

University of Camerino

Knowledge Management and Business Intelligence

Learning From Observations

Partly based on Tan's and Steinbach's "Introduction to Data Mining"

Nadeem Qaisar Mehmood

Department of Computer Science University of Camerino nadeemqaisar.mehmood@unicam.it

Nadeem Qaisar Mehmood

KE&BI: Learning from Observations

Outline

- Learning
- Inductive Learning
- Machine Learning: Data Mining
- Predictive Learning
 - Classification
 - **Different Classification Methods**
 - **Decision Tree Learning**
 - Tree Representation
 - **ID3** Algorithm
 - Tree Induction
 - Types of Attributes, their selection and splitting
 - Information gain and Impurity Measurement
 - When to stop
 - **Rules** Generation

Learning

University of Camerino

- Improving behavior through diligent study of experience
- Learning modifies a software agent's decision mechanisms to improve performance

Definition:

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E (Tom Mitchel 1997)

For example, a computer program that learns to play checkers might improve its performance as *measured by its ability to win* at the class of tasks involving *playing checkers games,* through experience *obtained* by *playing games against itself.*

Learning Element

University of Camerino

Design of learning element is dictated by

- what type of **performance** element is used
- which functional component is to be learned
- how that functional component is represented
- what kind of **feedback** is available

Learning Types

- Supervised Learning
 - Correct answers for each instance
 - Known Classes in advance
 - Prior knowledge
- Unsupervised Learning: No training, unknown classes, no prior knowledge
- Reinforcement Learning: Occasional Rewards

Simplest form: learn a function **f** from examples

f is the target function

```
Problem: Find a(n) hypothesis h
such that h ≈ f
given a training set of examples
```

Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)

For Example: Curve Fitting

[Russell & Norvig's Artificial Intelligence CH18]

University of Camerino

Nadeem Qaisar Mehmood

Simplest form: learn a function **f** from examples

f is the target function

Problem: Find a(n) hypothesis h such that h ≈ f given a training set of examples

Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)

For Example: Curve Fitting

[Russell & Norvig's Artificial Intelligence CH18]

University of Camerino

Nadeem Qaisar Mehmood

Simplest form: learn a function **f** from examples

f is the target function

```
Problem: Find a(n) hypothesis h
such that h ≈ f
given a training set of examples
```

Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)

For Example: Curve Fitting

[Russell & Norvig's Artificial Intelligence CH18]

University of Camerino

Nadeem Qaisar Mehmood

Simplest form: learn a function **f** from examples

f is the target function

```
Problem: Find a(n) hypothesis h
such that h ≈ f
given a training set of examples
```

Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)

For Example: Curve Fitting

[Russell & Norvig's Artificial Intelligence CH18]

University of Camerino

Nadeem Qaisar Mehmood

Simplest form: learn a function **f** from examples

f is the target function

Problem: Find a(n) hypothesis h such that h ≈ f given a training set of examples

Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)

For Example: Curve Fitting

[Russell & Norvig's Artificial Intelligence CH18]

University of Camerino

Nadeem Qaisar Mehmood

Simplest form: learn a function **f** from examples

f is the target function

Problem: Find a(n) hypothesis h such that h ≈ f given a training set of examples

Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)

For Example: Curve Fitting

Ockham's razor: maximize a combination of consistency and simplicity

University of Camerino

[Russell & Norvig's Artificial Intelligence CH18]

Machine Learning: Data Mining

University of Camerino

Information is mostly hidden in data sets

Learn from data for prediction or description

A process how to extract or uncover hidden information to help in decisions or to identify patterns within the data.

- Given a collection of training records (training set)
 - Each record consists of *attributes*, one of the attributes is the *class*.
- Find a model for class attribute as a function of the values of other attributes.
- Goal: to assign a class to previously unseen records as accurately as possible.
 - A *test set* is used to determine the accuracy of the model.
 - Usually, the given data set is divided into
 - 1. training set (with training set used to build the model)
 - 2. test set (with test sets used to validate it)
 - Supervised learning

Predictive Learning Process

University of Camerino

Learn to predict Learn a model Learn from instances/examples Predict on un seen instances

Tid

2

3

4

5

6

7

8

9

10

Tid

11

12

13

14

15

Test Set

Nadeem Qaisar Mehmood

Classification as Predictive Modeling

University of Camerino

Tid	Refund	Marital Status	Taxable Income	Cheat	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	Ņ
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	

categorical categorical continuous

	Refund	Marital Status	Taxable Income	Cheat		
	No	Single	75K	?		
	Yes	Married	50K	?		
	No	Married	150K	?	λ	
	Yes	Divorced	90K	?		
	No	Single	40K	?	À	Test
	No	Married	80K	?		Set
Tra	ining Set		Learn Classifie	:r	-	Model

[Tan&Steinbach's "Intro to Data Mining"]

- •Learn Decision Trees (our focus!)
- Instance based learning for rules
- Predict based on the nearest neighbors
- Predict based on probabilities
- Artificial Neural Networks

Decision Tree Representation (Another Example)

Model: Decision Tree

Nadeem Qaisar Mehmood

KE&BI: Learning from Observations

[Tan&Steinbach's "Intro to Data Mining"]

17

1336

Applying Model to Test Data

Test Data

Refund	Marital Status	Taxable Income	Cheat
No	Married	80K	?

Predict "Cheat" Attribute!

[Tan&Steinbach's "Intro to Data Mining"]

Basic Decision Tree Learning Algorithm: ID3

University of Camerino

- Top down
- Many possible trees but only one is selected
- Greedy strategy
 - Which attribute should be tested at the root of the tree?
 - Split the records based on an attribute that split records and help classify the instances
 - We want to select the attribute that is most useful for classifying examples.

ID3(Examples, Target-attribute, Attributes)

/* Examples: The training examples; */

- /* Target-attribute: The attribute whose value is to be predicted by the tree; */
- /* Attributes: A list of other attributes that may be tested by the learned decision tree. */
- /* Return a decision tree that correctly classifies the given Examples */
- Step 1: Create a Root node for the tree
- Step 2: If all Examples are positive, Return the single-node tree Root, with label = +

Step 3: If all EExamples are negative, Return the single-node tree Root, with label = -

Step 4: If Attributes is empty, Return the single-node tree Root, with label = most common value of Target-attribute in Examples

Step 5: Otherwise Begin

- A \leftarrow the attribute from Attributes that best (i.e., highest information gain) classifies Examples;
- The decision attribute for $Root \leftarrow A$;
- For each possible value, v_i , of A,
 - Add a new tree branch below $\mathit{Root},$ corresponding to the test $\mathbf{A}{=}v_i;$
 - Let $Examples_{(}v_{i)}$ be the subset of Examples that have value v_{i} for A;
 - If Examples(vi) is empty
 - * Then below this new branch add a leaf node with label = most common value of Target-attribute in Examples
 - * Else below this new branch add the subtree $ID3(Examples_{(v_i)}, Target-attribute, Attributes- A))$

End

Now how to measure worth of an Attribute:

How to specify test conditions

When to stop?

© Nadeem Qaisar Mehmood

Tree Induction

- Issues
 - Determine how to split the records
 - Attribute Worth: How to determine the best split?
 - How to specify the attribute test condition?
 - Determine when to stop splitting

How to measure attribute worth for best split

University of Camerino

• Use a statistical property "Information Gain" to measure worth

$$GAIN(S, A) = Entropy(S) - \left(\sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)\right)$$

- *Values(A)* is the set of all possible values for attribute A
- S_v is the subset of S for which attribute A has value v
- Uses Entropy to generate the information gain

Entropy: $E(S) = -(p_{+})*log_{2}(p_{+}) - (p_{-})*log_{2}(p_{-})$

- **E(S)** is the information entropy of the sample training examples **S**
- Where **p**+ is the proportion of positive samples in S
- Where **p** is the proportion of negative samples in S

How to determine the best split 1336 University of Camerino Before Splitting: 10 records of class 0, 10 records of class 1 Own Car Student Car? ID? Type? **C**₂₀ Family Luxury C_1 Yes No С₁₀, С Sports C0: 4 C0: 1 C0: 6 C0: 1 C0: 8 C0: 1 C0: 1 C0: 0 C0: 0 C1:4 C1:6 C1: 3 C1:0 C1:7 C1:0 C1:0 C1: 1 C1: 1

Which test condition is the best?

University of Camerino

- Greedy approach:
 - Nodes with homogeneous class distribution are preferred
- Need a measure of node impurity:

Non-homogeneous,

High degree of impurity

Homogeneous,

Low degree of impurity

Computing Entropy (example)

University of Camerino

Entropy: $E(S) = -(p_+)*log_2(p_+) - (p_-)*log_2(p_-)$

C1	0
C2	6

P(C1) = 0/6 = 0 P(C2) = 6/6 = 1Entropy = $-0 \log 0 - 1 \log 1 = -0 - 0 = 0$

C1	1
C2	5

$$P(C_1) = 1/6 \qquad P(C_2) = 5/6$$

Entropy = -(1/6) log₂(1/6) - (5/6) log₂(5/6) = 0.65

C1	2
C2	4

 $P(C_1) = 2/6 \qquad P(C_2) = 4/6$ Entropy = - (2/6) log₂ (2/6) - (4/6) log₂ (4/6) = 0.92

Entropy: $E(S) = -(p_+)*log_2(p_+) - (p_-)*log_2(p_-)$ Computing Entropy (example)

Tid	Refund	Marital Status	Taxable Income	Cheat
D1	Yes	Single	125K	No
D2	No	Married	100K	No
D3	No	Single	70K	No
D4	Yes	Married	120K	No
D5	No	Divorced	95K	Yes
D6	No	Married	60K	No
D7	Yes	Divorced	220K	No
D8	No	Single	85K	Yes
D9	No	Married	75K	No
D10	No	Single	90K	Yes

[Tan&Steinbach's "Intro to Data Mining"]

Training Data (S)

 $E(S)=E[3+,7-]=-(3/10)\log(3/10)-(7/10)\log(7/10)$

$$=-(0.3)\log(0.3)-(0.7)\log(0.7)$$

=0.881

©Nadeem Qaisar Mehmood

Get Information Gain using Entropy

University of Camerino

E(S)=E[3+,7-]=0.881

Refund

Yes

No

E[0+,3-] E[3+,4-]=0.985

- Measures Reduction in Entropy achieved because of the split.
- Choose the split that achieves most reduction in entropy

$$GAIN(S, A) = Entropy(S) - \left(\sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)\right)$$

Gain(S, MarStatus)
=0.881-{(4/10)(0)+(6/10)(1)}

=0.281

Since with marital status provides more gain, therefore in this case it will be the root node.

Nadeem Qaisar Mehmood

Tree Induction

- Greedy strategy.
 - Split the records based on an attribute test that optimizes certain criterion.
- Issues
 - Determine how to split the records
 - How to determine the best split?
 - How to specify the attribute test condition?
 - Determine when to stop splitting

How to specify Attribute Test Conditions?

University of Camerino

- Depends on attribute types
 - Nominal
 - Ordinal
 - Continuous
- Depends on number of ways to split
 - 2-way split
 - Multi-way split

Nadeem Qaisar Mehmood

Splitting based on Nominal Attributes

University of Camerino

• Multi-way split: Use as many partitions as distinct values.

• Binary split: Divides values into two subsets. Need to find optimal partitioning.

Splitting based on Ordinal Attributes

What about this split?

{Small, Large} {Medium}

- Different ways of handling
 - Discretization to form an ordinal categorical attribute
 - Static discretize once at the beginning
 - Dynamic ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering.
 - Binary Decision: (A < v) or $(A \ge v)$
 - consider all possible splits and finds the best cut
 - can be more compute intensive

Splitting based on Continuous Attributes

Tree Induction

- Greedy strategy.
 - Split the records based on an attribute test that optimizes certain criterion.
- Issues
 - Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Determine when to stop splitting

- Stop expanding a node when all the records belong to the same class
- Stop expanding a node when all the records have similar attribute values
- Early termination (to be discussed later)

Decision Tree representation in Rules form

University of Camerino

Classification Rules

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single,Divorced}, Taxable Income<80K) ==> No

(Refund=No, Marital Status={Single,Divorced}, Taxable Income>80K) ==> Yes

(Refund=No, Marital Status={Married}) ==> No

Rules are mutually exclusive and exhaustive Rule set contains as much information as the tree

References

- Tan and Steinbach's "Introduction to Data Mining"
- Peter Norvig's "Artificial Intelligence"
- Tom Mitchel's "Machine Learning"
- Quinlan, J. R. 1986. Induction of Decision Trees. Mach. Learn. 1, 1 (Mar. 1986), 81-106.