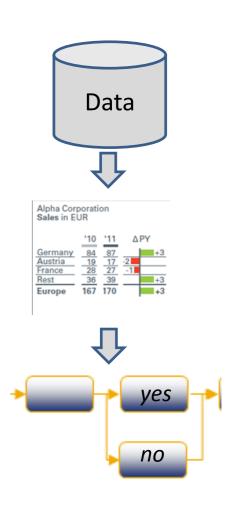
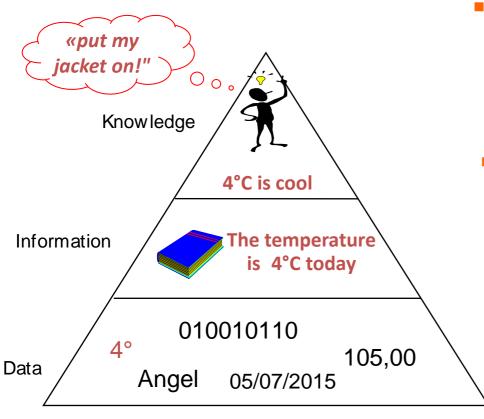
Business Intelligence

Knut Hinkelmann

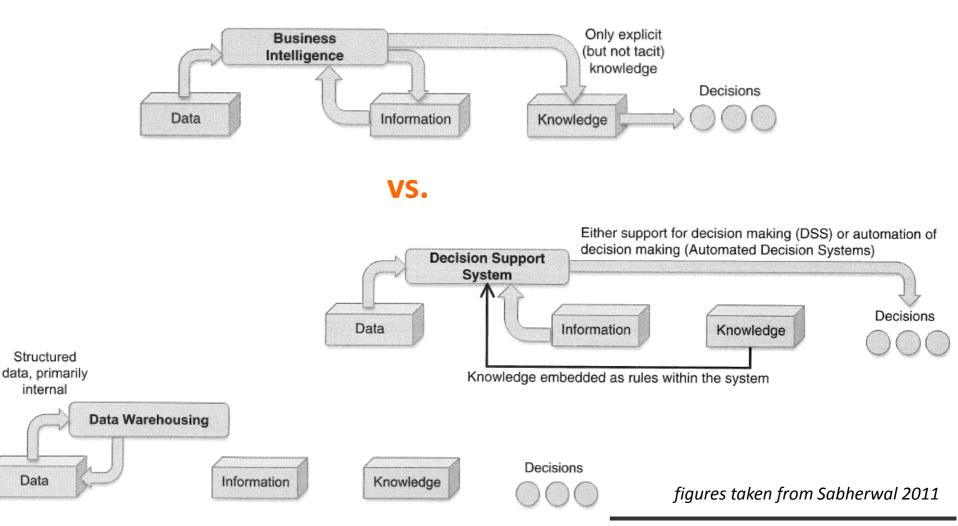

n|w

Business Intelligence – Definition(s)


- Hans-Peter Luhn (1958): «the ability to apprehend the interrelationships of presented facts in such a way as to guide action towards a desired goal»
- Sabherwal (2011): «We define BI as providing decision makers with valuable information and knowledge by leveraging a variety of sources of data as well as structured and unstructured information. [...] The key intellectual output of BI is knowledge that enables decision making with information and data being the inputs.»
- Howson (2007): Business Intelligence allows people at all levels of an organisation to access, interact with and analyse data to manage the business, improve performance, discover opportunities, and operate efficiently.

Data, information and knowledge

- Knowledge enables decisions and actios
 - originates from messages (information), experience, insight
 - is embedded into the beliefs and opinions of its owner
- Information is an interpretation of data, often assembled in messages
 - influences the judgment and behaviour of the recipient and
 - that has a significance (relevance, purpose)
- Data is a set of facts and/or signals
 - Do not have meaning by itself
 - To understand data you need an interpretation



Analytic vs. transaction processing

- BI focuses on analytic processing instead of transaction processing
 - ♦ transaction processing supports execution of core business processes
 - use knowledge
 - analytic processing supports insight and decision-making
 - create knowledge

Business Intelligence vs. Data warehousing, Decision Support Systems...

History of BI

1960 1970 1980 1990 2000 2010

- first modeldriven decision support systems
- theory development , rising academic interest (DSS)

- Data warehouses
- OLAP
- data-driven approaches
- «Business Intelligence»
- Web-based BI systems
- Web mining
- e-commerce, targeted marketing,
 CRM
- «Business Analytics»
- Web Analytics
- «predictive analytics»
- «Big data»

Models

Data

Perspectives on BI – pain points

MANAGEMENT

MARKETING

For targeted campaigns, we would urgently need a data basis that is harmonised with sales [...] ideally on an integrated platform where we can communicate with sales.

I told my people that I wanted to retrieve some numbers myself from my laptop. I then got access to various (!) systems [...] I finally gave up and now have an employee who does nothing but create reports for me [...]

SALES

In most review meetings, we spend half the time discussing whose figures are the right ones because everyone brings their own reporting. I have the impression that for any key figure it is possible to produce any value from the raw data.

SUPERVISORY BOARD

Why weren't you able to preview that trend? All our competitors seem to have reacted long before we did!

Why introduce BI? - primary motivations

Drive company strategy

 being able to connect strategising/planning to measuring of impact (do not manage «blindly»)

Growth and competitiveness:

- anticipate market trends and adapt R&D accordingly
- better customer relationships through better-targeted offers
- better leverage of customer potential (cross-/up-selling)
- optimise business processes

Single point of truth

no by-pass reporting, consistent data

Cost reduction

- faster access to information
- automation of reports, self-service BI
- no interference of analytics with operational systems

business drivers

technical drivers

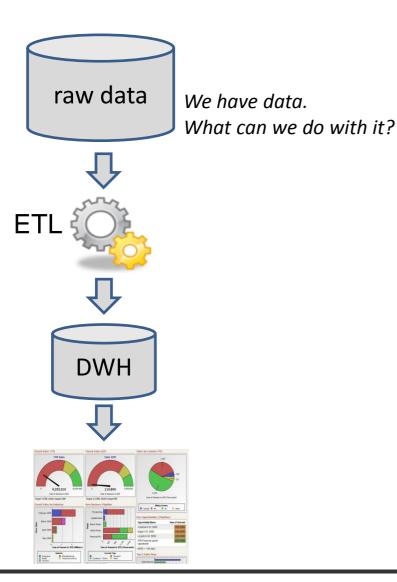
Decision making

- **Decision making** = The action of selecting among alternatives to achieve a goal
 - each alternative leads to a different future
 - what is needed is the ability to predict the futures

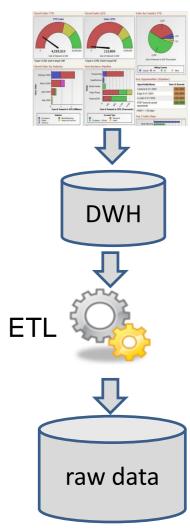
Options:

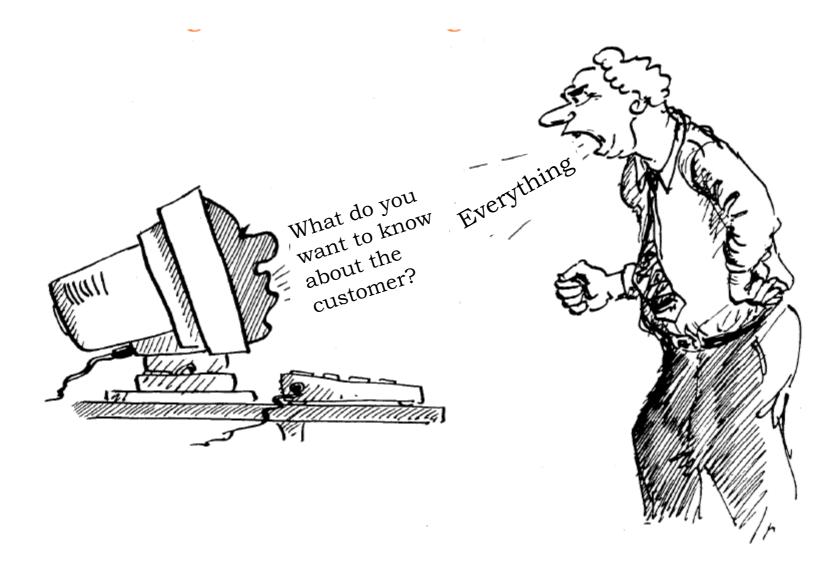
- 1. predict based on gut feeling
 - cheap in the first place
 - risk of low-quality decisions
- 2. Experiment with real system (try out)
 - too risky
 - too time-consuming (only one set of conditions at a time)
- 3. Predict based on the past:
 - Data collection is time-consuming
 - difficult to determine when to stop and make a decision
 - Too little or too much information

Drivers for BI

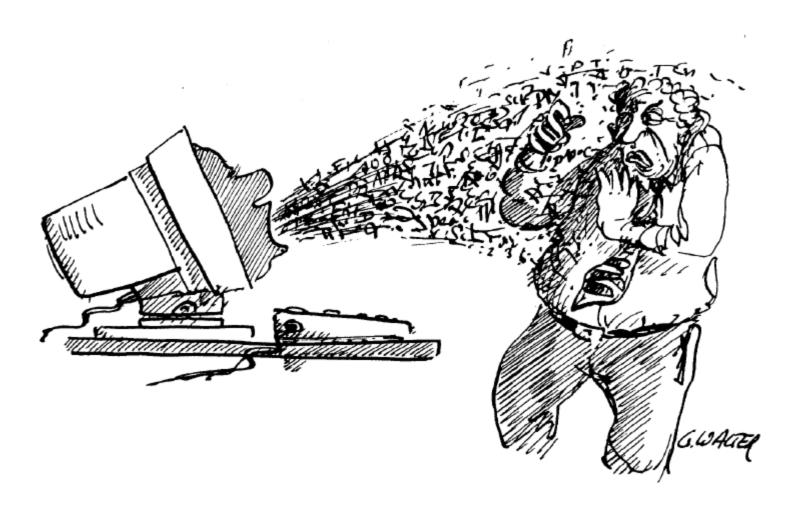

BI and fact-based decision making

- Fact-based decisions are based on information
- BI supports decision making by providing that information, usually in the following way:
 - ♦ the human decision maker (HDM) formulates the decision problem
 - the HDM manually identifies the questions that need to be answered in order to take an informed decision
 - the HDM consults a BI tool to get the answers, usually by querying or browsing (e.g. OLAP)
 - the HDM uses the answers to take an informed decision





Data-driven vs. business-driven BI



We have questions. How do we get answers?

Questions addressed by BI – task

- «We have questions» may only be the second step
- For the health insurance company
 - Where do the questions come from?
 - identify decisions that (will) need to be taken
 - identify possible actions that can be taken as a result of decisions
 - ♦ compile a list of questions that a BI system could answer
 - Make sure they are really formulated as questions! (see the examples!)
 - Concentrate on specific (rather than very general) questions! Questions should be ones that can be answered based on data alone, not involving any judgment or argumentation. They should not start with «how»!
 - categorise these questions by assigning them to the different parts of the value chain
 - Which actions will possibly be taken as a result of knowing the answer to these questions

Where questions come from

- Generally speaking, companies need information to
 - monitor and improve performance
 - recognize and mitigate risks
 - recognize and seize opportunities
- All this can happen both on a strategic and an operative level

n $|oldsymbol{w}|$

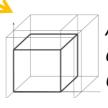
BI overview

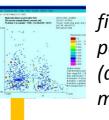
strategic

operative

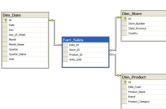
Questions

- What are our goals?
- Are we reaching our goals?
- If not, where is the problem?
- Which customers are interested in the new product?
- Which department has how many efforts that cannot be booked?


Analyses


measure, aggregate, visualise

dimensional


ETL

Ad hoc queries, OLAP

find patterns (data mining)

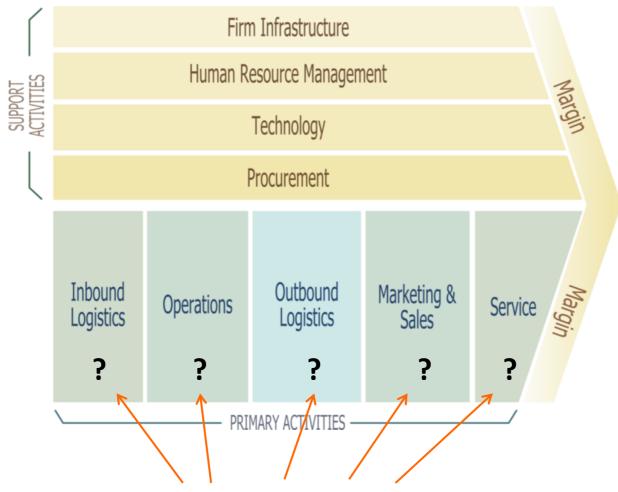
modelling

ETL

raw data

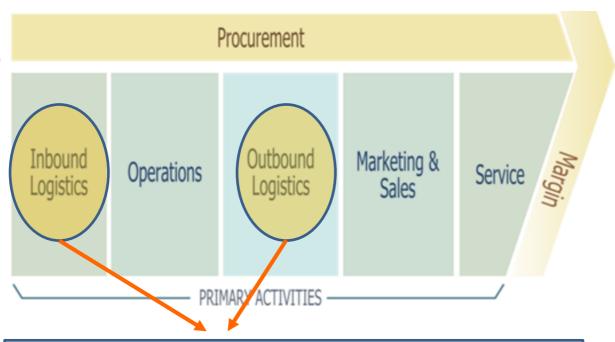
IE

Strategic decisions...

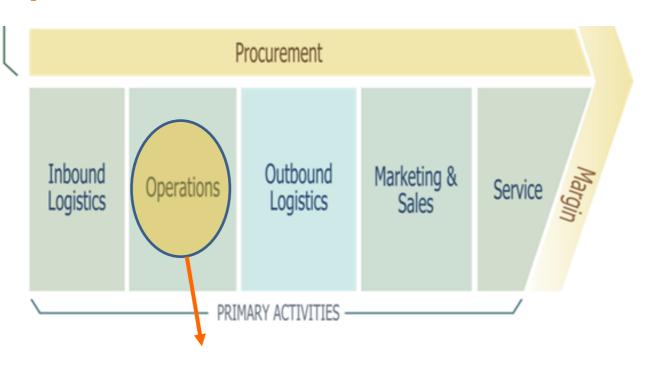

- Business Performance Management:
 - "how to perform better as a company?"
 - ◆ BI helps to achieve that by enabling measurement of achievement of strategic goals via KPIs
 - 1. Define strategy
 - 2. Define goals
 - e.g., identify key business processes to be improved, derive (concrete) strategic goals
 - for each goal, define KPIs and target values

3. Measure

- current values of KPIs (dashboard/cockpit)
- analyse / compare current to targeted values
- 4. Decide...
 - understand the (possible) deviation of KPI values from target!

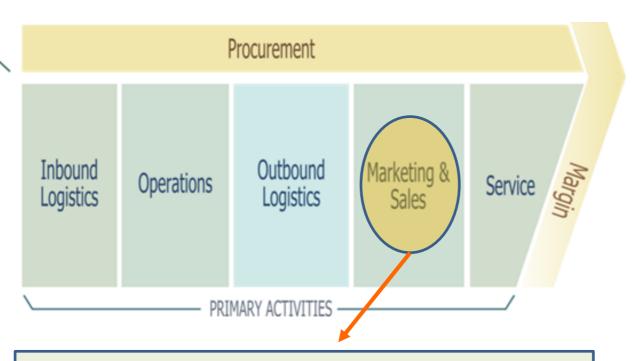


decisions to be taken in corresponding business processes?


Logistics:

the process of planning, implementing and controlling the efficient, effective flow and storage of goods, services and related information from the point of origin to the point of consumption for the purpose of conforming to customer requirements

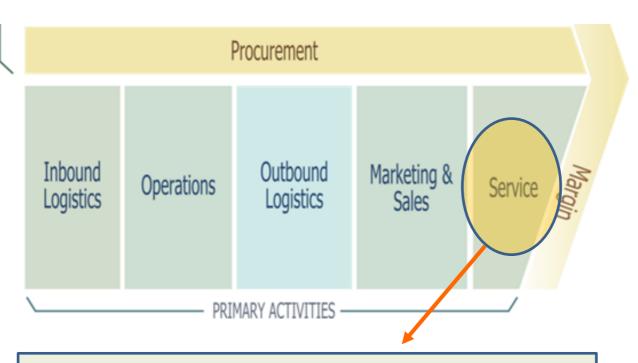
- how to best use resources (inbound)?
 - which parts to order, in which quantity, at what time, from which supplier?
- how to optimise processes (outbound)?
 - which route/channel to use, how to schedule deliveries?



Operations:

activities associated with the functions of transforming inputs into the final product form, such as machining, packaging, assembly, equipment maintenance, testing, printing, and facility operations.

- how to improve efficiency and effectiveness of processes?
 - which resources to allocate, in which quantity, ...


Marketing/Sales:

activities associated with the functions of providing the means by which buyers can purchase the product and inducing them to do so, such as advertising, promotion, quoting, pricing, channel and sales force management.

- how to understand and best address the market?
 - cross-selling: which offers to make?
 - where to place products in stores?
 - which customers to approach with a campaign?
 - client profitability: which customers to treat with special care?
 - pricing decisions

Service:

activities associated with the functions of providing service to enhance or maintain the value of the product, such as installation, repair, training, parts supply, and product adjustment.

- how to meet customer requirements and anticipate problems?
 - which distribution channels to use for service delivery?
 - which quality problems to address first?
 - Attrition prediction: which customers to retain with special offers?

Question types – summary

- Types of questions identified:
 - query for particular numbers or facts
 - e.g. list of all policies that have been lost, list of all complaints, list of treatments that have been billed twice, list of high-value customers...
 - compute a measure or KPI by aggregating numbers
 - e.g. cost, margin, turnover, profitability
 - analyse KPIs / facts in different ways
 - e.g. sales/bookings by product/customer/sales rep/time
 - e.g. receipts/failures/stock by part/supplier
 - e.g. number of clicks/purchases by buyer/seller/page
 - predict
 - e.g. predict fraudulent transactions/claims
 - e.g. predict if a customer will buy a product
 - e.g. detect types of customers or types of complaints

Monitor and improve performance

- Requirement on strategic level: be able to measure if strategic goals are achieved
 - e.g. be able to measure the satisfaction of our customers over the last year
 - \rightarrow so that we can decide to change our customer service model
- Requirement on operative level: monitor performance within certain business processes, in small time intervals
 - e.g. find out that/why (individual) customers are not satisfied today
 - → so that we can decide to call them and find a solution

Recognise and mitigate risks

- Requirement on strategic level: be able to recognise general threats to our business
 - e.g. become aware that sales in certain product category are dropping dramatically (which is threatening our whole business)
 - → so that we can revise our product portfolio
- Requirement on operative level: be able to recognise risks related to individual processes, customers, suppliers, employees, ...
 - e.g. in telecommunications, be able to predict if a customer is going to cancel (or not renew) her contract
 - → so that we can decide to make a special offer to that customer

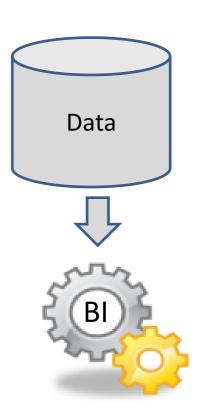
Recognise and seize opportunities

- Requirement on strategic level: be able to recognise general opportunities for our business
 - e.g. become aware that (potential) customers are asking for a certain kind of product or product feature in social media
 - → so that we can decide to develop such a product
- Requirement on operative level: be able to recognise opportunities related to individual process instances, customers, suppliers, employees...
 - e.g. recognise that we can cross-sell a certain product to an existing customer
 - → so that we can decide to make the customer aware of that product

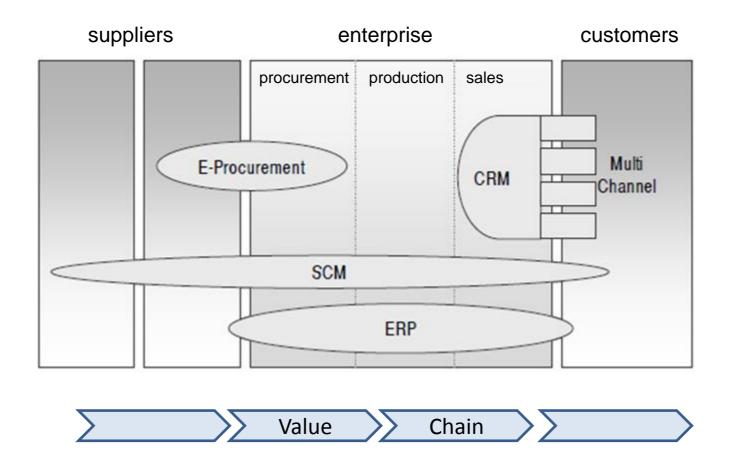
Specific requirements

When analysing requirements for a certain company's future BI solution, usually at least the following need to be fixed:

- ♦ Which are the strategic goals → which are our KPIs?
 e.g. revenue, delivery time, profitability, ...
- ♦ By which criteria should KPI values be grouped and/or filtered?
 e.g. by customer, by sales rep, by region, by date, ...
- Which drill-down paths should be possible?
 - e.g. date: $year \rightarrow quarter \rightarrow month \rightarrow ...$
 - e.g. region: country \rightarrow region \rightarrow city


Data

Remember...


- transform raw data into meaningful and useful information...
- Raw data is the starting point!

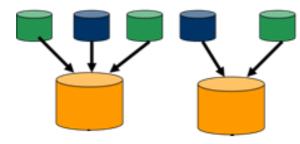
Where the data come from... (1)

Where the data come from (2)

- Internal data sources:
 - ♦ (Transactional) standard business applications: SCM, ERP, CRM, ...
 - Legacy databases
 - Web data: clickstreams from server logs, application logs
 - textual documents (from DMS, CMS, intranet, email,...)

structuredness

- External data sources:
 - ♦ Web and web 2.0



BI tools - backend

Observations:

- many questions involve multiple (types of) data
- sometimes the data can be expected to originate from more than one source system
- for answering the questions, data from various sources needs to be connected
 - example: «Which is the best way to distribute product XYZ to customers?" → involves information about customers (e.g. profitability, behaviour) as well as about channels (e.g. cost of each channel)

Planning Data vs. Operative Data (1)

- operative data: generated by and used in processing operational transactions (on-line transaction processing, OLTP)
 - many concurrent users access and modify the same data
 - focus on transactions
 - example: booking/reservation systems
- planning data: used for decision support
 - read-only data

following Kemper et al. ch 2.1

Planning Data vs. Operative Data(2)

	Operative data	Planning data
users	clerk, IT professional	knowledge worker, decision maker
Function/goal	Support day to day operations (value adding business processes)	decision support
DB design	application-oriented	subject-oriented
data	current, up-to-date detailed information on business events, flat relational	historical, summarized, multidimensional integrated, consolidated
usage	Continuous, repetitive, concurrent	ad-hoc
access	read/write index/hash on primary key	lots of scans
Queries	Static, transactions embedded in application code	Ad-hoc, for changing information needs
# records accessed	tens	millions
#users	thousands	hundreds
DB size	100MB-GB	100GB-TB
DD SIZE		

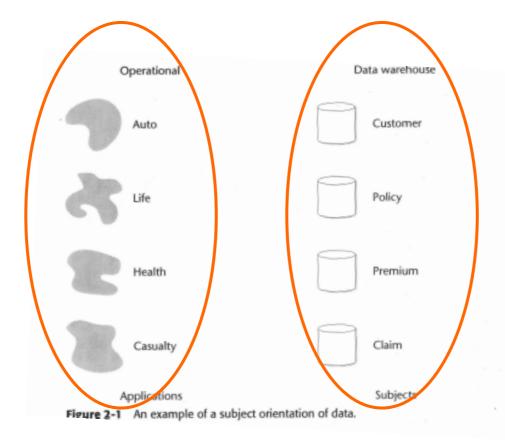
Data Warehouse – BI Backend

Data warehouse

- A data warehouse is
 - "a copy of transaction data specifically structured for querying and reporting" (Kimball et al. 2008)

or

- ◆ "an environment [...] comprising a data store and [...] tools for data extraction, loading, storage, access, query and reporting [...] to support decision-oriented management queries" (Bashein/Markus, 2000)
- 4 essential characteristics (Inmon 2005):
 - Subject oriented: data are organized around sales, products, etc.
 - Integrated: data are integrated to provide a comprehensive view
 - ◆ Time variant: historical data are maintained
 - ♦ Nonvolatile: data are not updated by users



Subject orientation

■ Example: insurance

operational systems are organised around functional applications

analytical systems should be organised around the major subject areas of an insurance!

figure taken from B. Inmon: Building the data warehouse.

Integration, Time variance

- Integration: provide a «single version of the truth»
 - ♦ remove redundancy, inconsistency, semantic contradictions
 - ♦ The nasty bit... See ETL processes later
- Time variance: every record in the DWH has a specified moment or period when it was valid; data is collected over a long time period

- Time horizon current to 60–90 days
- · Update of records
- Key structure may or may not contain an element of time
- Figure 2-4 The issue of time variancy.

- Time horizon 5–10 years
- Sophisticated snapshots of data
- Key structure contains an element of time

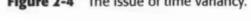


figure taken from B. Inmon: Building the data warehouse.

Non-volatility

- Non-volatility: data is not updated by end users on a regular basis
 - bulk loading, «read-only» access

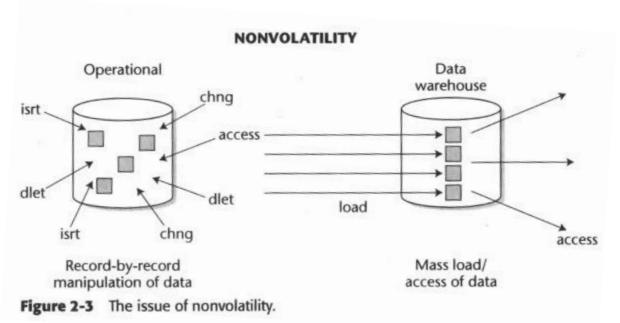
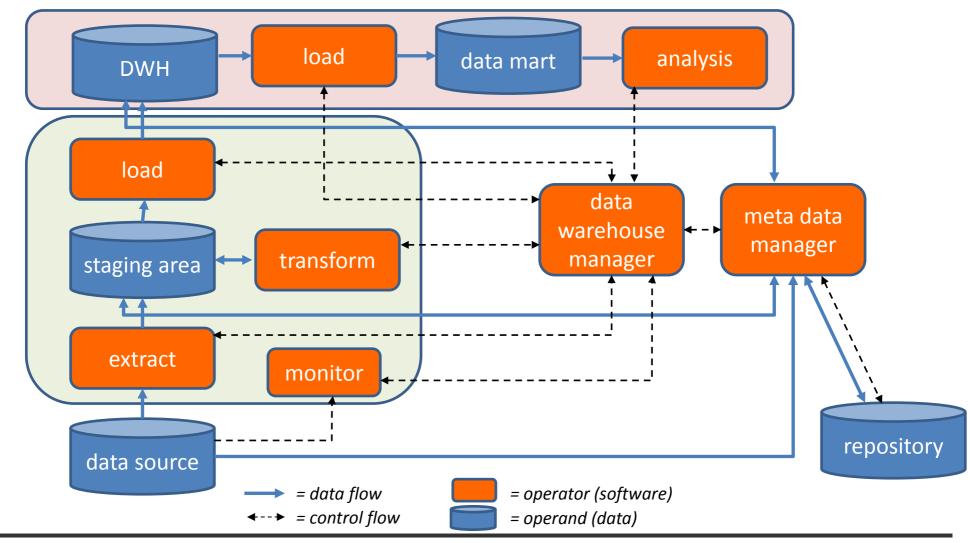
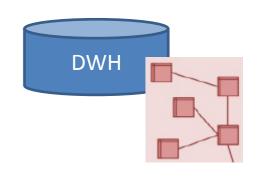
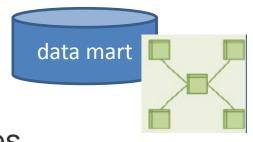


figure taken from B. Inmon: Building the data warehouse.


Data warehousing

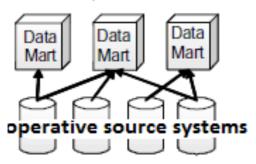
Data warehousing is the entire process of data extraction, transformation, and loading of data to the warehouse and the access of the data by end users and applications.


Reference architecture – overview

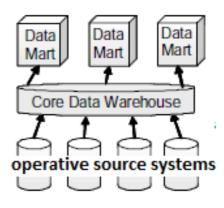

Reference architecture - DWH

- DWH = integrated data basis for all analyses
 - integration means both schema and data integration of various sources
 => «single point of truth» (no by-passes allowed!)
 - purpose: flexibility for re-using the data in multiple anlyses, no focus on (and hence no pre-aggregations for) particular types of questions
 - provides a collection of data that can be used to build data marts for specific analyses
 - not always present because of high cost: building data marts for specific analysis purposes directly from source data is often cheaper...

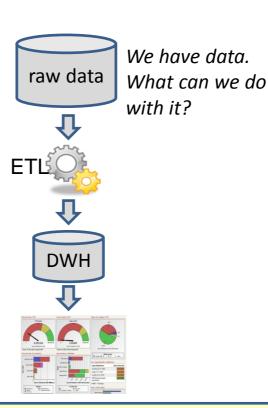
Reference architecture – data mart


- each data mart is designed for specific analyses
 - data is extracted from data warehouse in a fast mode («bulk loading»), represents only a relevant subset of the DWH data,
 - transformed into target schema most suitable for the required analyses (very often a multidimensional model) and
 - sometimes aggregated
 - offers access to data as well as processing functionality (e.g. cumputation of sums, mean, variance,...) via query languages such as SQL or MDX

Data Marts


- A data mart stores data for a *limited* number of subject areas, such as marketing and sales data. It is used to support specific applications.
 - ♦ An independent data mart is created directly from source systems.
 - ♦ A dependent data mart is populated from a data warehouse.

independent

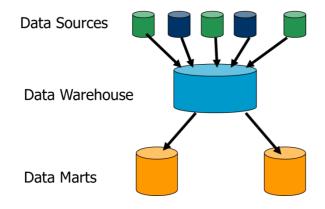

following Kemper et al. fig. 2.4

dependent

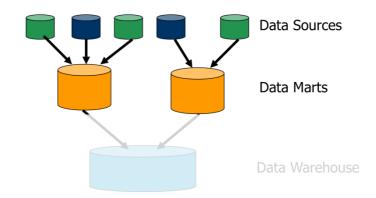
DWH architecture philosophies

We have questions. How do we get answers?

The requirements for the data warehouse cannot be known until it is partially populated and in use. [...] Therefore, data warehouses cannot be designed the same way as the classical requirements-driven system. On the other hand anticipating requirements is still important. Reality lies somewhere in between. (from W.H. Inmon: «Building the Data Warehouse»)

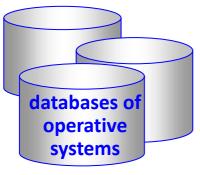


DWH architectures


Enterprise Datawarehouse

- Advocate: Bill Inmon
- also called «hub-and-spoke»
- strategy: aggregate all enterprise data into one core DWH, derive dependent data marts as subsets as needed

Independent data marts

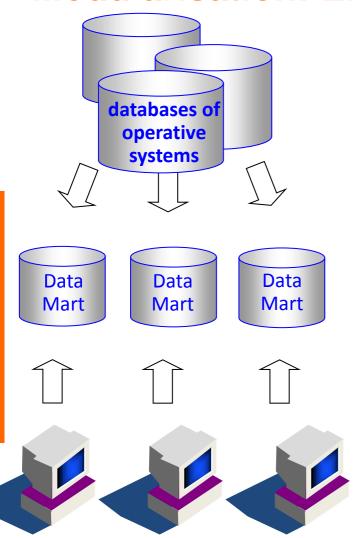

- Advocate: Ralph Kimball
- often done in reality («historic reasons»)
- strategy: build data marts from source systems, re-use dimension tables where possible. Possibly join marts into a centralised DWH later

Data Warehouse

Data Warehouse

A Data Warehouse is a database which supports strategic decisions by providing ...

- √ high-volume and
- ✓ regular excerpts from
- ✓ operative databases
- ✓ by periods and
- ✓ often aggregated¹
- ✓ also for ad hoc² analysis

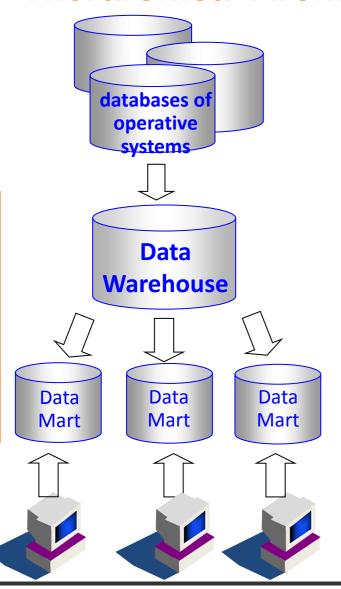

Source: [Lusti, 1999]

¹⁾ combined, consolidated (e.g. als sum, average, indicators)

²⁾ without preparation, in contrast to standardized analysis

Modularisation: Enterprise Data Mart

- Distribute data to several Data Marts
- Advantages:
 - data model easier to understand
 - efficient access
- Problem: overall analyses
- Coordination:
 - Loading cycles
 - Data model:


Attributes with equal meaning meaning should have the same identifier, key, datatype in all data marts

49

Hierarchical Architecture

- Coordination of local Data Marts by an Enterprise Data Warehouse (EDW)
- Objective of the EDW:
 - Extraction, integration and distribution of the data
 - integrated data model
- Objective of the Data Marts:
 - Queries and analysis on parts of data
 - Adaptation to needs of an organisation unit or process
- Data distribution
 - ♦ time-based
 - event-driven
 - on demand

Data Marts: Departmental vs. Enterprise?

Question: should data marts be enterprise-wide or departmental?

- ♦ Answer 1: Data marts should be organised around business processes (orders, invoices,...), not department boundaries!
- ♦ Answer 2: ... but they don't necessarily have to be enterprise-wide (depends on the business process)!

Reference architecture – ETL

Extract

- read source data into staging area as indicated by monitor
 - e.g. from file created by triggers or tables created by replication services
- control the selection of data that should be copied
- ♦ Extractions can happen...
 - ...periodically
 - ...on human request
 - ...event-based (e.g. when a certain number of changes has occurred)
 - ...upon each change
- Transform: data cleaning and schema integration (more on this later)
- Load: copy transformed data into DWH

ETL – Extract, Transform, Load

ETL process

- The process of
 - extracting relevant data from source systems (e.g. transaction-based ones)
 - transforming the data into the target format defined for the DWH or data mart
 - loading the data into the DWH
- The nasty, time-consuming and hence costly bit of data warehouse design
 - => do not underestimate the possible dirtiness of data!!!

ETL process – transformation tasks

- Transformation = adapting data, data quality and schemas to the requirements of users
 - ♦ Filtering: remove syntactic and semantic defects of data
 - Harmonisation: map source schemas to the target schema of the DWH
 - syntactic harmonisation: schema integration + data integration
 - business harmonisation
 - Aggregation: aggregate data along dimension hierarchies (e.g. «customer», «customer segment», «all»)
 - Enrichment: pre-compute values of frequent interest and store as new attributes
 - on the basis of harmonised/aggregated data

ETL - Harmonization

■ These are parts of tables that should be integrated in a DWH. What harmonisation asks/problems do you see?

CustomerID	Name	City
11	Peter	Rom
15	Paul	Camerino
18	Mary	Olten
25	Joe	Bern

PurchaseID	CustomerID	Date	ProductID
1002	11	5 May 2015	SE4256
1003	18	5 May 2015	EA4516
1004	11	6 May 2015	EA4516
1005	25	6 May 2015	RG3452

ComplaintID	Complaint	Person
36536	Return	George
44363	Failure	Paul
46344	Failure	John

ETL – Harmonisation: Schema integration

Problem	characteristics	Example: data source 1	Example: data source 2	Solution
Synonyms	Attributes with different names have identical meaning	Attribute «employee» contains employee name	Attribute «staff» contains employee name	Choose an attribute name
Homonyms	Same attribute name refers to attributes with different meaning	Attribute «partner» refers to name of customer	Attribute «partner» refers to name of supplier	Choose different attribute names

ETL – Harmonisation: data integration (1)

Problem	characteristics	Example: data source 1	Example: data source 2	Solution
Deviating primary keys (synonyms)	Same entity has different id in different operational DBs	Customer «Smith» has id 376_ACC in accounting application	Customer «Smith» has id 7843_CC in call center application	Record linkage: identify identical entities via overlapping attribute values; use mapping table

How to detect entity identity?

ETL – Harmonisation: data integration (2)

Mapping tables: allow to map updates in sources to DWH records

AD_SYS	 customer	LOADTIME
AD-FX8257	Müller	31DEC2009:23:03:08
AD-FH2454	Meier	31DEC2009:23:03:08
AD-FX7059	Schulz	31DEC2009:23:03:08
AD-FT2567	Schmitz	31DEC2009:23:03:08

AC SYS	customer	ustomerStatus
3857_ACC	Müller	A
3525_ACC	Meier	A
3635_ACC	Schulz	A
3566_ACC	Schmitz	В

CC_SYS	cust_grp	customer	LOADTIME
59235395	retail	Müller	31DEC2009:23:03:08
08485356	industry	Meier	31DEC2009:23:03:08
08555698	industry	Schulz	31DEC2009:23:03:08
85385386	retail	Schmitz	31DEC2009:23:03:08

AD=customer service CC = call center

AC = accounting

Kunde_ID	cust_id	 AD_SYS	CC_SYS	AC_SYS	 LOADTIME
0001	Müller	AD-FX8257	59235395	3857_ACC	31DEC2009:23:03:08
0002	Meier	AD-FH2454	08485356	3525_ACC	31DEC2009:23:03:08
0003	Schulz	AD-FX7059	08555698	3635_ACC	31DEC2009:23:03:08
0004	Schmitz	AD-FT2567	85385386	3566_ACC	31DEC2009:23:03:08

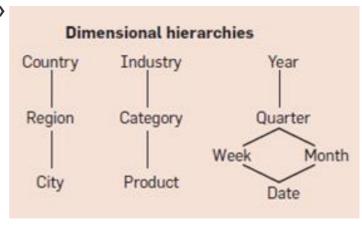
adapted from Kemper et al.

ETL – business harmonisation

adjust figures/values

- consolidate figures from various databases based on their (business) meaning, e.g. apply rules to map location- or department-specific value deviations
- lacktriangle convert currencies and units (e.g. inch \rightarrow cm)

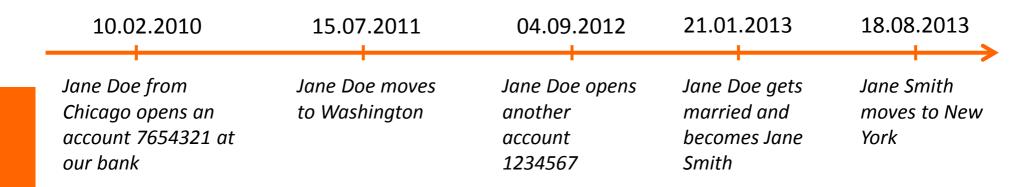
adjust granularity


- decide for a level of granularity (e.g. monthly or quarterly)
- harmonise according to period (source systems may have differing granularity, e.g. quarters vs. years)
- aggregate all values on that level (e.g. sum all records/receipts of one day together)

ETL - Aggregation

- Aggregate data based on dimensional hierarchy
 - usually, aggregates are pre-computed for performance reasons
 - introduces «controlled redundancy»
 - aggregates become invalid when hierarchies and/or source data change...

ETL - Enrichment


- add new attributes that are functions of existing data; compute these functions and store the result
 - sums, averages or more complicated computations (e.g. profitability)
 - based on harmonised and/or aggregated data
 - same motivation as aggregation: performance
 - introduces another «controlled redundancy»

Slowly Changing Dimensions

Example: customer dimension change

- who's the owner of the bank account 1234567?
 - as of today: Jane Smith from New York
 - ♦ as of 31.12.2012: Jane Doe from Washington
 - ♦ as of 31.12.2011: there is no such bank account

Type I: no history

Cust_id	Cust_name	Cust_city	
1	John Allan	Chicago	
2	Chris Lee	Boston	
3	Jane Doe	Chicago	•••

Cust_id	Cust_name	Cust_city	
1	John Allan	Chicago	
2	Chris Lee	Boston	
3	Jane Doe	Washington	

15.07.2011

old value is simple overwritten with new value

Type II: full history

Cust_id	Cust_name	Cust_city	Valid from	Valid to
1	John Allan	Chicago	10.03.2008	
2	Chris Lee	Boston	02.06.2010	
3	Jane Doe	Chicago	10.02.2010	

Cust_id	Cust_name	Cust_city	Valid from	Valid to
1	John Allan	Chicago		
2	Chris Lee	Boston		
3	Jane Doe	Chicago	10.02.2010	14.07.2011
3	Jane Doe	Washington	15.07.2011	20.01.2013
3	Jane Smith	Washington	21.01.2013	17.08.2013
3	Jane Smith	New York	18.08.2013	

18.08.2013

- every intermediate state is documented, validity range of values is signalled via «valid from», «valid to» attributes
- «valid from» becomes part of primary key

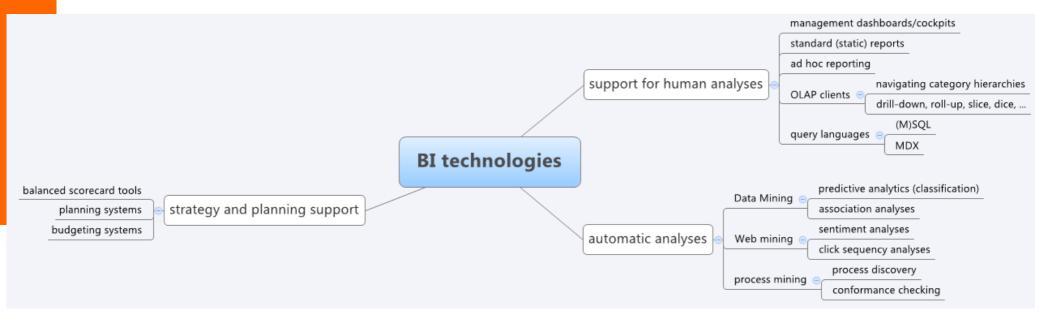
Type III: limited history

Cust _id	Previous Cust_name	Current Cust_name	Effective date cust_name	Previous Cust_city	Current Cust_city	Effective date cust_city
1		John Allan			Chicago	10.03.2008
2		Chris Lee			Boston	02.06.2010
3		Jane Doe			Chicago	10.02.2010

1	8	Λ	0	7	\cap	1	2
	0	.U	0	. Z	U	ш	. 그

Cust _id	Previous Cust_name	Current Cust_name	Effective date cust_name	Previous Cust_city	Current Cust_city	Effective date cust_city
1		John Allan			Chicago	10.03.2008
2		Chris Lee			Boston	02.06.2010
3	Jane Doe	Jane Smith	21.01.2013	Washington	New York	18.08.2013

- keeps the n previous values, each in a separate new column (in the example: n=1)
- effective date column(s) show(s) when the change occured


Analysis und Use of Data – BI Frontend

BI front-ends

- contribution of systems ranges from...
 - support of strategic planning, over...
 - ♦ simple aggregation of data (e.g. in dashboards/reports) to...
 - complex statistical analysis, data mining

Analysis: BI tools - front-end

1. strategic:

support definition of KPIs and their connection to data

offer possibilities to monitor status of indicators

 offer a possibility for drill-down, e.g. when indicators are off-target, to understand cause for deviation

BSC tools

dashboards, reports

OLAP

2. operative:

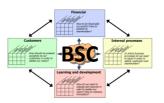
 support ad-hoc aggregation of numbers e.g. to make decisions about a particular product, customer, supplier or sales rep

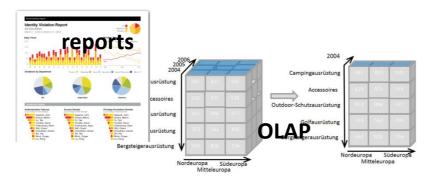
OLAP

query tools CBR

data mining tools

- support queries for particular facts, needed to make decisions in core business processes
- predict (mainly) customer behaviour to optimise sales and marketing strategies, find patterns




BI front-ends and the questions they answer


depth of analysis

level of aggregation

rule-based systems

Set goals and measure...

- 1. definition of KPIs
- 2. KPI measurement

Understand why...

- 3. group by ...
- 4. filter by ...
- 5. drill-down

Find new patterns

- 6. predict ...
- 7. find patterns ...

Make decision

- 8. apply rules
- 9. reuse cases

Objectives of Data Modeling

operative databases

◆ Transaction processing by high granularity

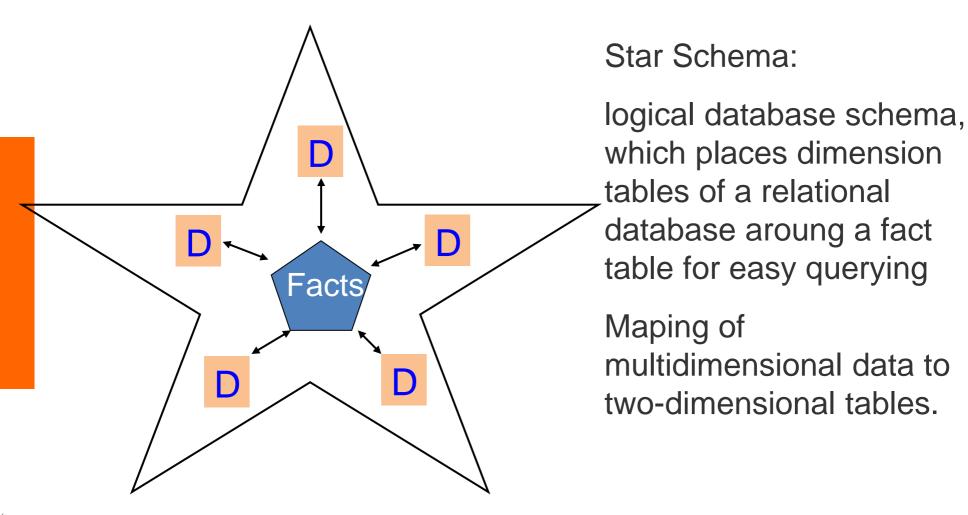
♦ Progress friendliness by normalisation

Storage efficiency by normalisation

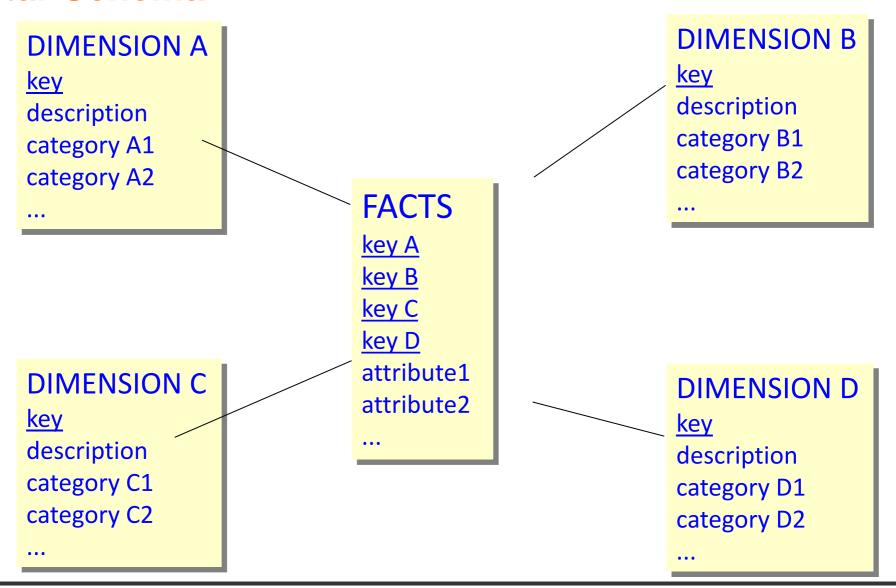
user friendliness by low granularity

query efficiency
 by denormalisation

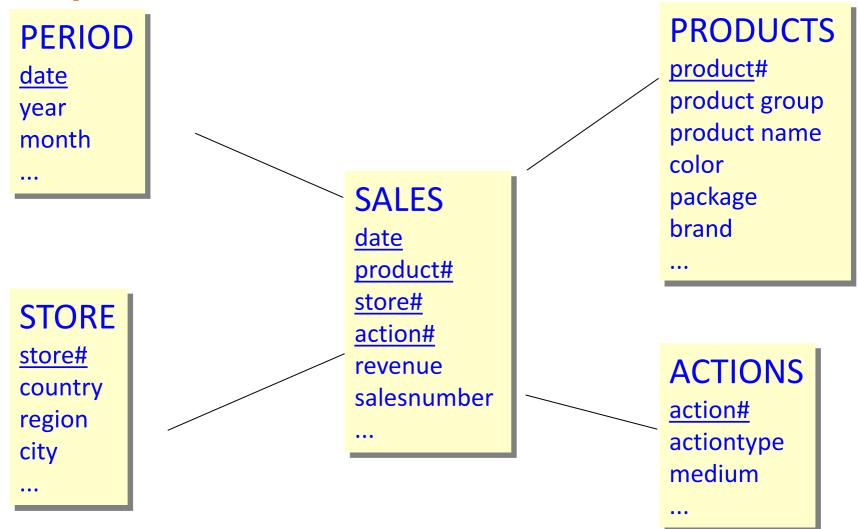
close to business
 by indicators and dimensions


4

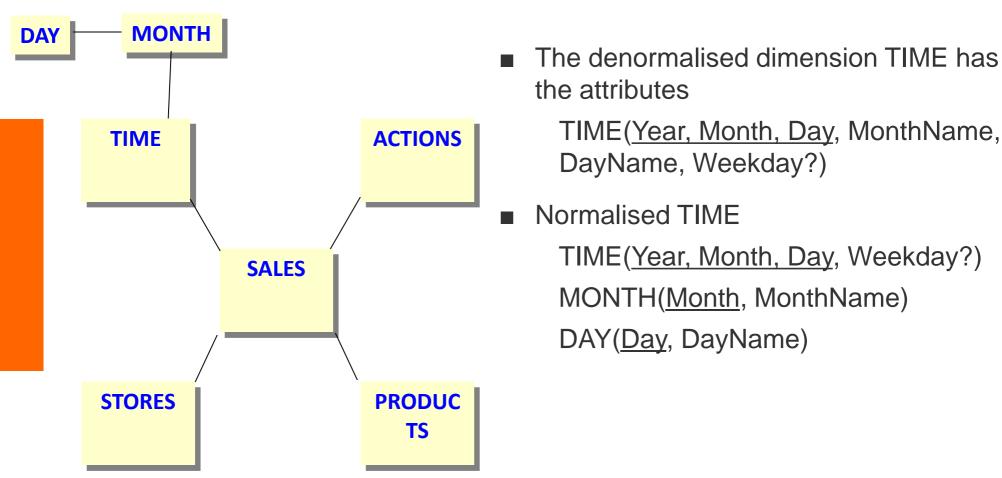
Data model of operative databases cannot be reused for data warehouses



Star Schema for Relational Data Warehouses /Marts to support OLAP

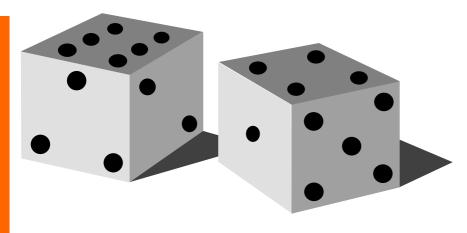

Star Schema

Example of a Start Schema for Retail


SALES: Key from the four foreign keys give 1:n relation to dimension tables

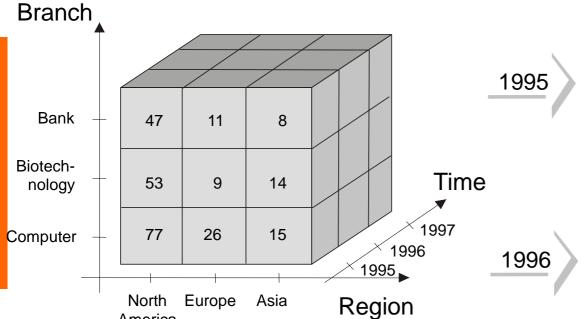
Snowflake Schema

Minimizing Redundancy by Normalisation of the Dimension Time



Source: [Lusti, 1999]

Dicing and Slicing



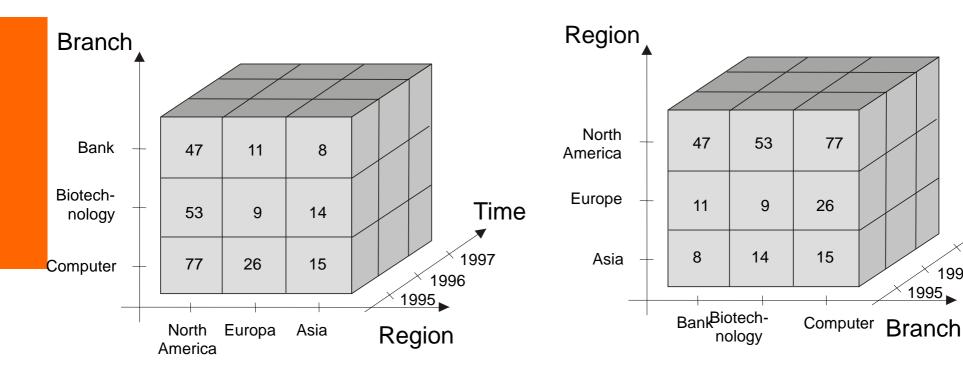
- An OLAP cube can be regarded as a multidimensional cube
- From a cube only two dimensions are visible on a two-dimensional interfact (e.g. as a table)
- Dicing
 - "turning" the cube to show other dimension
- Slicing
 - changing the layer in the third dimension

Slicing

Reduction of the dimensions in a multi-dimentional cube (a smaller cube)

Two-dimensional views as tables:

	America	Europe	Asia
Bank	47	11	8
Biotechn.	53	9	14
Computer	77	26	15

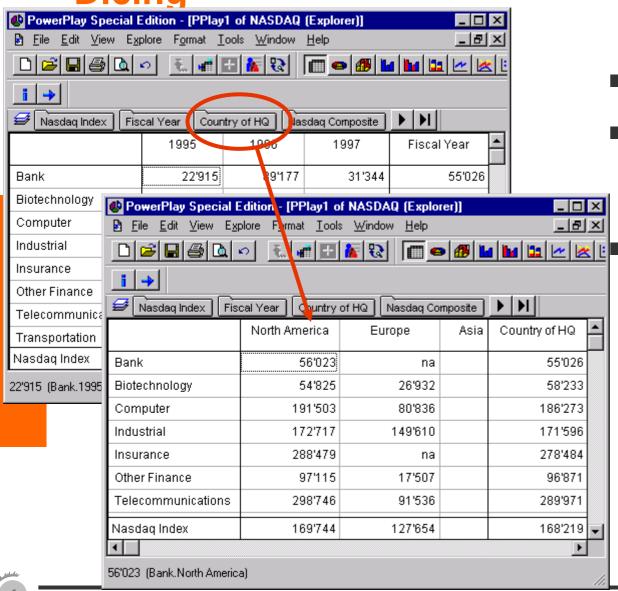

	America	Europa	Asia
Bank	43	15	8
Biotechn.	54	13	17
Computer	71	45	28

America

Dicing

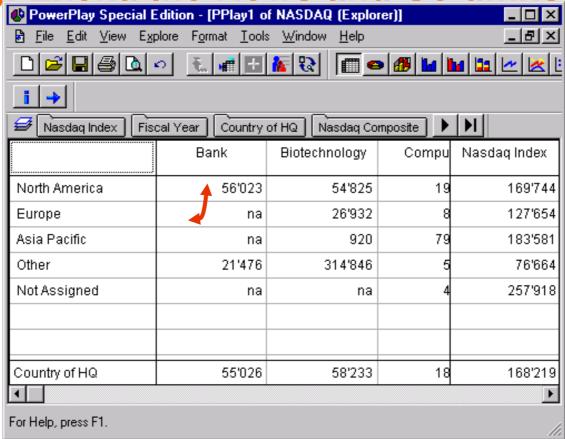
- Rotating the resultats to show different views, e.g.
 - Showing another dimension
 - Exchange of rows and columns (also pivoting)

Prof. Dr. Knut Hinkelmann

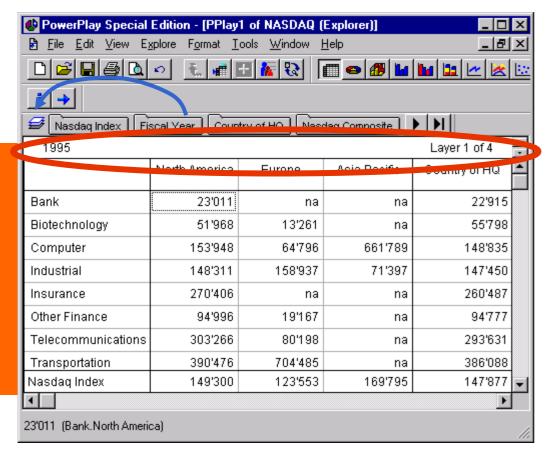

Time

1997

1996


Dicing

- Dicing (Dimensionswahl):
- Drag and Drop a dimension of the horizontal line to the window
 - Example: Drag and Drop the dimension Country of HQ in the column headers and thus exchange Fiscal Year


Pivoting: Exchagne Rows and Columns

- Pivoting: Exchange rows and columns (special form of dicing)
- Example: Exchange dimensions Branch and Country of HQ

Layers as Additional Dimensions

Layers:

- Showing 3 (instead of only 2) dimensions
- For each value of the third dimions an additional layer (Drag and Drop Fiscal Year to the layer symbol)

Example

- Showing Branch and Country of HQ
- Slicing: Change to a different Fiscal Year

