4. Test Generation from Finite State Models Model-Based Testing #### Andrea Polini Software Engineering II – Software Testing MSc in Computer Science University of Camerino December 4th, 2014 # Models in the Design Phase ## **Design Phase** - Between the requirements phase and the implementation phase "The last you start the first you finish" - Produce models in order to clarify requirements and to better formalize them - Models can be the source of test set derivation strategies Various modeling notations for behavioral specification of a software system have been proposed. Which to use depends on the system you are developing and the aspects you would like to highlight: - Finite State Machines - Petri Nets - Statecharts - Message sequence charts ## Finite State Machines #### **FSM** A finite state machine is a six-tuple $\langle \mathcal{X}, \mathcal{Y}, \mathcal{Q}, q_0, \delta, \mathcal{O} \rangle$ where: - \mathscr{X} : finite set of input symbols - Y: finite set of output symbols - 2: finite set of states - $q_0 \in \mathcal{Q}$: initial state - δ : transition function ($\mathscr{Q} \times \mathscr{X} \to \mathscr{Q}$) - \mathscr{O} : output function $(\mathscr{Q} \times \mathscr{X} \to \mathscr{Y})$ #### Typical extensions: - Transition and output functions can consider strings - Definiton of the set of accepting states $\mathscr{F} \subseteq \mathscr{Q}$ - Non determinism ## Properties of FSM #### Useful properties/concepts for test generation - Completely specified (input enabled) - $\forall (q_i \in \mathcal{Q}, a \in \mathcal{X}). \exists q_i \in \mathcal{Q}. \delta(q_i, a) = q_i$ - Strongly connected - $\forall (q_i, q_i) \in \mathcal{Q} \times \mathcal{Q}. \exists s \in X^*. \delta^*(q_i, s) = q_i$ - V-equivalence (distinguishable) - Let M_1 and M_2 two FSMs. Let \mathcal{V} denote a set of non-empty string on the input alphabet \mathcal{X} , and $q_i \in \mathcal{Q}_1$ and $q_i \in \mathcal{Q}_2$. q_i and q_i are considered $\mathscr{V}-\text{equivalent}$ if $\mathscr{O}_1(q_i,s)=\mathscr{O}_2(q_i,s)$. If q_i and q_i are \mathscr{V} – equivalent given any set $\mathscr{V} \subseteq \mathscr{X}^+$ than they are said to be equivalent $(q_i \equiv q_i)$. If states are not equivalent they are said to be distinguishable. ## Properties of FSM....cntd #### Useful properties/concepts for test generation...cntd - Machine equivalence - M_1 and M_2 are said to be equivalent if $\forall q_i \in \mathcal{Q}_1. \exists q_i \in \mathcal{Q}_2. q_i \equiv q_i$ and viceversa. - k-equivalence - Let M_1 and M_2 two FSMs and $q_i \in \mathcal{Q}_1$ and $q_i \in \mathcal{Q}_1$ and $k \in \mathbb{N}$. q_i and q_i are said to be \mathscr{K} – equivalent if they are \mathscr{V} – equivalent for $\mathcal{V} = \{ s \in X^+ | | s | < k \}$ - Minimal machine - an FSM is considered minimal if the number of its states is less. than or equal to any other equivalent FSM # Conformance Testing ## Conformance Testing Relates to testing of communication protocols. It aims at assessing that an implementation of a protocol conform to its specification. Protocols generally specify: - Control rules (FSM) - Data rules # The Testing Problem #### Testing problems ingredients: - Reset inputs ($\mathscr{X} = \mathscr{X} \cup \{Re\}$, and $\mathscr{Y} = \mathscr{Y} \cup \{null\}$) - Testing based on requirements checks if the implementation conforms to the machine on a given requirement. - The testing problem is reconducted to an equivalence (nevertheless finite experiments). Is the SUT (IUT) equivalent to the machine defined during design? - Fault model for FSM given a fault model the challenge is to generate a test set T from a design M_d where any fault in M_i of the type in the fault model is guaranteed to be revealed when tested against T - Operation error - Transfer error - Extra-state error - Missing-state error #### Mutation of FSMs #### Mutant A mutant of an FMS M_d is an FSM obtained by introducing one one or more errors one or more times. Equivalent mutants: mutants that could not be distinguishable from the originating machine ## The Testing Problem #### Fault coverage Techniques to measure the goodness of a test set in relation to the number of errors that it reveals in a given implementation M_i . - N_t: total number of first order mutants of the machine M used for generating tests. - N_e: Number of mutants that are equivalent to M - N_f: Number of mutants that are distinguished by test set T generated using some test generation method. - N_i: Number of mutants that are not distinguished by T The fault coverage of a test suite T with respect to a design M is denoted by FC(T, M) and computed as follows: $$FC(T, M) =$$ Number of mutants not distinguished by T / Number of mutants that are not equivalent to M = $(N_t - N_e - N_f)/(N_t - N_e)$ ## Characterization Set Let $M = \langle \mathcal{X}, \mathcal{Y}, \mathcal{Q}, q_1, \delta, \mathcal{O} \rangle$ an FSM that is minimal and complete. A characterization set for M, denoted as \mathcal{W} , is a finite set of input sequences that distinguish the behaviour of any pair of states in M.