

4. Test Generation from Finite State Models III Model-Based Testing

Andrea Polini

Software Engineering II – Software Testing MSc in Computer Science University of Camerino

January 13th, 2015

✓ ■ ▶ < ■ ▶ ■ January 13th, 2015

1/10

(Software Engineering II - Software Testing) 4. Test Gen. from Finite State Models III

Given an FSM $\mathscr{M} = \langle \mathscr{X}, \mathscr{Y}, \mathscr{Q}, q_0, \delta, \mathscr{O} \rangle$ the \mathscr{W} -method consists of the following steps:

- Estimate the maximum number of states in the correct design
- 2 Construct the characterization set ${\mathscr W}$ for the given machine ${\mathscr M}$
- Construct the testing tree for *M* and determine the transition cover set *P*

A D K A B K A B K A B K B B

January 13th, 2015

- Construct set *L*
- **(**) $\mathscr{P} \cdot \mathscr{Z}$ is the desired test set

ℋ-method fault detection rationale

- A test case generated by the \mathscr{W} *method* is of the form $r \cdot s$ where $r \in \mathscr{P}$ and $s \in \mathscr{W}$
 - Why can we detect operation errors?
 - Why can we detect transfer errors?

 $\mathscr{P} = \{\epsilon, a, b, bb, ba, bab, baa, baab, baaa, baaab, baaaa\}$ $\mathscr{W} = \{a, aa, aaa, baaa\}$

∃ ► < ∃ ►</p>

W-method fault detection rationale

- A test case generated by the \mathscr{W} *method* is of the form $r \cdot s$ where $r \in \mathscr{P}$ and $s \in \mathscr{W}$
 - Why can we detect operation errors?
 - Why can we detect transfer errors?

 $\mathscr{P} = \{\epsilon, a, b, bb, ba, bab, baa, baab, baaa, baaab, baaaa\}$ $\mathscr{W} = \{a, aa, aaa, baaa\}$

W-method fault detection rationale

- A test case generated by the \mathscr{W} *method* is of the form $r \cdot s$ where $r \in \mathscr{P}$ and $s \in \mathscr{W}$
 - Why can we detect operation errors?
 - Why can we detect transfer errors?

 $\mathscr{P} = \{\epsilon, a, b, bb, ba, bab, baa, baab, baaa, baaab, baaaa\}$ $\mathscr{W} = \{a, aa, aaa, baaa\}$

The partial \mathcal{W} – method (aka Wp – method)

Wp – method main characteristics:

- is inspired by the \mathscr{W} method it generates smaller test sets
- uses a derivation phase split in two phases that make use of state identification sets *W_i* instead of characterization set *W*
- uses the state cover set (\mathcal{S}) to derive the test set.
 - The state cover set is a nonempty set of sequences where each sequence belongs to *X*^{*} and ∀q_i ∈ *Q*∃r ∈ *S*s.t.δ(q₀, r) = q_i
 - from the definition it is evident that $\mathscr{S} \subseteq \mathscr{P}$

The test set derived using the $\mathscr{W}p$ – *method* is given by the union to two test sets \mathscr{T}_1 , \mathscr{T}_2 calculated according to the following procedure:

Ompute sets $\mathcal{P}, \mathcal{S}, \mathcal{W}, \text{ and } \mathcal{W}_i$

$$2 \mathcal{T}_1 = \mathscr{S} \cdot \mathscr{W}$$

3 Let
$$\mathcal{W} = \{\mathscr{W}_1, \mathscr{W}_2, \dots, \mathscr{W}_n\}$$

- Let $\mathcal{R} = \{r_1, r_2, \dots, r_k\}$ where $\mathcal{R} = \mathscr{P} \mathscr{S}$ and $r_j \in \mathcal{R}$ is s.t. $\delta(q_0, r_j) = q_{ij}$
- $\mathscr{T}_2 = \mathcal{R} \otimes \mathcal{W} = \bigcup_{j=1}^{K} (\{r_j\} \cdot \mathscr{W}_{ij})$ where $\mathscr{W}_{ij} \in \mathcal{W}$ is the state identification set for state q_{ij}

$\mathcal{W}p-method$ rationale

- Phase 1: test are of the form *uv* where *u* ∈ and *v* ∈ . Reach each state than check if it is distinguishable from another one
- Phase 2: test covers all the missing transitions and then check if the reached state is different from the one specified in the model

A D N A D N A D N A D N

January 13th, 2015

$\mathscr{W}p-method$ in practice

$$\begin{split} \mathscr{W} &= \{a, aa, aaa, baaa\} \\ \mathscr{P} &= \{\epsilon, a, b, bb, ba, bab, baa, baab, baaa, baaab, baaaa\} \\ \mathscr{S} &= \{\epsilon, b, ba, baa, baaa\} \\ \mathscr{W}_1 &= \{baaa, aa, a\}, \, \mathscr{W}_2 &= \{baaa, aa, a\}, \, \mathscr{W}_3 &= \{aa, a\} \\ \mathscr{W}_4 &= \{aaa, a\}, \, \mathscr{W}_5 &= \{aaa, a\} \end{split}$$

January 13th, 2015

2

7/10

イロト イヨト イヨト イヨト

$\mathcal{W}p-method$ in practice

$$\begin{split} \mathscr{W} &= \{a, aa, aaa, baaa\} \\ \mathscr{P} &= \{\epsilon, a, b, bb, ba, bab, baa, baab, baaa, baaab, baaaa\} \\ \mathscr{S} &= \{\epsilon, b, ba, baa, baaa\} \\ \mathscr{W}_1 &= \{baaa, aa, a\}, \, \mathscr{W}_2 &= \{baaa, aa, a\}, \, \mathscr{W}_3 &= \{aa, a\} \\ \mathscr{W}_4 &= \{aaa, a\}, \, \mathscr{W}_5 &= \{aaa, a\} \end{split}$$

January 13th, 2015

7/10

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$\mathcal{W}p-method$ in practice

$$\begin{split} \mathscr{W} &= \{a, aa, aaa, baaa\} \\ \mathscr{P} &= \{\epsilon, a, b, bb, ba, bab, baa, baab, baaa, baaab, baaaa\} \\ \mathscr{S} &= \{\epsilon, b, ba, baa, baaa\} \\ \mathscr{W}_1 &= \{baaa, aa, a\}, \, \mathscr{W}_2 &= \{baaa, aa, a\}, \, \mathscr{W}_3 &= \{aa, a\} \\ \mathscr{W}_4 &= \{aaa, a\}, \, \mathscr{W}_5 &= \{aaa, a\} \end{split}$$

January 13th, 2015

7/10

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Is it phase 2 needed?

Let's consider the following FSM:

Now introduce an operation error or a transfer error on a "c" transition

< 6 b

✓ ■ > < ■ >
January 13th, 2015

The $\mathscr{W} p$ procedure (assuming m > n)

Modify the derivation of the two sets as follows:

Α

•
$$\mathscr{T}_1 = \mathscr{S} \cdot \mathscr{Z}$$
 where $\mathscr{Z} = \mathscr{X}[m-n] \cdot \mathscr{W}$
• $\mathscr{T}_2 = \mathcal{R} \cdot \mathscr{X}[m-n] \otimes \mathscr{W} = \cup_{j=1}^{K} (\{r_{ij}\} \cdot \cup_{u \in \mathscr{X}[m-n]} u \cdot \mathscr{W}_i)$
pplying

January 13th, 2015

Assessment of automata theoretic strategies

Control Flow based techniques are typically assessed according to different criteria:

- State coverage
- Transition coverage
- Switch coverage (n-switch coverage)
- Boundary-interior coverage

E N 4 E N