
Automated Generation of Oracles for Testing
User-interaction Features of Mobile Apps

Razieh Nokhbeh Zaeem∗
The University of Texas at Austin

nokhbeh@utexas.edu

Mukul R. Prasad
Fujitsu Laboratories of America

mukul@us.fujitsu.com

Sarfraz Khurshid
The University of Texas at Austin

khurshid@ece.utexas.edu

Abstract—As the use of mobile devices becomes increasingly
ubiquitous, the need for systematically testing applications (apps)
that run on these devices grows more and more. However, testing
mobile apps is particularly expensive and tedious, often requiring
substantial manual effort. While researchers have made much
progress in automated testing of mobile apps during recent years,
a key problem that remains largely untackled is the classic oracle
problem, i.e., to determine the correctness of test executions. This
paper presents a novel approach to automatically generate test
cases, that include test oracles, for mobile apps. The foundation
for our approach is a comprehensive study that we conducted
of real defects in mobile apps. Our key insight, from this study,
is that there is a class of features that we term user-interaction
features, which is implicated in a significant fraction of bugs and
for which oracles can be constructed – in an application agnostic
manner – based on our common understanding of how apps
behave. We present an extensible framework that supports such
domain specific, yet application agnostic, test oracles, and allows
generation of test sequences that leverage these oracles. Our tool,
QUANTUM, embodies our approach for generating test cases that
include oracles. Experimental results using 6 Android apps show
the effectiveness of QUANTUM in finding potentially serious bugs,
while generating compact test suites for user-interaction features.

I. INTRODUCTION

Recent years have witnessed an explosive growth in the use
of mobile devices and in the number and variety of software
applications developed for such devices. Mobile applications,
or apps as they are popularly called, are often developed in
small, fast-paced projects with scarce testing resources. At
the same time, testing mobile apps presents some unique
challenges, such as supporting a wide range of devices, plat-
forms and versions, as well as ensuring the integrity of the
rich and highly interactive user-interface characteristic of such
apps [24]. Thus, there is a growing need to develop automated
testing tools to support the development of mobile apps.

Researchers have made significant progress in developing
techniques to support automated testing of mobile apps [17],
[2], [1], [10], [9]. However, these techniques primarily target
the generation of test sequences, leaving the task of adding
test oracles [7], [23] into these test sequences to the human
tester. This itself can be a manually intensive process and if
the oracles are not of a sufficiently high quality, can potentially
compromise the efficacy of test cases.

The aim of this paper is to partially address the oracle prob-
lem in the context of automated test case generation for mobile
applications. To realize this aim we conducted a study where

∗ This author was an Intern at Fujitsu Labs of America for a part of this
work.

we sampled, studied and categorized the bugs reported for
several popular, open-source Android applications. The study
revealed that a significant fraction of bugs can be attributed
to user-interaction features that are supported by the mobile
platform and simply implemented by each application. Such
features include content presentation or navigation features
such as rotating the device or using various gestures to scroll
or zoom into screens. A distinguishing characteristic of these
features is that they are largely independent of the core logic
of the application. More importantly, there is often a general,
common sense expectation of how the application should
respond to a given feature. For example, rotating a device and
then rotating it back should bring the display precisely back
to the initial screen. Such observations motivate our approach.

We present a novel framework for authoring test oracles
for checking user-interaction features of mobile applications,
in an application agnostic manner. Our framework supports
model-driven test suite generation [21] where each gener-
ated test includes both the test sequence to execute and the
corresponding assertions to check (as test oracles). Given a
model of the user-interface of the mobile app under test, our
framework uses its built-in, extensible library of oracles (for
various user-interaction features) and generates a test suite to
comprehensively test the app against user-interaction features.

While the basic goal of our framework is to allow genera-
tion of test suites that are complete with embedded test oracles
for supported features, it includes two more techniques to fur-
ther enhance its usefulness in practice. Firstly, our framework
supports a customizable cost function that defines a measure
of cost for executing a given test suite and produces an output
suite that has likely minimal execution cost, while checking
each feature. Secondly, our test generation technique inserts
multiple test oracles, for different features, within a single
test case, when possible. This allows checking of multiple
properties within the same test execution, by conceptually
sharing execution segments common across different tests, thus
reducing the overall test execution cost. Our test generation
technique produces feature-adequate test suites, which for
the given model exercise every transition relevant to each
supported feature and test its expected functionality.

Our tool, QUANTUM, embodies our framework and pro-
vides a fully automated, push-button tool-set for test case
generation for mobile apps. Our initial experiments with
QUANTUM show that it generates valuable test suites and
provides the foundation of a promising approach for more
effective testing of mobile apps.

2014 IEEE International Conference on Software Testing, Verification, and Validation

978-0-7695-5185-2/14 $31.00 © 2014 IEEE

DOI 10.1109/ICST.2014.31

183

This paper makes the following contributions:

Bug study. We perform a comprehensive study of real
mobile application defects and identify a family of mobile
application features, which we term user-interaction features.
We observe that these features are implicated in a significant
fraction of the studied defects. Further, they are characteristic
of the mobile platform and implemented by many mobile
applications but not directly dependent on the application logic.

Feature-driven testing of mobile apps. We introduce a
novel form of test adequacy [6] in the context of mobile apps
where the goal is to cover the given model of the app’s user-
interface by exercising each transition relevant to any desired
feature and checking the expected functionality for the feature.

Automatic oracle generation for testing mobile apps.
We present an extensible library of oracles for various user-
interaction features. Our framework allows authoring test ora-
cles for features, in an application agnostic manner, for re-use
across a number of different apps that are expected to support
those features. These oracles are appropriately instantiated by
our model-driven test suite generation technique.

Minimal cost test suite generation. We provide a tech-
nique for generating a compact test suite by trying to minimize
a customizable cost function. The test suite also incorporates
the oracles to comprehensively test the supported feature set.

Evaluation. We present our tool, QUANTUM, for auto-
mated testing of mobile apps and its evaluation on 6 real
Android applications. The evaluation confirms that QUANTUM

is able to generate compact test suites, complete with test
oracles, for testing the identified features. These test suites
are able to reveal a number of bugs in the studied applications:
QUANTUM found a total of 22 bugs, a few of them particularly
serious, using a total of 60 tests for these 6 apps.

II. BUG STUDY

We conducted a bug study on 106 bugs drawn from 13
open-source Android applications. The aim was to identify op-
portunities for automatically generating test cases, that include
test oracles, by focusing on bugs specific to mobile apps and
by exploiting domain knowledge of the mobile platform.

The 13 open-source Android apps we selected included 6
apps studied in previously published work on automated testing
for mobile apps [8], [1], [17], a further 6 apps selected from the
open source repository Google Code, and the Notepad sample
app provided for educational purposes by the official Android
website (also studied in previous work [17]). Table I lists the
name, stated function, and source for each of the 13 subjects.

Our aim was to choose test subjects from a diverse set of
application categories and functions. The 6 apps CMIS, Deli-
cious, OpenSudoku, MonolithAndroid, Wordpress, and Nexes
Manager, chosen from previously published work, reflect this
intention. Further, we applied the following five additional
criteria to choose the 6 apps from open source repositories: (1)
popularity: a minimum ranking of 3.5 out of 5 on Google Play,
(2) high number of active installations: a minimum of 50,000,
(3) having active development communities: the latest version
of the source of the application should have been downloaded
at least 1000 times, (4) rich database of reported issues: at least
25 reported issues, and (5) reproducible defects: the app should
have at least some defects reproducible on a standard Android
emulator. Similar criteria have been used in previous studies

TABLE I: Subjects for Bug Study

App Function Source

Notepad Note Making Tool developer.android.com/tools/samples
CMIS CMIS Browser gc/android-cmis-browser
Delicious Social Bookmarking gc/android-delicious-bookmarks
OpenSudoku Sudoku Game gc/opensudoku-android
MonolithAndroid 3D Game gc/monolithandroid
Wordpress Blogging Tool android.trac.wordpress.org
Nexes Manager File Manager github.com/nexes/Android-File-Manager

VuDroid PDF Viewer gc/vudroid
Kitchen Timer Timer gc/kitchentimer
Dolphin Player Media Player gc/dolphin-player
AnkiDroid Flashcard Review gc/ankidroid
Shuffle Personal Organizer gc/android-shuffle
K9Mail Email Client gc/k9mail

gc: https://code.google.com/p

of Android apps [8], albeit for somewhat different purposes.
By manually browsing Google Code with the above selection
protocol we selected the 6 apps VuDroid, Kitchen Timer,
Dolphin Player, AnkiDroid, Shuffle, and K9Mail which have
on average a ranking 4.3 out of 5, 500,000 active installations,
10,700 downloads, and 1,400 reported issues.

Generally, only a small fraction of issues logged in the
bug repository of an app are true, reproducible bugs. Many
of them cannot be reproduced and still others are merely
feature requests. To select bugs for further investigation, for
each test subject we manually examined each issue logged
in its repository till we had 10 reproducible bugs (except
for Delicious, MonolithAndroid, and Nexes, selected from
previous work, that have small bug repositories where we could
find only 8, 6, and 2 reproducible defects respectively). No bug
reports exist for Notepad. This gave us a total of 106 bugs.

We manually investigated and categorized each of the 106
bugs, from the viewpoint of the test oracles needed to detect
them. We identified 20 categories besides the core application
logic. Table II shows this categorization. We observed that
almost 75% of the studied bugs are not directly tied to
the application logic (only 27 bugs are categorized under
Application Logic), which inspired us to explore avenues for
automatically generating test oracles tailored for mobile apps.

We further aggregated the categories based on the au-
tomatability of the underlying oracles. Oracles enforcing the
application logic are very application specific and notoriously
difficult to generate fully automatically. Other than this cate-
gory we identified 3 groups of oracles. The first group, Basic
Oracles, encompass general instances of aberrant program
behavior such as crashes, hangs, or illegal terminations which
are not application specific, or even specific to mobile apps.
As an example, Uncaught Exceptions belongs to this group.
CMIS has a bug in which “if the URL field is left empty, a null
pointer exception is thrown”. Such basic oracles are already
widely used in automated software testing and hence not
particularly interesting for the current investigation. Another
group, named App Specific Oracles, are not directly related to
the application logic but can still be very application specific.
For example, oracles to validate the Visual Appearance of an
app belong to this group. The MonolithAndroid app has a
defect in which “holes exist in the background texture” of
the app rendering. We feel it would be very hard to generate
precise automated oracles to distinguish between intended and
faulty behavior in such cases. Therefore, our work does not
target this category either. However, the group of App Agnostic

184

TABLE II: Categorization of Bugs.

Group→ Basic Oracles App Agnostic Oracles App Specific Oracles

Category → L
oa

di
ng

L
ib

.

T
hi

rd
Pa

rt
y

L
ib

.

U
nc

au
gh

t
E

xc
ep

tio
n

K
ey

Si
gn

in
g

In
co

m
pa

tib
ili

ty

M
em

or
y

B
us

y
R

es
ou

rc
e

SQ
L

In
fin

ite
L

oo
p

R
ot

at
io

n

A
ct

iv
ity

L
ife

-C
yc

le

G
es

tu
re

s

Ti
m

e
Z

on
e

In
pu

t
H

an
dl

in
g

Se
tt

in
gs

Sh
ow

in
g

Pr
og

re
ss

V
is

ua
l

A
pp

ea
ra

nc
e

Fo
re

ig
n

L
an

gu
ag

es

W
id

ge
t

W
eb

si
te

C
on

ne
ct

io
n

A
pp

lic
at

io
n

L
og

ic

Notepad
CMIS 4 1 1 2 2
Delicious 1 1 1 1 4
OpenSudoku 1 1 1 2 3 2
MonolithAndroid 1 1 1 1 1 1
WordPress 3 1 1 1 1 1 2
Nexes Manager 2

VuDroid 1 3 1 2 1 1 1
Kitchen Timer 1 2 1 1 2 3
Dolphin Player 1 1 1 1 2 1 3
AnkiDroid 2 1 1 1 1 2 2
Shuffle 1 1 1 1 1 2 3
K9Mail 1 1 3 1 1 3

Total 2 2 15 2 2 2 3 2 2 5 4 4 2 4 7 2 7 5 2 5 27

Oracles contains bugs for which the oracles are significantly
more complicated than the basic oracles but sufficiently app
agnostic that they could potentially be automatically generated.
We found relatively well populated categories like Rotation,
Activity Life-cycle, and Gesture Bugs in this group.

Rotation bugs manifest as the mobile device is rotated
from landscape to portrait orientation or vice versa. There is
a common understanding of how applications usually respond
to rotation: the same content should stay on the screen, in a
possibly different arrangement, and should support the same
actions as before. In addition, user data entries should be
preserved after rotation. VuDroid contains an example of a
rotation bug where “the tab selection resets after rotating
the phone”. Our bug study found five rotation bugs in three
apps. Gesture bugs form another category, similar to rotation
bugs, where common gestures such as zooming in and out,
and scrolling, produce a response contradicting common sense
expectation. The study found four gesture bugs in four apps.

The graphical user-interface of Android apps is composed
of components called Activities, each corresponding to a core
function of the app. An Activity’s behavior should conform to
an activity life-cycle, a finite state machine where each state
represents one coarse level state (such as active or paused)1.
Activity life-cycle bugs correspond to aberrant behavior ex-
hibited as the app’s Activity components transition through
different life-cycle states. This happens, for example, as an app
is sent to the background, killed, resumed or re-started. Similar
to rotation bugs, there is a common sense understanding of
how apps should behave when they are paused or killed. For
example, when an app is paused and subsequently resumed, it
should preserve the user’s data entries on the current screen.
Our study found four activity life-cycle bugs in four apps.
For example, Wordpress has one such bug where “the content
disappears if the app goes to the background”. Note that
rotation and gesture bugs might share root causes with activity
life-cycle bugs. However, these bug categories are not causally
linked. Further, they represent different bugs from the end
user’s perspective and hence merit being tested independently.

1http://developer.android.com/guide/components/activities.html#Lifecycle.

Finally, time zone bugs occur when handling different time
zones. The study found two time zone bugs in two apps.
However, while app agnostic, these bugs do not directly arise
from user-interactions, and hence are different from the other
three categories in this group.

The bug study revealed that many bugs in mobile apps have
shared roots beyond the application logic. It further helped us
identify three categories of oracles to find such bugs: (1) the
basic oracles, (2) the app specific oracles, and (3) the app
agnostic oracles. The app agnostic oracles mostly (with the
exception of time zone bugs) correspond to ways of interacting
with mobile devices, common not only between different apps
but also among various mobile platforms. The study found that
these user-interaction features of mobile apps are the cause of
bugs in more than half of the apps studied. Inspired by these
bugs, we introduce our test and oracle generation techniques
for user-interaction features of mobile apps.

III. EXAMPLE

In this section, we present an example app to motivate our
technique for automatically testing user-interaction features of
mobile apps. For illustration, we use a real bug from Kitchen
Timer, an open source Android app. As the name suggests,
Kitchen Timer is a timer for cooking. It contains three timers
which can be set independently and go off by sounding an
alarm after counting down to zero. In addition, Kitchen Timer
provides other functionalities to change Preferences (e.g., the
alarm sound, the LED color, timer names), save preset timers,
and many more.

While we used the complete Kitchen Timer for the bug
study and evaluation (Sections II and V), we describe a
simplified version for the sake of this example. Figure 1 shows
snapshots of Kitchen Timer. In this simplified Kitchen Timer,
the user can set one timer by using the plus and minus signs
on the main screen (Figure 1a). The numbers from left to right
show the hours, minutes, and seconds for the timer to be set.
Then the user can start the timer by hitting the Start button
(to get to Figure 1b) or stop it by hitting the Stop button.
Furthermore, he can select Info, Preferences, or Donation from
the menu (to get to Figures 1c, 1d and 1e). All of these screens
support rotation. For simplicity, we excluded further actions

185

(a) Main Timers (b) Timer Running (c) Info (d) Preferences (e) Donation

Fig. 1: Snapshots of Simplified Kitchen Timer.

(a) The user sets a timer. (b) Values overwritten
after two rotations.

Fig. 2: Snapshots of a Bug in Kitchen Timer.

from Info, Preferences, and Donation from the simplified app.
The user can, however, go back to the main screen from them.

As Figure 2 depicts, Kitchen Timer has a bug that is
manifested when the device is rotated twice. If the user sets a
timer (Figure 2a), and then rotates the mobile device twice
before starting the timer (Figure 2b), the value of seconds
overwrites the values of minutes and hours, here changing the
timer from 1 hour, 2 minutes, and 3 seconds to 3 hours, 3
minutes, and 3 seconds. Our tool automatically finds this bug.

IV. FEATURE-BASED TESTING OF MOBILE APPS

The findings of our bug study motivated us to develop
an approach for automatically testing user-interaction features
(interaction features, or simply features for short throughout
the paper) of mobile apps. Our proposed approach is described
in this section. We start by defining some terminology.

Definition 1 (Interaction feature). An interaction feature is
an action supported by the mobile platform, which enables a
human user to interact with a mobile app, using the mobile
device and the graphical user-interface (GUI) of the app.
Further, an interaction feature is associated with a common
sense expectation of how the mobile app should respond to
that action.

Interaction features include actions like rotating a mo-
bile device, general purpose gestures like zooming in/out
or scrolling, and actions which start, pause, kill or resume
operation of an app, taking its Activity GUI components
through various states in their life-cycle. These features were
discussed in our bug study. In addition, features like the
Back or Up buttons of the Android platform2 are also valid
interaction features. Note that the above definition excludes a
number of common gestures such as click or longClick, or

2See http://developer.android.com/design/patterns/navigation.html.

other custom gestures, for which there is no standard expected
response from apps; it is completely context and application
specific. Since a given interaction feature will have, in general,
a standard expected behavior, across apps and different mobile
platforms3, this provides a general, app agnostic oracle for
validating an app’s response to exercising that feature. Thus,
a key component of our approach is authoring such reusable
oracles and employing them in interaction feature testing.

We follow a model-driven approach to generating test-cases
for testing interaction features of a given mobile app. The
starting point for our technique is a finite state model of the
GUI behavior of the app, which is defined as follows.

Definition 2 (GUI model). A GUI model of an app is a finite
state machine M, denoted by the 4-tuple M = (S, s0, A,R),
where S is a finite set of abstract states representing different
GUI screens, s0 ∈ S is the initial state denoting the app’s
opening screen, A is a finite set of application specific actions
the user may perform in executing the logic of the app, and
R ⊆ S ×A× S is a transition relation describing transitions
between states in S in response to user actions from A.

Two GUI screens are represented by the same abstract state
in M if and only if they contain the same set of actions on the
same widgets. The only exception to this is screens showing
collections of items, such as books, files, songs, transactions,
etc., where each item supports some set of actions. In this case
two screens with different (non-zero) numbers of items are
interpreted as the same state. Thus, the contents of a collection
are abstracted as empty or non-empty. Similar notions of GUI
states have also been used in previous work [11], [9]. The
set A includes application specific actions such as clicks or
longClicks, etc., on specific widgets but does not include
platform supported interaction features (e.g., device rotation,
etc.). We believe this is typical of GUI models as well [25].

Note that although the visible part of a GUI screen of a
mobile app, as viewed on a mobile device, may change by
performing an action such as a device rotation, a zoom, or a
scrolling action, these apparently different screens still corre-
spond to the same abstract state in the GUI model. We define
the notion of a view, denoted by the symbols w, to represent the
visible portion of abstract GUI model states s. Thus, a state
s can have several views, generated by exercising different
available interaction features on s. Specifically, we use the
notation Φ(s,u,−) and Φ(s,u,+) to denote respectively, the
two different views of state s before and after action (or action
sequence) u was fired, where u corresponds to an instance of
exercising an interaction feature. The view notation provides
a relative notion of time of sampling states (for their current
view), before and after exercising interaction features.

A GUI model M(S, s0, A,R) can also be represented as
a rooted, labeled directed graph G = 〈V,E, r,A,L〉, in a
straightforward manner. Here, the nodes V represent the states
S, the root node r represents initial state s0, edges E represent
transitions between states, consistent with transition relation
R, and the labeling function L:E → A labels each edge with
the action a ∈ A responsible for the transition. GUI models
can either be constructed manually or generated automatically
using one of the techniques from a growing body of work on
GUI model generation for mobile apps [1], [10], [25].

3Specific apps may of course choose to modify this standard response.

186

Overall Approach: Our technique generates compact test
suites, complete with test oracles, to comprehensively test
interaction features of a given mobile app. The approach uses
an extensible library F of reusable and application agnostic
feature definitions, described in Section IV-A. Given a user
provided GUI model of the app we automatically augment this
model with feature instances, using the feature definitions in
F (Section IV-B). Then, based on the cost and test adequacy
criteria defined in Section IV-C, we automatically traverse
the augmented model to create compact test sequences (Sec-
tion IV-D). Finally, we automatically instantiate test oracles in
the test sequences to obtain a compact and complete test suite.

A. Authoring Oracles for Interaction Feature Testing
We introduce an extensible framework in which interaction

features can be defined in an application agnostic manner and
stored in a library. When testing a given app our technique
appropriately instantiates features from the library, using these
feature definitions, and generates tests, complete with test
oracles, to comprehensively test each feature.

Definition 3 (Feature definition). The feature defini-
tion of a given interaction feature f is a triple:
〈uf , Df (s), Of (w1, w2)〉. uf = 〈u1, u2, . . . , un〉 is a se-
quence of actions that exercises the feature. Df (s) is the
destination function, that maps a given state s at which the
feature can be exercised to a set of states Sf ⊆ S that could
potentially result from exercising f at state s. Of (w1, w2) is
the oracle for feature f , where w1 = Φ(s1,uf ,−) is a view of
some state s1 before firing actions uf and w2 = Φ(s2,uf ,+)
is a view of a state s2 reached after firing actions uf on some
previous state s1, possibly the same state s2.

A crucial aspect of the above feature definition is to express
uf , Df , and Of in an application agnostic manner. We demon-
strate how to do this below, through example feature definitions
of several common interaction features. Another important
restriction implied by Definition 3 is that the set of abstract
states in the GUI model should be closed under application
of the interaction feature, i.e., exercising the feature in one of
the states should not take the application to a fundamentally
new abstract state outside the GUI model. This common sense
restriction is also valid for all interaction features in our knowl-
edge. In the following examples we use Φ−(s) and Φ+(s) as
shorthand for Φ(s,uf ,−) and Φ(s,uf ,+) respectively, since
uf is clear from the context.

Double rotation (DR): We incorporate the mobile device
rotation feature in a double rotation feature definition, which
expresses the act of rotating a mobile device and then rotat-
ing it back to the original orientation. With this action the
application should stay in the same state. Further, the view of
that state before an after double rotation should be identical.
This is expressed in the feature definition: DR = 〈uf =
〈rotate, rotate〉, Df (s) = {s}, Of = (Φ−(s) = Φ+(s))〉.

Killing and restarting (KR): The operating system might
choose to kill and then restart an app for various reasons
(e.g., low memory). Similar to double rotation, the app should
retrieve its original state and view. Thus, KR = 〈uf =
〈kill, restart〉, Df (s) = {s}, Of = (Φ−(s) = Φ+(s))〉.

Pausing and resuming (PR): The app can be paused (e.g.,
by hitting the Android Home button) and then resumed. PR =
〈uf = 〈pause, resume〉, Df (s) = {s}, Of = (Φ−(s) =
Φ+(s))〉. Killing and then restarting, and pausing and then

resuming are both instances of activity life-cycle transitions
which all apps should support.

Back button functionality (Back): The Back button is
a hardware button on Android devices which takes the app
to the previous screen. Back = 〈uf = 〈back〉, Df (s) =
{sp : sp ∈ parent(s)}, Of = (Φ−(s1) = Φ+(s1))〉, where
s1 ∈ Df (s). In this case, the destination function produces a
set of destinations D(s) corresponding to each of the parent
(using the standard graph theoretic notion of parent and child)
nodes of the current state s in the GUI model.

Opening and closing menus (Menu): The hardware Menu
button on Android devices opens and closes custom menus that
each app defines. For this feature definition Menu = 〈uf =
〈menu,menu〉, Df (s) = {s}, Of = (Φ−(s) = Φ+(s))〉.

In the above instances the oracle was always an assertion
of equality between two appropriate state views. In general,
however, the oracle predicate can include arbitrary relational
or logical operators. For example:

Zooming in (ZI): Zooming into a screen should bring up
a subset of what was originally on the screen. ZI = 〈uf =
〈zoomIn〉, Df (s) = {s}, Of = (Φ−(s) ⊃ Φ+(s))〉.

Zooming out (ZO): Zooming out from a screen should
result in a superset of the original screen. ZO = 〈uf =
〈zoomOut〉, Df (s) = {s}, Of = (Φ−(s) ⊂ Φ+(s))〉.

Scrolling (SCR): Scrolling down (or up) should display a
screen that shares parts of the previous screen. SCR = 〈uf =
〈scrollDown〉, Df (s) = {s}, Of = (Φ−(s) ∩ Φ+(s)
= ∅)〉.

Note that the feature definition itself includes an imple-
mentation of the oracle, albeit an app independent one, that
can be re-used across different apps. Thus, the semantics of
operators used in the oracles are defined there.

B. Augmenting GUI Models with Feature Instantiations
Given a GUI model G = 〈V,E, r,A,L〉 of the target app

and a library F of interaction features, specified as discussed
in Section IV-A, the next step in our approach is to annotate
G with all possible instantiations of each feature in F to
produce an augmented GUI model G+ = 〈V,E+, r, A+,L+〉.
Specifically, this involves adding a set of special labeled
edges, called golden edges, to G. Each golden edge, ef (v1, v2)
denotes that feature f when exercised at the state of vertex v1
takes the application to the state of vertex v2. Further, ef is
labeled with uf , the action sequence of feature f . Thus, the
augmented model G+ includes the augmented set of edges
E+ = E∪Egolden, augmented action set A+ = A∪⋃f∈F uf ,

and appropriately modified labeling function L+ : A+ → E+,
where Egolden are the golden edges and

⋃
f∈F uf are the

actions for features F labeling the golden edges.

Algorithm 1 shows the procedure to perform GUI model
augmentation. The algorithm iterates over each state v in the
GUI model (lines 3− 13) and each feature f in library F , in-
stantiating f at v, as per the feature definition. It computes the
set of possible destination vertices dSet, by evaluating function
Df in the feature definition (function destinationSet() on line
5). It then iterates over each possible destination vertex v1
(lines 6−11) creating and adding a golden edge, labeled by the
feature’s action sequence uf (line 8), to the augmented model
G+. Figure 3 shows the GUI model of our simplified version
of Kitchen Timer from Section III, augmented with golden
edges for the Double Rotation and Back button features.

187

Fig. 3: Simplified Model of Kitchen Timer.

Algorithm 1: GUI Model Augmentation Algorithm

Input : G = 〈V,E, r, A,L〉: Original GUI model of target app
F : Feature library

Output: G+ = 〈V,E+, r, A+,L+〉: Augmented GUI model

1 begin
2 G+ ← G
3 foreach v ∈ V do

// Iterate over each vertex (state) of G
4 foreach f ∈ F do

// Iterate over each feature in F
5 dSet = destinationSet(v,G+, f)
6 foreach v1 ∈ dSet do
7 e← createEdge(v, v1);
8 setEdgeLabel(e, getAction(f))
9 markGolden(e)

10 addEdge(e,G+)
11 end
12 end
13 end
14 return G+

15 end

C. Test Suite Definition
Given an augmented GUI model G+ the final phase of our

technique generates a test suite with the following goal.

Test objective: A compact suite of tests to comprehensively
test the interaction features of the given app under test.

A test is a sequence of actions (i.e., a sequence of edges
or a path in G+) starting at the initial state r, with each
action possibly followed by an oracle check. Therefore, a test
can be represented as 〈a1, o1, . . . , an, on〉. Each ai ∈ A+ is
any action (including those that exercise interaction features)
allowed by the app’s GUI. Each oi is either an oracle check
or no operation. We assume that oracle checks are side effect
free, i.e., they do not change the state of the app.

We define a test adequacy criterion to concretize the notion
of a “comprehensive” test suite stated in the test objective.
Since mobile apps are event-driven systems and interaction
features are elements of the app’s GUI, we develop a criterion
that is motivated by the notions of path coverage and event-
flow coverage used by previous work on GUI testing [14].
This is in contrast to code coverage-based criteria such as
line or branch coverage, which would be more appropriate
for functional testing of the software implementation rather
than testing its high level platform features, as in our case.
Intuitively, we say that a test suite covers a feature, if it
contains tests to exercise and validate each possible instance
of exercising that feature on that app. Simply put, this implies
exercising the feature in each GUI state. Given a test suite
T , an interaction feature f from a feature library F and an
augmented GUI model G+ = 〈V,E+, r, A+,L+〉, as defined

in Section IV-B, we define adequacy of T in testing f with
respect to G+ as follows.

Definition 4 (Interaction feature coverage). A test suite
T covers a feature f iff ∀s ∈ S : ∃t ∈ T, t =
〈a1, o1, . . . , an, on〉, ∃j, k, 0 ≤ j < k ≤ n such that
〈a1, . . . , aj〉 takes the app from the initial state s0 to state
s, 〈aj+1, . . . , ak〉 = uf , and ok = Of .

Since there are no standard or widely accepted cost func-
tions to optimize test suites we quantify the “compactness” of
our test suite using the common sense observation that large
test suites are hard to set up, execute, and maintain. The size of
a test suite can be measured by the number of tests it contains
as well as the cumulative number of operations (actions ai)
in the test suite as a whole. We propose a customizable cost
function that captures this.

Definition 5 (Cost of a test suite). The cost of a test suite T is
cost(T) = α ∗ |T |+ β ∗ Σt∈T |t|, where α and β are positive
co-efficients.

Coefficient α measures the relative cost of developing and
maintaining a suite, which scales with the number of tests in
a suite. Coefficient β quantifies the cost of executing actions
and asserting oracles which is proportional to the number of
operations.

D. Feature-based Test Sequence Generation
Recall that interaction features are orthogonal to the core

logic of the app and their function is typically to help the user
navigate or access content on the app by mutating the state
of the app’s GUI. Further, exercising an interaction feature on
a given state has no side effects in terms of the GUI model,
i.e., the effect of exercising that feature is limited to a single
GUI screen and has no impact on the downstream actions. This
observation is very important as it allows us to arbitrarily mix
and match instances of several features (and their test oracles)
in a single test case, as long as it lowers the cost of the test
suite, per Definition 5. Since each instance of every feature is
already recorded in our augmented GUI model G+ (servicing
the test adequacy criterion of Definition 4), our test generation
problem can be stated as follows.

Test suite generation problem: Given an augmented GUI
model G+ generate a minimum cost test suite such that each
golden edge in G+ is covered by at least one test in the suite.

It can be shown that the above problem is NP-hard, by
reducing the minimum path cover problem [20] to this problem.
We omit the detailed proof here for lack of space.

We propose a greedy algorithm for this NP-hard problem.
In addition, we introduce two optimizations to further reduce

188

Algorithm 2: Traversal Algorithm

Input : G+ = 〈V,E+, r, A+,L+〉: Augmented GUI model of app
Output: T : Test Suite

1 begin
2 CE ← ∅
3 stack ← ∅
4 L← sortWithBFS(G+)
5 foreach s ∈ L do
6 while ∃(s, y) ∈ outGoing(s), s.t.(s, y) ∈ E − CE do
7 foreach e ∈ shortestPathBFS(r, s) do
8 stack.push(e)
9 CE ← CE ∪ {e}

10 end
11 c← s
12 stop← false
13 while !stop do
14 if ∃(c, v) ∈ outGoing(c), s.t.(c, v) ∈ E − CE

then
15 CE ← CE ∪ {(c, v)}
16 stack.push((c, v))
17 c← v
18 end
19 else stop← true
20
21 end
22 T ← T ∪ stack
23 stack.clear()
24 end
25 end
26 return T
27 end

the cost associated with covering features. Algorithm 2 shows
a pseudo-code of the traversal algorithm we propose. The input
to this algorithm is the augmented graph model. We use a set
to keep track of covered edges CE and a stack to record the
test sequence. First, on Line 4, we sort the nodes based on their
increasing distance from the root using a Breadth First Search
(BFS) and keep the sorted list in L. For example, we can
sort the nodes of Figure 3 as 〈mainTimers, info, preferences,
donation, timerRunning〉. Then, working through the list L on
Line 5, we select the next node s that has uncovered outgoing
edges (Line 6). In our example, the first node in the list with
uncovered outgoing edges is mainTimers (as we have not yet
covered any edges). We use the shortest path from the root
to this node (saved through previously performed BFS) as the
prefix of all sequences to be generated starting from it. Lines 7
to 10 iterate through the shortest path and (1) mark edges as
visited by adding them to CE, and (2) push them onto stack.
The rationale behind using such a prefix is to minimize the cost
associated with taking edges to get to a given node, where the
exploration for uncovered golden edges begins.

Then, using c as a pointer to the current node, which is
initially set to s, on Line 14 we pick an uncovered edge going
out of c. We take this edge, mark it as covered (Line 15),
push it onto stack (Line 16), and update c to the destination
of this edge accordingly (Line 17). Once we get to a node that
has no uncovered outgoing edge, the current test sequence is
complete and we set stop to True on Line 19. The current
stack makes one test sequence and we continue by generating
more sequences and adding them to T which is the test suite
and is the output of this algorithm. For instance, the first
test sequence that is generated is shown as T0 under No
Optimization in Table III. This Table displays the test suite
our greedy algorithm generates for the simplified model of

TABLE III: Test Sequences for Figure 3.

No Optimization

T0 = 〈hoursUp, hoursDown, minutesUp, minutesDown, secondsUp, secondsDown,
infoMenu, textBack, prefMenu, Back, donateMenu, textNo, startStop, startStop, DR〉
T1 = 〈infoMenu, Back〉 T2 = 〈infoMenu, DR〉
T3 = 〈prefMenu, DR〉 T4 = 〈donateMenu, Back〉
T5 = 〈donateMenu, DR〉 T6 = 〈startStop, DR〉
#Tests = 7, Cost(T) = 34

Prioritization Optimization On

T0 = 〈DR, hoursUp, hoursDown, minutesUp, minutesDown, secondsUp, secondsDown,
infoMenu, Back, prefMenu, Back, donateMenu, Back, startStop, DR, startStop〉
T1 = 〈infoMenu, DR, textBack〉 T2 = 〈prefMenu, DR〉
T3 = 〈donateMenu, DR, textNo〉
#Tests = 4, Cost(T) = 28

Prioritization and Truncation Optimizations On

T0 = 〈DR, hoursUp, hoursDown, minutesUp, minutesDown, secondsUp, secondsDown,
infoMenu, Back, prefMenu, Back, donateMenu, Back, startStop, DR〉
T1 = 〈infoMenu, DR〉 T2 = 〈prefMenu, DR〉
T3 = 〈donateMenu, DR〉
#Tests = 4, Cost(T) = 25

Kitchen Timer. The test suite has 7 tests at a total cost of 34,
with α and β both set to 1 in the cost function.

We introduce two optimizations to augment our basic
traversal algorithm. The first optimization called prioritiza-
tion, prioritizes golden edges whenever there are both golden
and regular (non-golden) uncovered edges going out of a
node, since the goal of the traversal algorithm is to cover
golden edges. To implement this optimization, the method
outGoing() in Algorithm 2 returns golden edges first. Ta-
ble III displays the output of the traversal algorithm with this
optimization incorporated. For example, at the beginning of
T0 under Prioritization Optimization On, when the golden
edge DR is available, it is taken before any other edge. This
optimization makes the test suite smaller and decreases the
cost from 34 to 28.

The second optimization, called truncation, uses the obser-
vation that a test can be truncated after the last golden edge
it covers, and deleted if it covers no golden edges. Truncation
is applicable in a post-processing phase on any test suite.
Table III shows the result of combining both optimizations
(applying truncation on the result of prioritization optimiza-
tion) which makes the cost of the test suite go down to 25.

Once test sequences are generated, we insert oracles by
augmenting test sequences in two ways. Firstly, we auto-
matically add appropriate instrumentation before and after
relevant actions in test sequences, to dynamically record the
current view of each GUI state, as the test is being run.
Secondly, we automatically instantiate oracles Of from the
feature definitions to assert checks on the state views recorded
by the instrumentation.

E. Implementation
The QUANTUM tool embodies our approach. QUANTUM

currently supports testing of the following features4: rotation,
killing and restarting, pausing and resuming, and Back button.
There are four key steps in using QUANTUM.

Step 1: QUANTUM receives a (manually or automatically
generated) model of the application’s GUI as an XML file.
QUANTUM automatically adds golden edges for the currently

4Zooming in and out functionality is currently unavailable in JUnit and
Robotium frameworks, hence we did not include them in our tool.

189

supported set of features. Then, QUANTUM generates a graph-
ical representation of the GUI model using the dot program5

so that the user can visually validate the model. Figure 3 is a
sample graphical representation that QUANTUM generated.

Step 2: Once the model is validated, QUANTUM traverses
the model using traversal algorithms to generate test suites.
QUANTUM provides the following options for traversing the
model: (1) our algorithm described in Section IV-D and (2)
a basic Depth First Search algorithm (DFS) that covers all
edges to serve as a baseline for comparison. On top of our
traversal algorithm, each of the optimizations can be turned
on or off independently. By traversing the model, QUANTUM

generates a suite of JUnit6 tests. The tests use a combination
of Robotium7 and JUnit to interact with Android apps.

Step 3: In the generated test suite, QUANTUM automat-
ically inserts (1) instrumentation to record views of states,
and (2) oracles after exercising each golden edge. Recording
views of states can be done through various user-interfaces
provided by a mobile platform. We experimented with two
interfaces from the Android platform: Hierarchy Viewer8 and
taking graphical snapshots.

Hierarchy Viewer is a tool for debugging user-interfaces of
apps that displays the hierarchy and properties of items on the
screen. A programmatic interface is not available for Hierarchy
Viewer to be used by tests, so we implemented one using Java
reflection. The hierarchy and properties of items on the screen,
provided by the state view, are then compared by oracles.

Graphical snapshots are taken from inside JUnit tests and
are then compared using image processing. In the current
implementation of QUANTUM, snapshots of the states are
automatically recorded and the comparison is based on a
basic image differencing algorithm that uses the Red-Green-
Blue coloring system to compare images pixel by pixel and
allows for an adjustable threshold of difference. Since the
states are rendered on the same device and the same screen,
it is conceivable that basic image comparison might be good
enough. Indeed, taking graphical snapshots proved to be easier
to use than Hierarchy Viewer for the currently implemented
set of features, gave less false positives, and was faster.

Step 4: Now the test suite is complete and can be run
to test the app running on an Android device or emulator.
Each test case traverses and checks multiple golden edges.
After executing each test, a log is provided which contains
the result of checking each golden edge as Pass or Fail. In
addition, QUANTUM takes snapshots of the app and provides
them along with the expected snapshot for each failure. These
snapshots facilitate identifying false positives, evaluating the
severity of bugs, and debugging.

V. EVALUATION

We evaluated QUANTUM on 6 Android apps (3 apps from
previously studied apps and 3 apps from the apps we selected,
as discussed in Section II) to answer the following research
questions: (1) Can QUANTUM find bugs in real applications?
(2) How effective is QUANTUM in terms of the ratio of real
bugs to false positives (FP’s)? (3) How compact are the test
suites generated by QUANTUM?

5http://www.graphviz.org
6http://junit.org
7https://code.google.com/p/robotium
8http://developer.android.com/tools/help/hierarchy-viewer.html

TABLE IV: Bugs Automatically Found with QUANTUM.

Application #T
es

ts

#A
ss

er
tio

ns

#F
ai

lu
re

s

#F
P’

s

#B
ug

s

#D
is

tin
ct

FP
’s

#D
is

tin
ct

B
ug

s

Notepad (Version N/A) 8 22 7 4 3 2 2
OpenSudoku (Version 1.1.5) 7 22 9 4 5 2 3
Nexes Manager (Version 2.1.8) 15 67 11 3 8 2 7

VuDroid (Version 1.4) 6 16 3 0 3 0 2
Kitchen Timer (Version 1.1.6) 8 37 13 5 8 2 4
K9Mail (Version 4.317) 16 53 8 1 7 1 4

Total 60 217 51 17 34 9 22

A. RQ 1 and 2: Finding Real Bugs
Given manually created GUI models, we used QUANTUM

to automatically generate test suites. We first used our traversal
algorithm with both optimizations, along with the image pro-
cessing oracle. Then, we automatically executed the test suites
on a rooted Android emulator (running Android 4.3 API level
18 with an Intel Atom (x86) CPU, 512 MB of SD card, and
resolution WVGA800).

Table IV summarizes the results of finding bugs. #Tests
is the size of the test suite generated for each app using
our traversal algorithm with both truncation and prioritization
optimizations. Each test covers several golden edges and tests
multiple features, thereby generating compact test suites. #As-
sertions shows the total number of assertions in the test suite,
which is equal to the number of golden edges. #Failures is the
number of assertions that failed. We manually investigated the
failures and identified real bugs and false positives. Some of
these bugs or false positives were revealed more than once.
Therefore, we show the number of distinct false positives and
bugs in the last two columns.

QUANTUM found a total of 22 bugs in 6 apps. These
bugs included 12 rotation bugs, 1 killing and restarting bug, 5
pausing and resuming bugs, and 4 Back button bugs. Examples
of the bugs are as follows.

Pausing and resuming bug in K9Mail: The user finally
finds an email after searching the inbox for some time, but
while reading the email he receives a phone call (which pauses
K9Mail). After the phone call is over, K9Mail resumes, but
back to the inbox, requiring to perform the search again.

Killing and restarting bug in K9Mail: The operating
system decides to kill K9Mail because of low memory while
the user is composing an email. K9Mail fails to save the email
as a draft, deleting the contents of the email.

Rotation bug in Kitchen Timer: Explained in Section III.
Rotation bug in OpenSudoku: Rotating the device closes

the custom pop up for entering numbers and discards them.
Rotation bug in VuDroid: Rotation clears tab selection.
Rotation bug in Nexes Manager: If there is an empty

folder which has no permission (read, write, etc.), rotating the
device makes the folder icon disappear.

Back button bug in Kitchen Timer: Going to sub-menus
and coming back makes buttons go out of focus.

We found two of these bugs already reported and accepted
in the bug repositories of the corresponding apps. All the other
bugs were new. We reported these to the respective developers
and are awaiting confirmation of the bugs from them.

QUANTUM reported a total of 9 distinct false positives.

190

TABLE V: Compactness of Generated Test Suites.

Our Algorithm DFS
Basic + Trunc. + Prior. + Both

Application #T
es

ts

C
os

t

#T
es

ts

C
os

t

#T
es

ts

C
os

t

#T
es

ts

C
os

t

#T
es

ts

C
os

t

Notepad 15 73 11 59 12 65 8 44 35 114
OpenSudoku 13 85 10 67 9 67 7 51 30 138
Nexes Manager 38 200 24 149 26 174 15 127 97 354

VuDroid 8 41 7 38 7 40 6 36 17 57
Kitchen Timer 14 113 14 113 11 105 8 75 70 310
K9Mail 30 228 25 196 21 187 16 148 76 490

However, 4 of these false positives were because of an incon-
sistency in the Android testing instrumentation, which caused
it to act differently when paused programmatically (by tests) or
through the emulator GUI (when manually confirming bugs).
Another 2 false positives were because of time sensitivity of
some app states. For instance, when a timer is running in
Kitchen Timer, rotation changes timer values, not because there
is a bug, but rather because the state of a running timer changes
with time. Such time sensitivity is usually abstracted out from
the app’s GUI model to achieve conciseness. Another 2 false
positives manifested because if the app GUI provides a visual
back button on the screen, hitting this visual button and then
the hardware Back button does not take the app to the original
state. The remaining 1 false positive could be considered a
bug, depending on the intent of the app designer.

B. RQ 3: Compactness of Generated Test Suites
We compared our test generation algorithm to a baseline

DFS, in generating test cases that cover all golden edges. For
the set of implemented features (rotation, killing and restarting,
pausing and resuming, and Back button) we measured the
compactness of generated test suites in terms of the number
of tests and the cost of the test suite when generated by
each of the following algorithms: (1) Our basic algorithm;
(2) Our algorithm plus the truncation optimization, which
truncates test cases after the last golden edge and ignores test
cases that do not cover any golden edge; (3) Our algorithm
plus the prioritization optimization, which prioritizes golden
edges while traversing the model; (4) Our algorithm plus both
truncation and prioritization optimizations; and (5) A DFS
algorithm starting at the root.

Table V shows the experimental results. The cost function
is calculated with both α and β set to 1. As this table shows,
our algorithm shows a clear improvement over DFS, in terms
of the number of tests as well as the cost of executing test
suites. Furthermore, truncation and prioritization improve the
results when applied separately (except for Kitchen Timer, for
which truncation does not improve the number of tests or cost).
In some cases (Notepad, Nexes Manager, and VuDroid), trun-
cation yields better results compared to prioritization, while in
the other cases prioritization is more effective. Fortunately, the
optimizations are compatible and combinable and using both
of them produces even better results for all of the studied apps.

Threats to Validity: To minimize threats to internal valid-
ity, we automated the entire test generation and execution pro-
cess and manually identified real bugs from false positives. To
address external validity, we experimented with 7 previously
studied apps and set forth a criterion to choose 6 other popular
apps from open source repositories as discussed in Section II.
With respect to construct validity, we strictly followed our

traversal algorithm and oracle generation techniques, used
well-known frameworks Robotium and JUnit, and manually
investigated generated tests for some of the apps.

VI. RELATED WORK

Our work attempts to address the classic oracle prob-
lem [7], [23], in the context of mobile apps. In practice,
test oracles are typically specified manually, often at the
expense of substantial time and effort. There is a rich body
of work that aims to alleviate this long-standing problem
by automatically generating oracles. Software specification
mining or model inference techniques are often used for this
purpose. A comprehensive survey of API property inference
techniques by Robillard et al. describes many of these tech-
niques [22]. Automated oracle generation techniques usually
generate general purpose oracles for functional testing; they are
not specific to any platform or class of software applications or
any aspects of software behavior. However, a recent empirical
study by Nguyen et al. on the cost and effectiveness of
automated oracles concludes that their false positive rate is
often prohibitively high for practical use [18].

Our proposed technique does not automatically generate
general purpose oracles but rather falls into a related body
of work that uses manually created oracles based on domain
specific knowledge, that are appropriately instantiated dur-
ing testing and used to test very specific, sometimes non-
functional, aspects of software behavior. For example, the
TODDLER tool uses a hand-crafted oracle that detects repetitive
memory access patterns in loops to identify performance
bugs in software [19]. Our previous work used differential
testing [12] for oracle automation in the context of testing
web browser implementations [26] as well as detecting cross-
browser errors in web applications [4], i.e., discrepancies in
web application behavior across different web browsers, using
test oracles specifically designed for these domain-specific
applications of differential testing. Our work in this paper
exploits characteristics of mobile apps and the mobile platform
to design oracles for testing an important class of user-interface
features of mobile apps. Hu et al. also employ a specialized
oracle for testing Android mobile apps, which implements
and checks the Activity life-cycle specification9 for Android
apps [8]. However, this is one single oracle, whereas our
approach proposes an extensible framework that spans a whole
class of properties – user-interaction features.

There is a growing body of research focused on automated
testing of mobile applications. The proposed techniques span
the complete gamut of technologies from random testing [8],
[11], to symbolic-execution-based test-case generation [2],
[16], model-based testing, combinatorial testing, and combi-
nations thereof [17], [9]. However, the emphasis here is on
generating test sequences to maximize code coverage, for
the purpose of functional testing. The oracle problem is not
directly addressed in these papers. It is implicit that the oracles
would either be manually specified or use the simple oracle
corresponding to catastrophic failure when the application
crashes, hangs or otherwise throws an exception. By contrast,
the focus of our approach is precisely to address the oracle
problem, for a class of non-functional and platform-specific
features of mobile apps.

9http://developer.android.com/training/basics/activity-lifecycle/index.html

191

Our approach to test sequence generation falls under the
broad area of model-based testing. The model may be manu-
ally specified or automatically extracted from the application
under test. In fact there is a rich and active body of work
on reverse-engineering such models from the user-interface
of GUI applications [13], web applications [15], and more
recently, mobile applications [1], [10], [25]. However, our
approach is independent of the method used to produce the
model and is therefore orthogonal to these techniques.

The aim of model-based test sequence generation is to
extract a suite of concrete test cases based on the behavior
represented in the model. Most techniques in this category
do this by heuristically solving some variant of the NP-Hard
minimum path cover problem [20], typically guided by some
supporting analysis and test suite sufficiency criteria. Memon
et al. propose several test adequacy criteria for GUI testing
based on coverage of events and event-sequences in the GUI
model [14]. Arlt et al. use a lightweight static analysis to
compute data dependencies between event-handlers of a GUI
application and use that to guide the choice of test sequences
from the GUI model [3]. Ganov et al., on the other hand,
focus on the problem of generating suitable values for the
input parameters of abstract test sequences extracted from
a GUI model and employ symbolic execution to compute
these parameter values [5]. Nguyen et al. address the same
problem by using combinatorial testing techniques to embed
user-specified data values into abstract test sequences [17]. The
aim of all the above techniques is functional testing of the
application and, more specifically, to extract test cases which
maximize coverage of the application code. By contrast, our
test sequence generation is intended to exhaustively exercise a
set of platform-specific user-interaction features. This leads to
different test targets, cost-functions and ultimately a different
set of model traversal algorithms than those by pure functional
testing approaches.

VII. CONCLUSION

In this paper we presented a novel approach for automati-
cally generating test cases, complete with test oracles, for mo-
bile apps. It was motivated by a comprehensive study that we
conducted of real defects in mobile apps. Through this study
we identified a class of features called user-interaction features,
which were implicated in a significant fraction of bugs and for
which oracles could be constructed, in an application agnostic
manner, based on our common understanding of how apps
behave. Our approach, as embodied by our tool QUANTUM,
includes an extensible framework that supports such domain
specific, yet application agnostic, test oracles, and automati-
cally generates a compact suite of test sequences, including test
oracles, to comprehensively test the user-interaction features
of a given mobile app. Our initial experimental evaluation
of QUANTUM on 6 open-source Android apps was quite
promising: QUANTUM found a total of 22 bugs, a few of
them particularly serious, using a total of 60 tests for these
6 apps. For future work we would like to augment the set of
oracles currently supported by QUANTUM, evaluate it more
extensively on a larger set of apps, and explore the possibility
of extending our basic oracle generation approach beyond the
set of user-interaction features reported in this work.

ACKNOWLEDGMENT

We thank Guowei Yang for detailed discussions and com-
ments on this work. This work was funded in part by the
Fujitsu Labs of America (SRA No. UTA12-001194) and the
National Science Foundation (NSF Grant Nos. CCF-0845628
and CNS-1239498).

REFERENCES

[1] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and
A. M. Memon. Using GUI ripping for automated testing of Android
applications. In ASE, 2012.

[2] S. Anand, M. Naik, M. J. Harrold, and H. Yang. Automated concolic
testing of smartphone apps. In FSE, 2012.

[3] S. Arlt, A. Podelski, C. Bertolini, M. Schäf, I. Banerjee, and A. M.
Memon. Lightweight static analysis for GUI testing. In ISSRE, 2012.

[4] S. R. Choudhary, M. Prasad, and A. Orso. X-PERT: Accurate identifi-
cation of cross-browser issues in web applications. In ICSE, 2013.

[5] S. R. Ganov, C. Killmar, S. Khurshid, and D. E. Perry. Event listener
analysis and symbolic execution for testing GUI applications. In
ICFEM, 2009.

[6] J. Goodenough and S. Gerhart. Toward a theory of test data selection.
TSE, (2):156–173, 1975.

[7] W. E. Howden and E. Miller. Introduction to the Theory of Testing.
1978.

[8] C. Hu and I. Neamtiu. Automating GUI testing for Android applica-
tions. In AST, 2011.

[9] C. S. Jensen, M. R. Prasad, and A. Møller. Automated testing with
targeted event sequence generation. In ISSTA, 2013.

[10] M. E. Joorabchi and A. Mesbah. Reverse engineering iOS mobile
applications. In WCRE, 2012.

[11] A. Machiry, R. Tahiliani, and M. Naik. Dynodroid: An input generation
system for android apps. In FSE, 2013.

[12] W. McKeeman. Differential testing for software. Digital Technical
Journal, 10(1):100–107, 1998.

[13] A. M. Memon, I. Banerjee, and A. Nagarajan. GUI ripping: Reverse
engineering of graphical user interfaces for testing. In WCRE, 2003.

[14] A. M. Memon, M. L. Soffa, and M. E. Pollack. Coverage criteria for
GUI testing. In FSE, 2001.

[15] A. Mesbah, A. van Deursen, and S. Lenselink. Crawling ajax-based web
applications through dynamic analysis of user interface state changes.
TWEB, 6(1):3:1–3:30, 2012.

[16] N. Mirzaei, S. Malek, C. S. Pasareanu, N. Esfahani, and R. Mahmood.
Testing Android apps through symbolic execution. Software Engineer-
ing Notes, 37(6):1–5, 2012.

[17] C. D. Nguyen, A. Marchetto, and P. Tonella. Combining model-based
and combinatorial testing for effective test case generation. In ISSTA,
2012.

[18] C. D. Nguyen, A. Marchetto, and P. Tonella. Automated oracles: an
empirical study on cost and effectiveness. In FSE, 2013.

[19] A. Nistor, L. Song, D. Marinov, and S. Lu. Toddler: detecting
performance problems via similar memory-access patterns. In ICSE,
2013.

[20] S. C. Ntafos and S. L. Hakimi. On path cover problems in digraphs
and applications to program testing. TSE, 5(5):520–529, 1979.

[21] M. Pezzè and M. Young. Software testing and analysis - process,
principles and techniques. 2007.

[22] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and T. Ratchford.
Automated API property inference techniques. TSE, 39(5):613–637,
2013.

[23] E.J. Weyuker. The oracle assumption of program testing. In ICSS, 1980.

[24] L. Williamson. A mobile application development primer: A guide for
enterprise teams working on mobile application projects. IBM Software
Thought Leadership White Paper, 2013.

[25] W. Yang, M. R. Prasad, and T. Xie. A grey-box approach for automated
GUI-model generation of mobile applications. In FASE, 2013.

[26] R. Nokhbeh Zaeem and S. Khurshid. Test input generation using
dynamic programming. In FSE, 2012.

192

