
3. Test Generation Strategies II
Based on requirements

Andrea Polini

Software Engineering II – Software Testing
MSc in Computer Science

University of Camerino

November 4th, 2014

(Software Engineering II – Software Testing) 3. Test Generation Strategies II October 28th, 2014 1 / 19

Equivalence classes for variables

There are some guidelines to define equivalence classes on the base
of variables domains and defined requirements. They reflect possible
implementation choices related to explicit knowledge or implicit one:

Range (implicitly or explicitly defined)
Strings
Enumerations
Arrays
Compound Data Types

(Software Engineering II – Software Testing) 3. Test Generation Strategies II October 28th, 2014 2 / 19

Unidimensional vs. Multidimensional partitioning

Unidimensional
Each input variable is considered per-se and classes are combined to
cover all the possible equivalence classes

Multidimensional
The Cartesian product of equivalence classes is considered and test
derived accordingly.

(Software Engineering II – Software Testing) 3. Test Generation Strategies II October 28th, 2014 3 / 19

Systematic procedure

Identify input domains
Equivalence classing
Combine equivalence classes
Identify infeasible equivalence classes

(Software Engineering II – Software Testing) 3. Test Generation Strategies II October 28th, 2014 4 / 19

The Boiler Control System (BCS)

BCS
The control system takes in input:

A command: cmd = (temp|shut |cancel)
When temp is selected tempch = −10| − 5|5|10

Input can be provided via a GUI or via a configuration file.
How would you partition the input domain?

BCS input domain

Variable Type Value(s)
V Enumerated {GUI, file}
F String A file name
cmd Enumerated {temp, cancel , shut}
tempch Enumerated {−10,−5,5,10}

(Software Engineering II – Software Testing) 3. Test Generation Strategies II October 28th, 2014 5 / 19

The Boiler Control System (BCS)

BCS
The control system takes in input:

A command: cmd = (temp|shut |cancel)
When temp is selected tempch = −10| − 5|5|10

Input can be provided via a GUI or via a configuration file.
How would you partition the input domain?

BCS input domain

Variable Type Value(s)
V Enumerated {GUI, file}
F String A file name
cmd Enumerated {temp, cancel , shut}
tempch Enumerated {−10,−5,5,10}

(Software Engineering II – Software Testing) 3. Test Generation Strategies II October 28th, 2014 5 / 19

Boundary-value analysis

Experience indicates that programmers make mistakes in processing
values at and near the boundaries of equivalence classes

Boundary-value analysis
test-selection techniques that targets faults in applications at the
boundaries of equivalence classes.

Once the input domain has been identified:
Partition the input domain using unidimensional partitioning
Identify the boundaries of each partition
Select test data such that each boundary value occurs in at least
one test input

(Software Engineering II – Software Testing) 3. Test Generation Strategies II October 28th, 2014 6 / 19

Boundary-value analysis

Experience indicates that programmers make mistakes in processing
values at and near the boundaries of equivalence classes

Boundary-value analysis
test-selection techniques that targets faults in applications at the
boundaries of equivalence classes.

Once the input domain has been identified:
Partition the input domain using unidimensional partitioning
Identify the boundaries of each partition
Select test data such that each boundary value occurs in at least
one test input

(Software Engineering II – Software Testing) 3. Test Generation Strategies II October 28th, 2014 6 / 19

Boundary-value analysis

Experience indicates that programmers make mistakes in processing
values at and near the boundaries of equivalence classes

Boundary-value analysis
test-selection techniques that targets faults in applications at the
boundaries of equivalence classes.

Once the input domain has been identified:
Partition the input domain using unidimensional partitioning
Identify the boundaries of each partition
Select test data such that each boundary value occurs in at least
one test input

(Software Engineering II – Software Testing) 3. Test Generation Strategies II October 28th, 2014 6 / 19

BA Example

The findPrice procedure
Two integer parameter code and quantity with the following input
domain:

99 ≤ code ≤ 999
1 ≤ quantity ≤ 100

Which are the relevant partitions?
Which are the relevant boundary values?

(Software Engineering II – Software Testing) 3. Test Generation Strategies II October 28th, 2014 7 / 19

BA Example

The findPrice procedure
Two integer parameter code and quantity with the following input
domain:

99 ≤ code ≤ 999
1 ≤ quantity ≤ 100

Which are the relevant partitions?
Which are the relevant boundary values?

(Software Engineering II – Software Testing) 3. Test Generation Strategies II October 28th, 2014 7 / 19

BA Example

Consider the following test set:

T = { t1 : (code = 98, quantity = 0),
t2 : (code = 99, quantity = 1),
t3 : (code = 100, quantity = 2),
t4 : (code = 998, quantity = 99),
t5 : (code = 999, quantity = 100),
t6 : (code = 1000, quantity = 101),

}

Minimal but:

public void fP(int code, int quantity) {
if (code < 99 && code > 999)
{display_error("invalid code"); return;}
// Validity check for quantity is missing!
// Begin processing code and quantity

...
}

(Software Engineering II – Software Testing) 3. Test Generation Strategies II October 28th, 2014 8 / 19

BA Example

Consider the following test set:

T = { t1 : (code = 98, quantity = 0),
t2 : (code = 99, quantity = 1),
t3 : (code = 100, quantity = 2),
t4 : (code = 998, quantity = 99),
t5 : (code = 999, quantity = 100),
t6 : (code = 1000, quantity = 101),

}

Minimal but:

public void fP(int code, int quantity) {
if (code < 99 && code > 999)

{display_error("invalid code"); return;}
// Validity check for quantity is missing!
// Begin processing code and quantity

...
}

(Software Engineering II – Software Testing) 3. Test Generation Strategies II October 28th, 2014 8 / 19

Category Partition Method

the findPrice procedure (2nd version)

findPrice(code,quantity ,weight)

Leftmost digit Interpretation
0 Ordinary grocery items such as bread, magazines soup
2 Variable-weight items such as meats, fruits, and vegetables
3 Health-related items such as tylenol, bandaids, and tampons
5 Coupon; digit 2(dollars), 3 and 4 (cents) specify the discounts
1, 6-9 unused

(Software Engineering II – Software Testing) 3. Test Generation Strategies II October 28th, 2014 9 / 19

Category Partition Method

CP Method
Mixed manual/automatic approach consisting of eight successive steps
based approach to go from requirements to test scripts

Analyze specification
Identify Categories
Partition Categories
Identify Constraints
(Re)write test specification
Process Specification
Evaluate Generator Output
Generate Test Scripts

(Software Engineering II – Software Testing) 3. Test Generation Strategies II October 28th, 2014 10 / 19

Analyze Specification

The tester identify each functional unit that can be tested separately

(Software Engineering II – Software Testing) 3. Test Generation Strategies II October 28th, 2014 11 / 19

Identify categories

For each testable unit spec analyzed and inputs isolated. Also objects
in the environment are considered. Then the relevant characteristics
(category) of each parameter are identified

findPrice
Categories:

code: length, leftmost digits, remaining digits
quantity : integer quantity
weight : float quantity
database: contents

(Software Engineering II – Software Testing) 3. Test Generation Strategies II October 28th, 2014 12 / 19

Partition Categories

For each category different cases (choices) against which to test the
functional units are identified.

code:
Length: Valid (8 digits), Invalid (< or > 8)
leftmost digit: 0,2,3,5,others
remaining digits: valid string, invalid string

quantity : valid, invalid
weight : valid, invalid
Database: item exists, item does not exist

(Software Engineering II – Software Testing) 3. Test Generation Strategies II October 28th, 2014 13 / 19

Identify Constraints

Constraints among choices are specified and used to exclude
infeasible tests

(Software Engineering II – Software Testing) 3. Test Generation Strategies II October 28th, 2014 14 / 19

(Re)write test specification

The tester write a complete test specification using a TSL, and taking
into account the information derived in the previous steps

(Software Engineering II – Software Testing) 3. Test Generation Strategies II October 28th, 2014 15 / 19

Process Specification

TSL specification are processed top derive test frames.

(Software Engineering II – Software Testing) 3. Test Generation Strategies II October 28th, 2014 16 / 19

Evaluate Generator Output

Generated tests are analyzed for redundancy of missing cases

(Software Engineering II – Software Testing) 3. Test Generation Strategies II October 28th, 2014 17 / 19

Generate Test Scripts

Test frames are finally grouped into test scripts

CP is mainly a systematization of the equivalence partitioning and
boundary value analysis

(Software Engineering II – Software Testing) 3. Test Generation Strategies II October 28th, 2014 18 / 19

Generate Test Scripts

Test frames are finally grouped into test scripts

CP is mainly a systematization of the equivalence partitioning and
boundary value analysis

(Software Engineering II – Software Testing) 3. Test Generation Strategies II October 28th, 2014 18 / 19

Cause Effect Graphing

(Software Engineering II – Software Testing) 3. Test Generation Strategies II October 28th, 2014 19 / 19

