

3. Test Generation Strategies V

Based on requirements

Andrea Polini

Software Engineering II – Software Testing MSc in Computer Science University of Camerino

December 2nd, 2014

(Software Engineering II - Software Testing)

3. Test Generation Strategies V

A

Predicate testing criteria

Three common criteria:

- BOR (Boolean Operator): A test set \mathscr{T} that satisfied the BOR-testing criterion for a compound predicate p_r , guarantees the detection of single or multiple Boolean operator faults in the implementation of p_r . \mathscr{T} is referred to as a BOR-adequate test set and sometimes written as \mathscr{T}_{BOR} .
- BRO (Boolean and relational Operator): A test set *T* that satisfied the BRO-testing criterion for a compound predicate *p_r*, guarantees the detection of single or multiple Boolean operator and relational operator faults in the implementation of *p_r*. *T* is referred to as a BRO-adequate test set and sometimes written as *T_{BRO}*.
- BRE (Boolean and relational expression): A test set \mathscr{T} that satisfied the BRE-testing criterion for a compound predicate p_r , guarantees the detection of single or multiple Boolean operator, relational operator and arithmetic expression faults in the implementation of p_r . \mathscr{T} is referred to as a BRO-adequate test set and sometimes written as \mathscr{T}_{BRE} .

Generating BOR, BRO, BRE adequate tests

A predicate constraint C for predicate p_r is a sequence of n + 1 boolean and relational symbols.

A test case *t* satisfies *C* for predicate p_r , if each component of p_r satisfies the corresponding constraint in *C* when evaluted against *t*. e.g.: given $p_r = b \land r < s \lor u \ge v$ and C : (t, =, >) the following test case satisfies *C*: <b = true, r = 1, s = 1, u = 1, v = 0>

There exist algorithms for the generation of adequate tests given constraints on the predicate. They are based on the definition of:

- Cartesian product of sets
- onto set product operator
- AST(p_r)

Generating the BOR-constraint set

Let p_r be a predicate and $AST(P_r)$ its abstract syntax tree, S_N the constraint set attached to a node N (where S^t_N and S^t_N are the true and false constraints associated with the node). The following alg. generates the BOR-constraint set for p_r **Input:** $AST(p_r)$ (only singular expressions)

Output: BOR-Constraint set attached to the root node

1 Label each leaf node N of $AST(p_r)$ with its constraint set $S_N = \{t, f\}$

- 2 Visit the AST bottom-up. Let N_1 and N_2 direct descendants of node N and S_{N_1} and S_{N_2} the corresponding BOR-constraint set. S_N is computed as follows:
 - 2.1 N is an OR-node:

$$S^{f}_{N} = S^{f}_{N1} \otimes S^{f}_{N2}$$

• $S_N^t = (S_{N_1}^t \times \{f_2\}) \cup (\{f_1\} \times S_{N_2}^t)$ where $f_1 \in S_{N_1}^t$ and $f_2 \in S_{N_2}^t$

2.2 N is an AND-node:

•
$$S_{N}^{t} = S_{N1}^{t} \otimes S_{N2}^{t}$$

• $S_{N}^{t} = (S_{N1}^{t} \times \{t_{2}\}) \cup (\{t_{1}\} \times S_{N2}^{t})$ where $t_{1} \in S_{N1}^{t}$ and $t_{2} \in S_{N2}^{t}$

2.3 N is NOT-node:

• $S^{t}_{N} = S^{f}_{N_{1}}$ • $S^{f}_{N} = S^{t}_{N1}$

(Software Engineering II - Software Testing)

BOR-constraint set example

Let's apply the BOR-constraint procedure to:

•
$$(a+b < c) \land \neg p \lor (r > s)$$

(Software Engineering II - Software Testing)

A B A A B A

Generating the BRO-constraint set

Input: *AST*(*p*_{*r*}) (only singular expressions)

Output: BRO-Constraint set attached to the root node

- **()** Label each leaf node *N* of $AST(p_r)$ with its constraint set S_N . For each leaf node that represents a Boolean variable $S_N = \{t, f\}$. For each leaf node that is a relational expression $S_N = \{(>), (=), (<)\}$.
- **2** Visit the *AST* bottom-up. Let N_1 and N_2 direct descendants of node *N* and S_{N1} and S_{N2} the corresponding BRO-constraint set. S_N is computed as done for the BOR procedure.

Let's apply the BRO-constraint procedure to:

• $(a+b < c) \land \neg p \lor (r > s)$

Generating the BRO-constraint set

Input: *AST*(*p*_{*r*}) (only singular expressions)

Output: BRO-Constraint set attached to the root node

- **()** Label each leaf node *N* of $AST(p_r)$ with its constraint set S_N . For each leaf node that represents a Boolean variable $S_N = \{t, f\}$. For each leaf node that is a relational expression $S_N = \{(>), (=), (<)\}$.
- **2** Visit the *AST* bottom-up. Let N_1 and N_2 direct descendants of node *N* and S_{N1} and S_{N2} the corresponding BRO-constraint set. S_N is computed as done for the BOR procedure.

Let's apply the BRO-constraint procedure to:

Generating the BRE-constraint set

Input: *AST*(*p*_{*r*}) (only singular expressions)

Output: BRE-Constraint set attached to the root node

- **()** Label each leaf node *N* of $AST(p_r)$ with its constraint set S_N . For each leaf node that represents a Boolean variable $S_N = \{t, f\}$. For each leaf node that is a relational expression $S_N = \{(+\epsilon), (=), (-\epsilon)\}$.
- **2** Visit the *AST* bottom-up. Let N_1 and N_2 direct descendants of node *N* and S_{N_1} and S_{N_2} the corresponding BRE-constraint set. S_N is computed as done for the BOR procedure.

Let's apply the BRO-constraint procedure to:

● (*a* + *b* < *c*) ∧ ¬*p* ∨ (*r* > *s*)

Generating the BRE-constraint set

Input: *AST*(*p*_{*r*}) (only singular expressions)

Output: BRE-Constraint set attached to the root node

- **()** Label each leaf node *N* of $AST(p_r)$ with its constraint set S_N . For each leaf node that represents a Boolean variable $S_N = \{t, f\}$. For each leaf node that is a relational expression $S_N = \{(+\epsilon), (=), (-\epsilon)\}$.
- Visit the AST bottom-up. Let N_1 and N_2 direct descendants of node N and S_{N_1} and S_{N_2} the corresponding BRE-constraint set. S_N is computed as done for the BOR procedure.

Let's apply the BRO-constraint procedure to:

•
$$(a+b < c) \land \neg p \lor (r > s)$$

Usage of predicate testing techniques

- Specification based testing
- program based testing

(Software Engineering II - Software Testing)

12 N A 12