Universita di Camerino

1336

6. Test-Adequacy Il

Assessment Using Control Flow and Data Flow

Andrea Polini

Software Engineering Il — Software Testing
MSc in Computer Science
University of Camerino

January 271", 2015

(Software Engineering Il — Software Testing) 6. Test-Adequacy Il January 27! 2015



MC/DC

@ Combinations necessary to satisfy the Multiple Condition
Coverage is generally too big.

(Software Engineering Il — Software Testing) 6. Test-Adequacy Il January 27! 2015 2/9



MC/DC

@ Combinations necessary to satisfy the Multiple Condition
Coverage is generally too big.

@ MC/DC allows a coverage of all decisions and all conditions
avoiding the exponential explosion

Let’s consider the compound condition (C; A Co) V Cs

(Software Engineering Il — Software Testing) 6. Test-Adequacy I January 27"’, 2015

2/9



MC/DC

@ Combinations necessary to satisfy the Multiple Condition
Coverage is generally too big.

@ MC/DC allows a coverage of all decisions and all conditions
avoiding the exponential explosion

@ To derive the test set the idea is to identify those tuple which can
cover the two criteria without requiring a complete conbinations of
values.

Let’s consider the compound condition (C; A Co) V Cs

(Software Engineering Il — Software Testing) 6. Test-Adequacy I January 27"’, 2015 2/9



|
Definition of MC/DC coverage

The MC/DC criterion requires that:
@ Each block in P has been covered
@ Each simple condition in P has taken both true and false value
@ Each decision in P has taken all possible outcomes

@ Each simple condition within a compound condition C in P has
been shown to independently effect the outcome of C.

(Software Engineering Il — Software Testing) 6. Test-Adequacy I January 27"’, 2015 3/9



Example

Consider a program conceived to satisfy the following requirements:

Ry: Given coordinate position x, y, and z, and a direction value d, the program must
invoke one of the three functions fire-1, fire-2, and fire-3 as per
conditions below:

Ri.1: Invoke fire-1 when (x<y and (zxz>y) and (prev="East”) where
prev and current denote, respectively, the previous and current
values of d.

Ri2: Invoke fire-2 when (x<y) and (z+z<y) or (current="South”)

Ri3: Invoke f£ire-3 when none of the two conditions above is true

R»>: The invocation described above must continue until an input Boolean variable
become true

@ let’s generate test satisfying the conditions and let’s analyze the covered decision

(Software Engineering Il — Software Testing) 6. Test-Adequacy I January 27"’, 2015 4/9



Tracing test cases to requirements

Enhancing a test set we should understand what portions of the
requirements are tested when the program under test is executed
against the newly added test case?

@ Trace back test to requirements

(Software Engineering Il — Software Testing) 6. Test-Adequacy Il January 27! 2015



Data Flow concepts

@ Criteria considered so far are based on the control flow
@ it is possible to conceive adequacy criteria based on data flow
characteristics

Consider the following program:

begin
int x,y; float z;
input (x,vy);
z=0;
if (x!=0) z=z+y;
else z=z-y;
if (y!=0) z=z/x // Should be (y!=0 and x!=0)
else z=zx*xx;
output (z) ;
end

(Software Engineering Il — Software Testing) 6. Test-Adequacy I January 27"’, 2015

6/9



Data Flow concepts

@ Criteria considered so far are based on the control flow
@ it is possible to conceive adequacy criteria based on data flow
characteristics

Consider the following program:

begin
int x,y; float z;
input (x,v);
z=0;
if (x!=0) z=z+y;
else z=z-y;
if (y!=0) z=z/x // Should be (y!=0 and x!=0)
else z=zx*xx;
output (z) ;
end

An MC/DC test set could not reveal the error while a test set based on definition and
usage of variables would have been able

(Software Engineering Il — Software Testing) 6. Test-Adequacy Il January 27! 2015 6/9



Data flow criteria

@ Data flow criteria based on two main concepts:
o Definition
e Use (computational usage - c-use - and predicate usage - p-use)

Definition of Data flow graphs:
@ Compute def,, c — use; and p — use; for each block in P
@ Associate each node i in N with def;, ¢ — use; and p — use;

© For each node i that has a non-empty p-use set and ends in condition C,
associate edges (i,j) and (i,k) with C and !|C

begin
int x,vy,z;
input (x,v); z=0;
if (x<0 and y<0) {
Z=X*X;
if (y>=0) z=z+1; }
else z=xX*X*X;
output (z) ;
end

(Software Engineering Il — Software Testing) 6. Test-Adequacy I January 27"’, 2015 7/9



Data coverage

@ c-use coverage
@ p-use coverage
@ all-uses coverage

(Software Engineering Il — Software Testing) 6. Test-Adequacy Il January 27! 2015 8/9



Control-flow vs. Data-flow

(Software Engineering Il — Software Testing) 6. Test-Adequacy Il January 27! 2015 9/9



