

4. Test Generation from Finite State Models Model-Based Testing

Andrea Polini

Software Engineering II – Software Testing MSc in Computer Science University of Camerino

December 4th, 2014

Models in the Design Phase

Design Phase

- Between the requirements phase and the implementation phase "The last you start the first you finish"
- Produce models in order to clarify requirements and to better formalize them
- Models can be the source of test set derivation strategies

Various modeling notations for behavioral specification of a software system have been proposed. Which to use depends on the system you are developing and the aspects you would like to highlight:

- Finite State Machines
- Petri Nets
- Statecharts
- Message sequence charts

Finite State Machines

FSM

A finite state machine is a six-tuple $\langle \mathcal{X}, \mathcal{Y}, \mathcal{Q}, q_0, \delta, \mathcal{O} \rangle$ where:

- \mathscr{X} : finite set of input symbols
- Y: finite set of output symbols
- 2: finite set of states
- $q_0 \in \mathcal{Q}$: initial state
- δ : transition function ($\mathscr{Q} \times \mathscr{X} \to \mathscr{Q}$)
- \mathscr{O} : output function $(\mathscr{Q} \times \mathscr{X} \to \mathscr{Y})$

Typical extensions:

- Transition and output functions can consider strings
- Definiton of the set of accepting states $\mathscr{F} \subseteq \mathscr{Q}$
- Non determinism

Properties of FSM

Useful properties/concepts for test generation

- Completely specified (input enabled)
 - $\forall (q_i \in \mathcal{Q}, a \in \mathcal{X}). \exists q_i \in \mathcal{Q}. \delta(q_i, a) = q_i$
- Strongly connected
 - $\forall (q_i, q_i) \in \mathcal{Q} \times \mathcal{Q}. \exists s \in X^*. \delta^*(q_i, s) = q_i$
- V-equivalence (distinguishable)
 - Let M_1 and M_2 two FSMs. Let \mathcal{V} denote a set of non-empty string on the input alphabet \mathcal{X} , and $q_i \in \mathcal{Q}_1$ and $q_i \in \mathcal{Q}_2$. q_i and q_i are considered $\mathscr{V}-\text{equivalent}$ if $\mathscr{O}_1(q_i,s)=\mathscr{O}_2(q_i,s)$. If q_i and q_i are \mathscr{V} – equivalent given any set $\mathscr{V} \subseteq \mathscr{X}^+$ than they are said to be equivalent $(q_i \equiv q_i)$. If states are not equivalent they are said to be distinguishable.

Properties of FSM....cntd

Useful properties/concepts for test generation...cntd

- Machine equivalence
 - M_1 and M_2 are said to be equivalent if $\forall q_i \in \mathcal{Q}_1. \exists q_i \in \mathcal{Q}_2. q_i \equiv q_i$ and viceversa.
- k-equivalence
 - Let M_1 and M_2 two FSMs and $q_i \in \mathcal{Q}_1$ and $q_i \in \mathcal{Q}_1$ and $k \in \mathbb{N}$. q_i and q_i are said to be \mathscr{K} – equivalent if they are \mathscr{V} – equivalent for $\mathcal{V} = \{ s \in X^+ | | s | < k \}$
- Minimal machine
 - an FSM is considered minimal if the number of its states is less. than or equal to any other equivalent FSM

Conformance Testing

Conformance Testing

Relates to testing of communication protocols. It aims at assessing that an implementation of a protocol conform to its specification. Protocols generally specify:

- Control rules (FSM)
- Data rules

The Testing Problem

Testing problems ingredients:

- Reset inputs ($\mathscr{X} = \mathscr{X} \cup \{Re\}$, and $\mathscr{Y} = \mathscr{Y} \cup \{null\}$)
- Testing based on requirements checks if the implementation conforms to the machine on a given requirement.
- The testing problem is reconducted to an equivalence (nevertheless finite experiments). Is the SUT (IUT) equivalent to the machine defined during design?
- Fault model for FSM given a fault model the challenge is to generate a test set T from a design M_d where any fault in M_i of the type in the fault model is guaranteed to be revealed when tested against T
 - Operation error
 - Transfer error
 - Extra-state error
 - Missing-state error

Mutation of FSMs

Mutant

A mutant of an FMS M_d is an FSM obtained by introducing one one or more errors one or more times.

 Equivalent mutants: mutants that could not be distinguishable from the originating machine

The Testing Problem

Fault coverage

Techniques to measure the goodness of a test set in relation to the number of errors that it reveals in a given implementation M_i .

- N_t: total number of first order mutants of the machine M used for generating tests.
- N_e: Number of mutants that are equivalent to M
- N_f: Number of mutants that are distinguished by test set T generated using some test generation method.
- N_i: Number of mutants that are not distinguished by T

The fault coverage of a test suite T with respect to a design M is denoted by FC(T, M) and computed as follows:

$$FC(T, M) =$$
 Number of mutants not distinguished by T /
Number of mutants that are not equivalent to M
= $(N_t - N_e - N_f)/(N_t - N_e)$

Characterization Set

Let $M = \langle \mathcal{X}, \mathcal{Y}, \mathcal{Q}, q_1, \delta, \mathcal{O} \rangle$ an FSM that is minimal and complete. A characterization set for M, denoted as \mathcal{W} , is a finite set of input sequences that distinguish the behaviour of any pair of states in M.

