
4. Test Generation from Finite State Models
Model-Based Testing

Andrea Polini

Software Engineering II – Software Testing
MSc in Computer Science

University of Camerino

December 4th, 2014

(Software Engineering II – Software Testing) 4. Test Generation from Finite State Models December 4th, 2014 1 / 10

Models in the Design Phase

Design Phase
Between the requirements phase and the implementation phase
“The last you start the first you finish”
Produce models in order to clarify requirements and to better
formalize them
Models can be the source of test set derivation strategies

Various modeling notations for behavioral specification of a software
system have been proposed. Which to use depends on the system
you are developing and the aspects you would like to highlight:

Finite State Machines
Petri Nets
Statecharts
Message sequence charts

(Software Engineering II – Software Testing) 4. Test Generation from Finite State Models December 4th, 2014 2 / 10

Finite State Machines

FSM
A finite state machine is a six-tuple <X ,Y ,Q,q0, δ,O> where:

X : finite set of input symbols
Y : finite set of output symbols
Q: finite set of states
q0 ∈ Q: initial state
δ: transition function (Q ×X → Q)
O: output function (Q ×X → Y)

Typical extensions:
Transition and output functions can consider strings
Definiton of the set of accepting states F ⊆ Q

Non determinism

(Software Engineering II – Software Testing) 4. Test Generation from Finite State Models December 4th, 2014 3 / 10

Properties of FSM

Useful properties/concepts for test generation

Completely specified (input enabled)
∀(qi ∈ Q,a ∈X).∃qj ∈ Q.δ(qi ,a) = qj

Strongly connected
∀(qi ,qj) ∈ Q ×Q.∃s ∈ X ∗.δ∗(qi , s) = qj

V-equivalence (distinguishable)
Let M1 and M2 two FSMs. Let V denote a set of non-empty string
on the input alphabet X , and qi ∈ Q1 and qj ∈ Q2. qi and qj are
considered V − equivalent if O1(qi , s) = O2(qj , s). If qi and qj are
V − equivalent given any set V ⊆X + than they are said to be
equivalent (qi ≡ qj). If states are not equivalent they are said to be
distinguishable.

(Software Engineering II – Software Testing) 4. Test Generation from Finite State Models December 4th, 2014 4 / 10

Properties of FSM....cntd

Useful properties/concepts for test generation...cntd
Machine equivalence

M1 and M2 are said to be equivalent if ∀qi ∈ Q1.∃qj ∈ Q2.qi ≡ qj
and viceversa.

k-equivalence
Let M1 and M2 two FSMs and qi ∈ Q1 and qj ∈ Q1 and k ∈ N.
qi and qj are said to be K − equivalent if they are V − equivalent
for V = {s ∈ X+| | s |≤ k}

Minimal machine
an FSM is considered minimal if the number of its states is less
than or equal to any other equivalent FSM

(Software Engineering II – Software Testing) 4. Test Generation from Finite State Models December 4th, 2014 5 / 10

Conformance Testing

Conformance Testing

Relates to testing of communication protocols. It aims at assessing
that an implementation of a protocol conform to its specification.
Protocols generally specify:

Control rules (FSM)
Data rules

(Software Engineering II – Software Testing) 4. Test Generation from Finite State Models December 4th, 2014 6 / 10

The Testing Problem

Testing problems ingredients:
Reset inputs (X = X ∪ {Re}, and Y = Y ∪ {null})
Testing based on requirements checks if the implementation
conforms to the machine on a given requirement.
The testing problem is reconducted to an equivalence
(nevertheless finite experiments). Is the SUT (IUT) equivalent to
the machine defined during design?
Fault model for FSM – given a fault model the challenge is to
generate a test set T from a design Md where any fault in Mi of
the type in the fault model is guaranteed to be revealed when
tested against T

Operation error
Transfer error
Extra-state error
Missing-state error

(Software Engineering II – Software Testing) 4. Test Generation from Finite State Models December 4th, 2014 7 / 10

Mutation of FSMs

Mutant
A mutant of an FMS Md is an FSM obtained by introducing one one or
more errors one or more times.

Equivalent mutants: mutants that could not be distinguishable
from the originating machine

(Software Engineering II – Software Testing) 4. Test Generation from Finite State Models December 4th, 2014 8 / 10

The Testing Problem

Fault coverage

Techniques to measure the goodness of a test set in relation to the
number of errors that it reveals in a given implementation Mi .

Nt : total number of first order mutants of the machine M used for
generating tests.
Ne: Number of mutants that are equivalent to M
Nf : Number of mutants that are distinguished by test set T
generated using some test generation method.
Nl : Number of mutants that are not distinguished by T

The fault coverage of a test suite T with respect to a design M is
denoted by FC(T ,M) and computed as follows:

FC(T ,M) = Number of mutants not distinguished by T /
Number of mutants that are not equivalent to M

= (Nt − Ne − Nf)/(Nt − Ne)

(Software Engineering II – Software Testing) 4. Test Generation from Finite State Models December 4th, 2014 9 / 10

Characterization Set

Let M =<X ,Y ,Q,q1, δ,O> an FSM that is minimal and complete. A
characterization set for M, denoted as W , is a finite set of input
sequences that distinguish the behaviour of any pair of states in M.

(Software Engineering II – Software Testing) 4. Test Generation from Finite State Models December 4th, 2014 10 / 10

