
6. Test-Adequacy II
Assessment Using Control Flow and Data Flow

Andrea Polini

Software Engineering II – Software Testing
MSc in Computer Science

University of Camerino

January 27th, 2015

(Software Engineering II – Software Testing) 6. Test-Adequacy II January 27th , 2015 1 / 9



MC/DC

Combinations necessary to satisfy the Multiple Condition
Coverage is generally too big.
MC/DC allows a coverage of all decisions and all conditions
avoiding the exponential explosion
To derive the test set the idea is to identify those tuple which can
cover the two criteria without requiring a complete conbinations of
values.

Let’s consider the compound condition (C1 ∧ C2) ∨ C3

(Software Engineering II – Software Testing) 6. Test-Adequacy II January 27th , 2015 2 / 9



MC/DC

Combinations necessary to satisfy the Multiple Condition
Coverage is generally too big.
MC/DC allows a coverage of all decisions and all conditions
avoiding the exponential explosion
To derive the test set the idea is to identify those tuple which can
cover the two criteria without requiring a complete conbinations of
values.

Let’s consider the compound condition (C1 ∧ C2) ∨ C3

(Software Engineering II – Software Testing) 6. Test-Adequacy II January 27th , 2015 2 / 9



MC/DC

Combinations necessary to satisfy the Multiple Condition
Coverage is generally too big.
MC/DC allows a coverage of all decisions and all conditions
avoiding the exponential explosion
To derive the test set the idea is to identify those tuple which can
cover the two criteria without requiring a complete conbinations of
values.

Let’s consider the compound condition (C1 ∧ C2) ∨ C3

(Software Engineering II – Software Testing) 6. Test-Adequacy II January 27th , 2015 2 / 9



Definition of MC/DC coverage

The MC/DC criterion requires that:
Each block in P has been covered
Each simple condition in P has taken both true and false value
Each decision in P has taken all possible outcomes
Each simple condition within a compound condition C in P has
been shown to independently effect the outcome of C.

(Software Engineering II – Software Testing) 6. Test-Adequacy II January 27th , 2015 3 / 9



Example

Consider a program conceived to satisfy the following requirements:

R1: Given coordinate position x, y, and z, and a direction value d , the program must
invoke one of the three functions fire-1, fire-2, and fire-3 as per
conditions below:

R1,1: Invoke fire-1 when (x<y and (z*z>y) and (prev=”East”) where
prev and current denote, respectively, the previous and current
values of d .

R1,2: Invoke fire-2 when (x<y) and (z*z≤y) or (current=”South”)
R1,3: Invoke fire-3 when none of the two conditions above is true

R2: The invocation described above must continue until an input Boolean variable
become true

let’s generate test satisfying the conditions and let’s analyze the covered decision

(Software Engineering II – Software Testing) 6. Test-Adequacy II January 27th , 2015 4 / 9



Tracing test cases to requirements

Enhancing a test set we should understand what portions of the
requirements are tested when the program under test is executed
against the newly added test case?

Trace back test to requirements

(Software Engineering II – Software Testing) 6. Test-Adequacy II January 27th , 2015 5 / 9



Data Flow concepts

Criteria considered so far are based on the control flow
it is possible to conceive adequacy criteria based on data flow
characteristics

Consider the following program:

begin
int x,y; float z;
input(x,y);
z=0;
if (x!=0) z=z+y;
else z=z-y;
if (y!=0) z=z/x // Should be (y!=0 and x!=0)
else z=z*x;
output(z);

end

An MC/DC test set could not reveal the error while a test set based on definition and
usage of variables would have been able

(Software Engineering II – Software Testing) 6. Test-Adequacy II January 27th , 2015 6 / 9



Data Flow concepts

Criteria considered so far are based on the control flow
it is possible to conceive adequacy criteria based on data flow
characteristics

Consider the following program:

begin
int x,y; float z;
input(x,y);
z=0;
if (x!=0) z=z+y;
else z=z-y;
if (y!=0) z=z/x // Should be (y!=0 and x!=0)
else z=z*x;
output(z);

end

An MC/DC test set could not reveal the error while a test set based on definition and
usage of variables would have been able

(Software Engineering II – Software Testing) 6. Test-Adequacy II January 27th , 2015 6 / 9



Data flow criteria

Data flow criteria based on two main concepts:
Definition
Use (computational usage - c-use - and predicate usage - p-use)

Definition of Data flow graphs:
1 Compute defi , c − usei and p − usei for each block in P
2 Associate each node i in N with defi , c − usei and p − usei

3 For each node i that has a non-empty p-use set and ends in condition C,
associate edges (i,j) and (i,k) with C and !C

begin
int x,y,z;
input(x,y); z=0;
if (x<0 and y<0) {
z=x*x;
if (y>=0) z=z+1; }

else z=x*x*x;
output(z);

end

(Software Engineering II – Software Testing) 6. Test-Adequacy II January 27th , 2015 7 / 9



Data coverage

c-use coverage
p-use coverage
all-uses coverage

(Software Engineering II – Software Testing) 6. Test-Adequacy II January 27th , 2015 8 / 9



Control-flow vs. Data-flow

(Software Engineering II – Software Testing) 6. Test-Adequacy II January 27th , 2015 9 / 9


