

4. Test Generation from Finite State Models II Model-Based Testing

Andrea Polini

Software Engineering II – Software Testing MSc in Computer Science University of Camerino

December 9th-11th, 2014

(Software Engineering II - Software Testing)

4. Test Gen. from Finite State Models II

December 9th-11th, 2014

Let $M = \langle \mathscr{X}, \mathscr{Y}, \mathscr{Q}, q_1, \delta, \mathscr{O} \rangle$ an FSM that is minimal and complete. A characterization set for M, denoted as \mathscr{W} , is a finite set of input sequences that distinguish the behaviour of any pair of states in M.

2/11

< 回 > < 三 > < 三 >

The notion of \mathscr{K} – *equivalence* leads to the notion of \mathscr{K} – *equivalence partitions*.

Given an FSM a \mathscr{K} – *equivalence partition* of \mathscr{Q} , denoted by \mathscr{P}_k , is a collection of *n* finite sets of states denoted as $\Sigma_{k_1}, \Sigma_{k_2}, ..., \Sigma_{k_n}$ such that:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

•
$$\cup_{i=1...n} \Sigma_{K_1} = \mathscr{Q}$$

- States in Σ_{k_i} , for $1 \le j \le n$ are \mathscr{K} equivalent
- if $q_i \in \Sigma_{k_i}$ and $q_m \in \Sigma_{k_j}$, for $i \neq j$, then q_i and q_m must be \mathcal{K} distinguishable

How to derive *W* from K-equivalence partitions

- Let M an FSM for which $P = \{P_1, P_2, ..., P_n\}$ is the set of k-equivalence partition. $\mathcal{W} = \emptyset$
- Provide the steps (a) through (d) given below for each pair of states (q_i, q_j), i ≠ j, in M
 - (a) Find *r* (1 ≤ *r* < *n* such that the states in pair (*q_i*, *q_j*) belong to the same group in *P_r* but not in *P_{r+1}*. If such an *r* is found then move to step (b) otherwise we find an η ∈ X such that *O*(*q_i*, η) ≠ *O*(*q_j*, η), set W = W ∪ {η} and continue with the next available pair of states. The length of the minimal distinguishing sequence for (*q_i*, *q_j*) is *r* + 1.
 - (b) Initialize $z = \epsilon$. Let $p_1 = q_i$ and $p_2 = q_j$ be the current pair of states. Execute steps (i) through (iii) given below for m = r, r - 1, ..., 1
 - (i) Find an input symbol η in P_m such that 𝒢(p₁, η) ≠ 𝒢(p₂, η). In case there is more than one symbol that satisfy the condition in this step, then select one arbitrarily.
 - (ii) set $z = z\eta$
 - (iii) set $p_1 = \delta(p_1, \eta)$ and $p_2 = \delta(p_2, \eta)$
 - (c) Find an $\eta \in \mathscr{X}$ such that $\mathscr{O}(p_1, \eta) \neq \mathscr{O}(p_2, \eta)$. Set $z = z\eta$
 - (d) The distinguishing sequence for the pair (q_i, q_j) is the sequence z. Set $\mathscr{W} = \mathscr{W} \cup \{z\}$

Example

Termination of the *# – procedure* guarantees the generation of distinguishing sequence for each pair.

S_i	S_i	X	$\mathcal{O}(S_i, x)$	$\mathcal{O}(S_j, x)$
1	2	baaa	1	0
-1	3	aa	0	1
-1	4	а	0	1
1	5	а	0	1
2	3	aa	0	1
2	4	а	0	1
2	5	а	0	1
3	4	а	0	1
3	5	а	0	1
4	5	aaa	1	0

Example

Termination of the *# – procedure* guarantees the generation of distinguishing sequence for each pair.

S_i	S_i	X	$\mathcal{O}(S_i, x)$	$\mathscr{O}(S_j, x)$
1	2	baaa	1	0
1	3	aa	0	1
1	4	а	0	1
1	5	а	0	1
2	3	aa	0	1
2	4	а	0	1
2	5	а	0	1
3	4	а	0	1
3	5	а	0	1
4	5	aaa	1	0

5/11

An identification set is associated to each state $q \in \mathcal{Q}$ of an FSM.

An Identification set for state $q_i \in \mathcal{Q}$, where $|\mathcal{Q}| = n$, is denoted by \mathcal{W}_i and has the following properties:

6/11

$$\textcircled{2} \exists j, s.1 \leq j \leq n \land s \in \mathscr{W}_i \land \mathscr{O}(q_i, s) \neq \mathscr{O}(q_j, s)$$

On subset of \mathcal{W}_i satisfies property 2.

The W-Method aims at deriving a test set to check the implementation (Implementation Under Test - IUT) of an FSM model

Assumptions

- M is completely specified, minimal, connected, and deterministic
- M starts in a fixed initial states
- M can be reset to the initial state. A null output is generated by the reset

December 9th-11th, 2014

7/11

• M and IUT have the same input alphabet

The W-Method aims at deriving a test set to check the implementation (Implementation Under Test - IUT) of an FSM model

Assumptions

- M is completely specified, minimal, connected, and deterministic
- M starts in a fixed initial states
- M can be reset to the initial state. A null output is generated by the reset

7/11

M and IUT have the same input alphabet

Given an FSM $\mathcal{M} = \langle \mathcal{X}, \mathcal{Y}, \mathcal{Q}, q_0, \delta, \mathcal{O} \rangle$ the W-method consists of the following steps:

- Estimate the maximum number of states in the correct design
- 2 Construct the characterization set ${\mathscr W}$ for the given machine ${\mathscr M}$
- Construct the testing tree for *M* and determine the transition cover set *P*

December 9th-11th, 2014

- 3

- Construct set *L*
- **(**) $\mathscr{P} \cdot \mathscr{Z}$ is the desired test set

Computation of the transition cover set

P - transition cover set

Let q_i and q_j , $i \neq j$ be two states of \mathscr{M} . \mathscr{P} consists of sequences $s \cdot x$ s.t. $\delta(q_0, s) = q_i \wedge \delta(q_i, x) = q_j$ for $s \in \mathscr{X}^* \wedge x \in \mathscr{X}$. The set can be constructed using the testing tree for \mathscr{M} .

Testing tree

The testing tree for an FSM *M* can be constructed as follows:

() State q_0 is the root of the tree

- Suppose that the testing tree has been constructed till level k. The $(k + 1)^{th}$ level is built as follows:
 - Select a node *n* at level *k*. If *n* appears at any level from 1 to k 1 then *n* is a leaf node. Otherwise expand it by adding branch from node *n* to a new node *m* if $\delta(n, x) = m$ for $x \in \mathcal{X}$. This branch is labeled as *x*.

Computation of the transition cover set

P - transition cover set

Let q_i and q_j , $i \neq j$ be two states of \mathscr{M} . \mathscr{P} consists of sequences $s \cdot x$ s.t. $\delta(q_0, s) = q_i \wedge \delta(q_i, x) = q_j$ for $s \in \mathscr{X}^* \wedge x \in \mathscr{X}$. The set can be constructed using the testing tree for \mathscr{M} .

Testing tree

The testing tree for an FSM \mathcal{M} can be constructed as follows:

- State q_0 is the root of the tree
- Suppose that the testing tree has been constructed till level k. The $(k + 1)^{th}$ level is built as follows:
 - Select a node *n* at level *k*. If *n* appears at any level from 1 to *k* − 1 then *n* is a leaf node. Otherwise expand it by adding branch from node *n* to a new node *m* if δ(*n*, *x*) = *m* for *x* ∈ *X*. This branch is labeled as *x*.

イロト イポト イヨト イヨト

December 9th-11th, 2014

Constructing \mathscr{Z}

Suppose number of states estimates to be *m* for the IUT, and *n* in the specification m > n. We compute \mathscr{Z} as: $\mathscr{Z} = (\mathscr{X}^0 \cdot \mathscr{W}) \cup (\mathscr{X} \cdot \mathscr{W}) \cup (\mathscr{X}^1 \cdot \mathscr{W}) \cdots \cup (\mathscr{X}^{m-1-n} \cdot \mathscr{W}) \cup (\mathscr{X}^{m-n} \cdot \mathscr{W})$

10/11

(Software Engineering II – Software Testing) 4. Test Gen. from Finite State Models II December 9th-11th, 2014

Deriving a test set – $\mathscr{P} \cdot \mathscr{Z}$

ヘロト 人間 とくほとくほう

December 9th-11th, 2014

æ

11/11

Try sequences:

- baaaaaa
- baaba

(Software Engineering II – Software Testing) 4. Test Gen. from Finite State Models II

Deriving a test set – $\mathscr{P} \cdot \mathscr{Z}$

Try sequences:

- baaaaaa
- baaba

2