
5. Generation from Combinatorial Design

Andrea Polini

Software Engineering II – Software Testing
MSc in Computer Science

University of Camerino

January 15th, 2015

(Software Engineering II – Software Testing) 5. Generation from Combinatorial Design January 15th , 2015 1 / 12

Combinatorial Design

Configuration space: all possible settings of the environment
variable under which P could be used
Input space: all possible values that can be taken by input
variables

Combination of hardwares, OSs, platforms etc. is generally referred to
as compatibility testing

Example
Consider a program P that takes two positive integers x , y as input,
and that is meant to be executed on the OSs Windows, Mac Os
through Mozilla, Explorer or Chrome browsers. Which are the
Configuration and input spaces?

factors: parameters possibly influencing program behaviour
levels: values that can be assumed by a factor

(Software Engineering II – Software Testing) 5. Generation from Combinatorial Design January 15th , 2015 2 / 12

Combinatorial Design

Configuration space: all possible settings of the environment
variable under which P could be used
Input space: all possible values that can be taken by input
variables

Combination of hardwares, OSs, platforms etc. is generally referred to
as compatibility testing

Example
Consider a program P that takes two positive integers x , y as input,
and that is meant to be executed on the OSs Windows, Mac Os
through Mozilla, Explorer or Chrome browsers. Which are the
Configuration and input spaces?

factors: parameters possibly influencing program behaviour
levels: values that can be assumed by a factor

(Software Engineering II – Software Testing) 5. Generation from Combinatorial Design January 15th , 2015 2 / 12

Combinatorial Design

Configuration space: all possible settings of the environment
variable under which P could be used
Input space: all possible values that can be taken by input
variables

Combination of hardwares, OSs, platforms etc. is generally referred to
as compatibility testing

Example
Consider a program P that takes two positive integers x , y as input,
and that is meant to be executed on the OSs Windows, Mac Os
through Mozilla, Explorer or Chrome browsers. Which are the
Configuration and input spaces?

factors: parameters possibly influencing program behaviour
levels: values that can be assumed by a factor

(Software Engineering II – Software Testing) 5. Generation from Combinatorial Design January 15th , 2015 2 / 12

Combinatorial test-design process

Each factor combination may lead to one or more test cases where
each test case consists of values of input variables and the expected
output. Nevertheless, as usual the generation of all combinations is
generally not feasible

(Software Engineering II – Software Testing) 5. Generation from Combinatorial Design January 15th , 2015 3 / 12

Fault model

The approach we are going to discuss targets interaction faults

interaction faults are triggered when a certain combination of t ≥ 1
parameter values causes the program containing the fault to enter
an invalid state
faults triggered by some value of input variables regardless of the
values of other inputs variables are known as simple faults. When
t = 2 they are known as pairwise interaction faults. For arbitrary
value of t we refer to t-way interaction faults.

(Software Engineering II – Software Testing) 5. Generation from Combinatorial Design January 15th , 2015 4 / 12

Example - 1

Imagine a program that should return the value calculated by different
combinations of a couple of functions. In particular when x=x2 and y=y2 the
returned value should be f(x,y,z)+g(x,y). Now consider the program:

begin
int x,y,z;
input(x,y,z);
if (x==x1 and y==y2)
output(f(x,y,z));

else
if (x==x2 and y==y1)

output(g(x,y));
else

output(f(x,y,z)+g(x,y));
end

(Software Engineering II – Software Testing) 5. Generation from Combinatorial Design January 15th , 2015 5 / 12

Example - 2

Let x , y ∈ {−1,0,1} and z ∈ {0,1}. Are there interaction faults that
can be discovered in the following code snippet?

begin
int x,y,z,p;
input(x,y,z);
p = (x+y)*z; // instead should be (x-y)*z
if (p >= 0)
output(f(x,y.z));

else
output(g(x,y));

end

(Software Engineering II – Software Testing) 5. Generation from Combinatorial Design January 15th , 2015 6 / 12

Fault vectors and Latin squares

A fault vector is a k-uple of values for the factors of a program able
to trigger a fault. The vector is considered a t-fault vector if any
t ≤ k elements in V are needed to trigger the fault in P.
A Latin Square of order n is an n × n matrix such that no symbol
appears more than once in a row and a column where the
alphabet set Σ as cardinality n.
e.g. Σ = {A,B} and Σ = {1,2,3}

(Software Engineering II – Software Testing) 5. Generation from Combinatorial Design January 15th , 2015 7 / 12

Latin squares properties

Given a Latin square described by matrix M a large number of same
order matrices can be obtained through row and column interchange
and symbol-renaming operations.
A latin square obtained by the mentioned operations is said to be
isomorphic to the starting latin square

A latin square can be easily derived using module arithmetic

(Software Engineering II – Software Testing) 5. Generation from Combinatorial Design January 15th , 2015 8 / 12

Latin squares properties

Given a Latin square described by matrix M a large number of same
order matrices can be obtained through row and column interchange
and symbol-renaming operations.
A latin square obtained by the mentioned operations is said to be
isomorphic to the starting latin square

A latin square can be easily derived using module arithmetic

(Software Engineering II – Software Testing) 5. Generation from Combinatorial Design January 15th , 2015 8 / 12

Mutually orthogonal latin squares (MOLS)

MOLS are a useful tool to generate t −wise vectors from latin squares.
Two latin squares are mutually orthogonal if their combination in a
matrix of the same order does not generate duplicates.

MOLS(n) indicates a set of MOLS of order n. If n is prime MOLS(n)
contains n− 1 MOLS and it is referred as a complete set. MOLS exists
for each n > 2 ∧ n 6= 6

Let’s build the MOLS(5) set

(Software Engineering II – Software Testing) 5. Generation from Combinatorial Design January 15th , 2015 9 / 12

Pairwise design - binary factors

Now le’s consider tree factors X, Y, Z each one with two levels, and
let’s generate a pairwise design.

Generalizing the problem on n factors each one having two levels.
we need to define S2k−1 to be the set of strings of lenght 2k − 1
such that each string has exactly k 1s. e.g. k = 3

1 2 3 4 5
1 0 0 1 1 1
2 0 1 1 1 0
3 1 1 1 0 0
4 1 0 1 1 1
5 0 1 1 0 1
6 1 1 0 1 0
7 1 0 1 0 1
8 0 1 0 1 1
9 1 1 0 0 1

10 1 0 0 1 1

(Software Engineering II – Software Testing) 5. Generation from Combinatorial Design January 15th , 2015 10 / 12

The SAMNA procedure

Input: n - number of two-valued input variables (factors) Output: A set of factor
combinations such that all pairs of input values are covered

1 Compute the smallest integer k such that n ≤ |S2k−1|
2 Select any subset of n strings from S2k−1. Arrange these to form an n× (2k − 1)

matrix with one string in each row, while the columns contain different bits each
string

3 Append a columns of 0s to the end of each string selected
4 Each one of the 2k columns contain a bit pattern from which we generate a

combination is of the kind (X∗
1 ,X

∗
2 , . . . ,X

∗
n) where the value of each variable is

selected depending on whether the bit in column i , i ≤ i ≤ n is a 0 or a 1

(Software Engineering II – Software Testing) 5. Generation from Combinatorial Design January 15th , 2015 11 / 12

Example

Consider a simple Java applet named ChemFun that allows a user to
create an in-memory database of chemical elements and search for an
element.

Factor Name Levels Comments
1 Operation {Create,Show} Two buttons
2 Name {Empty,Nonempty} Data Field, String
3 Symbol {Empty,Nonempty} Data Field, String
4 Atomic Number {Invalid, Valid} Data Field, data > 0
5 Properties {Empty,Nonempty} Data Field, String

Testing for all combinations would require a total of 25 tests, but if we
are interested for testing for pairwise interactions we can reduce the
number of tests to 6.

(Software Engineering II – Software Testing) 5. Generation from Combinatorial Design January 15th , 2015 12 / 12

