first-order logic
 - IF ... THEN is equivalent to implication
 - Example:
 IF X is a man THEN X is mortal

Representation of Rules

There is a large variety of rule representations:

- decision tables
- decision trees
- graphical representation
- textual representation
 - logical formulas
 - Structured English
 - "Code"

Decision Tasks in Business Processes

- A decision task is a task in which some decision is made
- The business logic that is used for decision making is called decision logic
- Two kinds of decision tasks:
 - Decision tasks deriving values for data
 - Decision tasks providing data for gateways
 - At the gateway only the result of the decision should be tested (for the selection of the path) not the criteria for the decision

Basic Elements of Operational Business Decisions

- A decision is characterized by a *question*, for example:
 - Should the insurcance claim be accepted, rejected or examined for fraud?
 - Which resource should be assigned to this task?
 - Which service should be used to ship this package?
- A potential outcome is some result, conclusion, or answer that might be deemed appropriate for a case. Examples:
 - some form of yes/no (e.g. eligible/non-eligible)
 - some quanitities (e.g. dollar amounts)
 - some categories (e.g. silver, gold, or platinum customer)
 - some real-world instances (e.g. software product to be purchased)
 - some course of action (e.g. on-site visit, teleconference, email)
- A case is some particular matter or situation arising in a day-to-day business activity and requiring consideration
- The *outcome* is the result, conclusion, or answer for a *given* case
- The business logic that is used for decision making is called *decision logic* (the set of all decision rules selecting a decision outcome) (Ross 2011, p. 152f)

Prof. Dr. Knut Hinkelmann

Example for a Business Decision: Data for Gateway

- Process: Handling auto insurance applications
- Decision Task: Check Eligibility of Applicant
- Potential outcomes: "yes" and "no" (i.e. eligible/non-eligible)
- Decision Logic: Terms of insurance

Example for a Business Decision:

- Process: Handling auto insurance applications
- Decision Task: Determine insurance premium
- Potential outcomes: amount of premium (i.e. amount)
- Decision Logic: Calculations for premiums

Representation of Decision Rules

- There are a variety of ways to represent decision rules, e.g.
 - Semi-formal description
 - The reimbursement is 90% if the patient visited a doctor's office and the physican was present
 - Decision Table

Reimbursement depends on whether the patient visited the doctor's office (D), a hospital (H) or a lab (L) and whether the Doctor is a Participating Physician

Each column represents a rule.

http://web.sxu.edu/rogers/sys/decision_tables.html

Perspectives on Process Modeling

- A new perspective on process modeling is reflected in the combination of three ideas
 - Process: an organized, coordinated flow of activities, conducted by participants, acting on and deciding with data and knowledge, to achieve a business goal.
 - Decision: decisions are made by applying business knowledge in the form of business rules or other decision logic to process data. A decision model likewise reflects how a decision is made.
 - Event: A process can also be considered a connected sequence of events that respond to states, causes, and conditions. In an event-based view, the process is a linkage of the transitions from one processing state to another.

Decision-Aware Process Models: Managing Process Logic and Decision Logic Separately

Process Logic

Business Logic / Decision Logic

I The process model contains the process logic → procedural

Decision logic is externalized from decision tasks and represented in a different kind of model -> declarative

Separating business decisions from business process tasks

- simplifies the business process model
- allows to manage business logic in a declarative form

Distinguishing a Procedural Task from a Declarative Decision

- A procedural solution specifies how, in a step-by-step manner, something is to be done.
 - A business process model is a procedural solution because it prescribes a set of tasks that are carried out in a particular sequence.
- A declarative solution only specifies what needs to be done, with no details as to how, in a step-by-step manner, it is to be carried out, because sequence is irrelevant to arriving at the correct result.
 - A Decision Table is a declarative solution because it is a set of unordered business logic, not a set of ordered tasks.

(von Halle & Goldberg 2010, p. 67)

Decision Logic and Decision Task

(Ross 2011, p. 152f)

Decision Model and Notation

Beta1

Decision Model and Notation (DMN)

Decision Model and Notation (DMN)

- The Decision Model and Notation is a new standard from the OMG
- It is currently published in its version
 1.0
- Purpose of DMN: provide the constructs that are needed to model decision, so that organizational decision-making can be
 - readily depicted in diagrams
 - accurately defined by business analysts
 - (optionaly) automated

Main concepts – Decision Requirements Level

- Business concepts only
- Business decisions
- Areas of business knowledge
- Sources of business knowledge

Decision Requirements

(Coenen 2013)

Notation

- DRG
 - Decision Requirements Graph
 - Self-contained, complete for 1 Decision

Decision Requirements Diagram

Input data 1

- ♦ = View on DRG
- Incomplete, showing specific aspects or perspectives

DRD 1: focus on Decision 1

(Coenen 2013)

DRG

Decision 2

Input data 2

Decision 1

Business

knowledge '

Business

knowledge 2

Decision

Decision

- A decision determines an output from a number of inputs by applying some decision logic. Decisions can be thought of as selecting an answer from a range of possible answers.
- Decisions can be decomposed into sub-decisions. Lower level decisions often will simply provide input to other decisions.
- Two properties should be captured for every decision:
 - Question: A natural language statement that represents the decision in the form of a question. This should be specific and detailed.
 - Allowed Answers: A natural language description of the possible answers to this question.
- For action-oriented decisions, the allowed answers represent the responses that the process must handle when the decision model is invoked by a business rule task.

Business Knowledge Models

Business Knowledge

- Business knowledge models represent functions that encapsulate reusable decision making logic. The logic they encapsulate might be a set of business rules, a decision tree, a decision table, or an analytic model.
- The specifics of knowledge representation involved need not be displayed on the diagram but could be.
- The decision logic that can be specified in a business knowledge model can also be linked directly to a decision, but encapsulating it in a business knowledge model allows it to be reused, parameterized and displayed on a Decision Requirements Diagram

Input Data

Input Data

- Decisions require inputs, and many of these are input data, which is data that is input to the decision making from outside the decision context.
- Input data elements typically represent business entities that are being used in the decision making, such as Policy or Customer. However, sometimes they can represent any information element at any level of detail.
- Each input data element can be described in terms of a hierarchical information model that specifies exactly what information elements comprise the input data.

$\mathbf{n}|_{\mathcal{W}}$

Knowledge Source

- Knowledge sources represent the source of know-how for making a decision. This could be regulations or policies about how a decision must be made, best practices or expertise on how it should be made, or even analytic knowledge on how it might be made more accurate.
- Knowledge sources are the authorities for a decision and typically refer to some external document or source that contains detailed guidance

DRG/DRD Relationships

\longrightarrow	= used as input
	Information Requirement: Shows that Input Data or Decision output is required as an input by another Decision
>	= invokes
	Knowledge Requirement: Shows that a
	Business Knowledge Model is invoked by a
	Decision of another business knowledge woder
	= depends on
	Authority Requirements: Shows the dependency of

a DRD Element on a Knowledge Source

$\mathbf{n}|_{\mathcal{W}}$

Elements and Allowed Relationships of the Requirements Graph

Main concepts – Decision Logic

- Greater detail
- Business rules
- Calculations
- Automated
- Display

Decision Table in DMN 1.0 - styles

Rule = row

table	e name		
HC	input expression 1	input expression 2	Output name
	value 1a, value 1b	value 2a, value 2b	value 1a, value 1b
1	input optor 1a	input entry 2a	output entry 1a
2	input entry 1a	input entry 2b	output entry 1b
3	input entry 1b	-	output entry 1a

Rule = column

table name				
input expression 1	value 1a, value 1b	input e	input entry 1b	
input expression 2	value 2a, value 2b	input entry 2a	input entry 2b	-
Output name	value 1a, value 1b	output entry 1a	output entry 1b	output entry 1a
HC		1	2	3

Rule = crosstab

table name							
		input expression 1					
Output n	ame	input	input entry				
		entry 1a	1b				
	input	output	output				
input	entry 2a	entry 1a	entry 1a				
expression 2	input	output	output				
	entry 2b	entry 1b	entry 1a				

A Decision with an invoked Business Knowledge Model in the form of a Decision Table

The structure represents a	The decision its Applicant Demographic Suitabili	self	The Busin 'invokes', ir	ess Knowledge Model th n this case, a decision ta	nat the decision able (see below)						
Boxed invocation (a type	Applicant Demographic Suita	bility Table			Deleter Kerneladen Medale						
of 'Boxed Expression')		Applicant Years of Age Calculatio	n	called 'Applicant Years of Caluclation' and							
)	Applicant Years of Age	Applicant Date of Birth	Application.Date of Birth								
	Application Card Type	Application.Card Type	4	Applicant is Exis	sting Customer Rules that will						
This is a 'Single Hit' decision		Applicant is Existing Customer Ru	les 🖉	return the requ	ired outcome into this model						
table with Hit Policy 'First'	Applicant is Existing	Existing Customer Products Held	Product	· ·							
(the 'F'), meaning that the	Customer	with Lender	Holdings.Number of	E an the a line of De							
output returned will be the			Products Held	For the invoked BL	Isiness Knowledge Models						
first rule hit. These can be	Applicant Private Credit Card	Applicant Private Credit Card Dem	ographic Suitability	'Applicant is Exist	ting Customer Rules', this						
hard to validate manually	Demographic Suitability			defined the input da	ata that represents the logical						
	Applicant Student Credit Card	Applicant Private Credit Card Dem	ographic Suitability	input expression 'E	Existing Customer Products						
because it is so	Demographic Suitability			Held with Lender'							
A decision table is			1		with Echaci .						
also a type of 'Boxed	Int Demographic Suitability Table										
Expression'	Applicant Years of Age	Application Card Type	Customer	Applicant Demographic Suitability	An optional section used to						
The 'C' following 'F'		Student, Private, Balance Transfer	TRUE, FALSE	Suitable, Unsuitable	show the valid domain values						
says that the table is	< 18	-	-	"Unsuitable"	where appropriate						
Incomplete, that is, all	-	"Student", "Private"	FALSE	"Unsuitable"							
included in order to	-	"Private"	TRUE	Applicant Private Credit Card							
				Demographic Suitability	Shows that the output value is						
4	-	"Student"	TRUE	Applicant Student Credit Card	actually the result of other						
				Demographic Suitability							
5		-	-	"Suitable"	decisions.						

is irrelevant to this particular rule.

(Broom 2014))

Applicant is Existing Customer Rules	
Applicant is Existing Customer	if Product Holdings.Number
	of Products Held > 0
	then TRUE
	else FALSE
Applicant is Existing Customer	

These are both 'Single Hit' decision tables, the first with Hit Policy 'Any'. This means that any rule can be hit during the decision, but in the event that multiple rules are hit, they will only return the same conclusion. So if the Customer has both £150 in annual income and £350k in outstanding mortgage borrowings, both rules 1 and 2 will be hit, but will only return "Suitable". The second is 'Unique', meaning no overlap is possible and rules are exclusive.

The outputs of these two tabeles are required as input expressions, in the 'Applicant Demographic Suitability' Decision Table.

Applicant	Private Credit Card Demogra	phic Suitability Table					
AC	Existing Customer Sole	Existing Customer	Existing Customer	Applicant Private Credit			
	Annual Income Amount	Outstanding Mortgage	Savings and	Card Demographic			
		Borrowings Amount	Investments Balance	Suitability			
			Amount				
				Suitable, Unsuitable			
1	>= 100k	-	-	"Suitable"			
2	-	>= 300k	-	"Suitable"			
3	-	-	>= 100k	"Suitable"			
4	< 100k	< 300k	< 100k	"Unsuitable"			

Applicant Demograp	Student Credit Card phic Suitability Table	
UC	Existing Customer Current Account Type	Applicant Student Credit Card Demographic Suitability
	Student, Standard, Silver, Platinum, Black	Suitable, Unsuitable
1	"Student"	"Suitable"
2	Not "Student"	"Unsuitable"

(Broom 2014))

Applicant	Credit Score]	_	An alte	ernative represe Credit Sc	entation of the Appl ore decision.	lication					
Applicant	Number of Default Payments in	Applicant Credit File.Year										
Last 12 Mo	onths	Total Defaults		Rather than having the Decision invoke a Busines								
Applicant	has declared Bankruptcy	Applicant Credit		Knowle	dae Mode it is	possible for all fo t	he logic l					
		File.Bankrupt Indictor		to be confired out within the Decision itself								
Applicant	Amount of Available Credit Used	Applicant Credit File.Credit			e camed out wi	unin une Decision iu	sen.					
Percentag	çe	Used Percentage			–							
Applicant	Years with Current Account Bank	Applicant Credit File.Time		Thei	mpact on the D	RD is shown below	w the					
		with Bank			expr	ession.						
					•							
NC	Applicant Number of Default	Applicant has declared	Appli	cant Years with	Applicant Amount of	Applicant Credit Score						
	Payments in Last 12 Months	Bankruptcy	Cur	rent Account	Available Credit							
				Bank	Used Percentage							
		TRUE, FALSE				[0999]						
1	[13]	-	-		-	100						
2	[46]	-		-	-	50						
3	> 6	-		-	-	0						
4	0	-		-	-	250						
5	-	TRUE		-	-	0						
6	-	FALSE		-	-	250						
7	-	-		<1	-	50						
8	-	-		[13]	-	150						
9	-	-		> 3	-	250						
10	-	-		-	[024]	200						
11	-	-		-	[2549]	249						
12	-	-		-	[5074]	150						
13	-	-		-	[75100]	100						
14	-	-		-	> 100	0						
	Aggregation = sum											

How the DRD would be affected

(Broom 2014))

Languages for Value Expressions

Possible value expression forms:

Decision table

Applicant Risk Rating					
Applicant Age	< 3	25	[2560]	> 6	0
Medical History	good	bad	-	good	bad
Low	х	-	-	-	-
Medium		х	х	х	
High					х
U	1	2	3	4	5

Literal expression

```
FEEL = Friendly Enough Expression Language
```

```
Context: {
	tns$Employee: { tns$salary: 13,000 },
	Customer: [
	{ loyalty_level: "gold", credit_limit: 10000 },
	{ loyalty_level: "gold", credit_limit: 20000 },
	{ loyalty_level: "silver", credit_limit: 5000 } ]
	}
```


Other decision logic models can be used, too

Use of DMN

- 1. Modeling human decision-making
- 2. Modeling requirements for automated decision-making
- 3. Implementing **automated** decisionmaking

Decision Tables – Reducing Combinations

- If effects for several combinations are the same, the combinations can be combined, reducing the number of rules
- Example:
 - If Cause 1 is "Y" and Cause 2 is "N", then the effect does not depend on the values of Cause 3
 - In this case, the value of Cause 3 does not need to be taken into account

			Сс	om	bi	na	tio	ns	5	Com				nb	binations					
Causes	Values	1	2	3	4	5	6	7	8	Causes	Values	1	2	3	4	5	6	7		
Cause 1	Y, N	Y	Y	Y	Y	Ν	Ν	Ν	Ν	Cause 1	Y, N	Y	Y	Y	Ν	Ν	Ν	Ν		
Cause 2	Y, N	Y	Y	Ν	Ν	Y	Y	Ν	Ν	Cause 2	Y, N	Y	Y	Ν	Y	Y	Ν	Ν		
Cause 3	Y, N	Y	Ν	Y	Ν	Y	Ν	Y	Ν	Cause 3	Y, N	Y	Ν	-	Y	Ν	Y	Ν		
Effects										Effects										
Effect 1		Х	(X	Х	X		Х	Х	Effect 1		Х		Х	Х		Х	Х		
Effect 2			Х			Х	Х		Х	Effect 2			Х		Х	Х		Х		

© Prof. Dr. Knut Hinkelmann / Holger Wache

Exercise: Reduce decision table

- The following decision table represents rules for reimbursing expenses by health insurance
- Reimbursement depends on three conditions:
 - whether decuctible is already met,
 - whether the patient visited the doctor's office (D), a hospital (H) or a lab (L) and
 - whether in case of a visit at the doctor's office the doctor is a Participating Physician
- The decision table is complete showing all combinations of decisions. Reduce the table to only the really needed number of rules

Conditions	1	2	3	4	5	6	7	8	9	10	11	12
1. Deductible met?	Y	Υ	Υ	Y	Y	Y	Ν	Ν	Ν	Ν	Ν	Ν
2. Type of visit	D	D	Н	Н	L	L	D	D	Н	Н	L	L
3. Participating Physician?	Y	Ν	Υ	Ν	Y	Ν	Y	Ν	Y	Ν	Y	Ν
Effects												
1. Reimburse 50%		Х										
2. Reimburse 70%						Х						
3. Reimburse 80%				Х								
4. Reimburse 90%	Х											
5. No reimbursement							Х	Х		Х		Х
6. Impossible or N/A			Х		Х				Х		Х	

Decision Trees

n

Decision trees are a graphical representation of rules

- Each inner node corresponds to a decision
- Each edge represents an alternative value for the decision
- The leaf nodes represent actions or effects

Literatur

- Alcedo Coenen (2013). Decision Model & Notation (DMN) 1.0

 a new OMG Standard.
 http://de.slideshare.net/alcedocoenen/intro-dmn-10
- OMG (2014). Decision Model and Notation, Beta 1, http://www.omg.org/spec/DMN/
- Broom, N., 2014. The Decision Model and Notation (DMN) standard - A worked example. A web version is on http://visionalysis.co.uk/2014/01/08/going-dmn-tal/

