
3. Test Generation Strategies I
Based on requirements

Andrea Polini

Software Engineering II – Software Testing
MSc in Computer Science

University of Camerino

October 28th, 2014

(Software Engineering II – Software Testing) 3. Test Generation Strategies I October 28th, 2014 1 / 8

Test Generation

Software Requirements

Requirements Specification
informal
semi-formal
formal

Depending on the degree of formality more or less automated
strategies can be applied

(Software Engineering II – Software Testing) 3. Test Generation Strategies I October 28th, 2014 2 / 8

Test Generation

The test selection problem

Challenge

Construct a test set T ⊆ D that will reveal as many errors in p as
possible (where D is the input domain and T is the set of tests)

To give an idea. . .
Consider a procedure that has to manage data of an employee defined as follows:

ID:int – three digit long from 001 to 999

name:string – name is a 20 character long. Each characters belogn to the set
of 26 letters and space

rate:float – rate varies from $5 to $10 per hour and in multiple of a quarter

hoursWorked:int – hoursWorked varies from 0 to 60

Therefore:

999 x 2720 x 21 x 61 ≈ 5.42 x 1034

(Software Engineering II – Software Testing) 3. Test Generation Strategies I October 28th, 2014 3 / 8

Test Generation

The test selection problem

Challenge

Construct a test set T ⊆ D that will reveal as many errors in p as
possible (where D is the input domain and T is the set of tests)

To give an idea. . .
Consider a procedure that has to manage data of an employee defined as follows:

ID:int – three digit long from 001 to 999

name:string – name is a 20 character long. Each characters belogn to the set
of 26 letters and space

rate:float – rate varies from $5 to $10 per hour and in multiple of a quarter

hoursWorked:int – hoursWorked varies from 0 to 60

Therefore:

999 x 2720 x 21 x 61 ≈ 5.42 x 1034

(Software Engineering II – Software Testing) 3. Test Generation Strategies I October 28th, 2014 3 / 8

Test Generation

Equivalence partitioning

How to . . .
using the equivalnce partitioning strategy a tester should subdivide the
input domain into “small numbers” of subdomains, which can be
disjoint

Assumption
Equivalence classes are built assuming that the program under test
exhibits the same behaviour on all elements of the same subset. One
element for each subset is selected to form T

Results?
Quality of T depends from experience, familiarity with requirements,
access and familiarity with the code

(Software Engineering II – Software Testing) 3. Test Generation Strategies I October 28th, 2014 4 / 8

Test Generation

Equivalence partitioning

How to . . .
using the equivalnce partitioning strategy a tester should subdivide the
input domain into “small numbers” of subdomains, which can be
disjoint

Assumption
Equivalence classes are built assuming that the program under test
exhibits the same behaviour on all elements of the same subset. One
element for each subset is selected to form T

Results?
Quality of T depends from experience, familiarity with requirements,
access and familiarity with the code

(Software Engineering II – Software Testing) 3. Test Generation Strategies I October 28th, 2014 4 / 8

Test Generation

Equivalence partitioning

How to . . .
using the equivalnce partitioning strategy a tester should subdivide the
input domain into “small numbers” of subdomains, which can be
disjoint

Assumption
Equivalence classes are built assuming that the program under test
exhibits the same behaviour on all elements of the same subset. One
element for each subset is selected to form T

Results?
Quality of T depends from experience, familiarity with requirements,
access and familiarity with the code

(Software Engineering II – Software Testing) 3. Test Generation Strategies I October 28th, 2014 4 / 8

Test Generation

Faults targeted

Simple partitioning:
set of legal and not legal input
requirements explicitely referring to different sets
(Req1:i ∈ [1, ..,60] and Req2:i ∈ [60, ..,120])
above and below

(Software Engineering II – Software Testing) 3. Test Generation Strategies I October 28th, 2014 5 / 8

Test Generation

Formalizing the approach

Relations helping a tester in partitioning are of the form:

R : I → I

where I represents the input domain.

The grocery (simple one)

Consider a method getPrice that takes the name of a grocery item
consults a database of prices and return the unit price for the item.
How would you partion the input?

pFound : I → I

Elements in the database pF and elements non in the database pNF .
They constitute a partion of I

(Software Engineering II – Software Testing) 3. Test Generation Strategies I October 28th, 2014 6 / 8

Test Generation

Formalizing the approach

Relations helping a tester in partitioning are of the form:

R : I → I

where I represents the input domain.

The grocery (simple one)

Consider a method getPrice that takes the name of a grocery item
consults a database of prices and return the unit price for the item.
How would you partion the input?

pFound : I → I

Elements in the database pF and elements non in the database pNF .
They constitute a partion of I

(Software Engineering II – Software Testing) 3. Test Generation Strategies I October 28th, 2014 6 / 8

Test Generation

Examples

Printers
Consider an automatic printer testing application named pTest. The application takes
the manufacturer name and the model of a printer as input and selects a test script
from a list. The script is then executed to test the printer. Our goal is to test if the script
selection part of the application is implemented correctly. Different types of printers
available (B/W Inkjet, Color Inkjet, Color laserjet, Color multifunction).
How would you partion the input?

Words Count I
The wordCount method takes a word w and a file name f and returns the number of
occurrences of w in the text contained in the file. An exception is raised if there is no
file with name f .
How would you partion the input?

(Software Engineering II – Software Testing) 3. Test Generation Strategies I October 28th, 2014 7 / 8

Test Generation

Examples

Printers
Consider an automatic printer testing application named pTest. The application takes
the manufacturer name and the model of a printer as input and selects a test script
from a list. The script is then executed to test the printer. Our goal is to test if the script
selection part of the application is implemented correctly. Different types of printers
available (B/W Inkjet, Color Inkjet, Color laserjet, Color multifunction).
How would you partion the input?

Words Count I
The wordCount method takes a word w and a file name f and returns the number of
occurrences of w in the text contained in the file. An exception is raised if there is no
file with name f .
How would you partion the input?

(Software Engineering II – Software Testing) 3. Test Generation Strategies I October 28th, 2014 7 / 8

Test Generation

Examples

Words Count II
Now suppose to have access to the code of wordCount:

1 begin
2 string w,f;
3 input (w,f);
4 if (^exists(f)) {raise exception; return(0)};
5 if (length(w)==0) return (0);
6 if (empty(f)) return (0);
7 return (getCount(w,f));
8 end

How would you partion the input, now?
Combination of w : null/non-null, f : esists/does not exist, empty/non empty

In some cases the equivalence classes are based on the output
generated by the program

(Software Engineering II – Software Testing) 3. Test Generation Strategies I October 28th, 2014 8 / 8

Test Generation

Examples

Words Count II
Now suppose to have access to the code of wordCount:

1 begin
2 string w,f;
3 input (w,f);
4 if (^exists(f)) {raise exception; return(0)};
5 if (length(w)==0) return (0);
6 if (empty(f)) return (0);
7 return (getCount(w,f));
8 end

How would you partion the input, now?
Combination of w : null/non-null, f : esists/does not exist, empty/non empty

In some cases the equivalence classes are based on the output
generated by the program

(Software Engineering II – Software Testing) 3. Test Generation Strategies I October 28th, 2014 8 / 8

Test Generation

Examples

Words Count II
Now suppose to have access to the code of wordCount:

1 begin
2 string w,f;
3 input (w,f);
4 if (^exists(f)) {raise exception; return(0)};
5 if (length(w)==0) return (0);
6 if (empty(f)) return (0);
7 return (getCount(w,f));
8 end

How would you partion the input, now?
Combination of w : null/non-null, f : esists/does not exist, empty/non empty

In some cases the equivalence classes are based on the output
generated by the program

(Software Engineering II – Software Testing) 3. Test Generation Strategies I October 28th, 2014 8 / 8

	Test Generation

