
7. Test-Adequacy
Assessment Using Control Flow and Data Flow

Andrea Polini

Advanced Topics on Software Engineering – Software Testing
MSc in Computer Science

University of Camerino

(ATSE) 7. Test-Adequacy CS@UNICAM 1 / 34

What is test adequacy?
It is necessary to know if the system has been tested thoroughly. The question is:

Is test suite T good enough?

Correspondingly this requires to define an adequacy criterion to make the assessment

Two different classes of criteria - to combine

I Black-box: based on models and requirements
I White-box: based on code

Example

Consider a program P developed to satisfy a set of requirements (P,R)

R1: Input two integers, x , y , from the standard input device

R2: Find and print to the standard output the sum if x < y

R3: Find and print to the standard output the product of the two numbers if x ≥ y

C: A test T for program (P,R) is considered adequate if for each requirement r in
R there is at least one test case in T that tests the correctness of P with respect
to r

(ATSE) 7. Test-Adequacy CS@UNICAM 2 / 34

What is test adequacy?
It is necessary to know if the system has been tested thoroughly. The question is:

Is test suite T good enough?

Correspondingly this requires to define an adequacy criterion to make the assessment

Two different classes of criteria - to combine

I Black-box: based on models and requirements
I White-box: based on code

Example

Consider a program P developed to satisfy a set of requirements (P,R)

R1: Input two integers, x , y , from the standard input device

R2: Find and print to the standard output the sum if x < y

R3: Find and print to the standard output the product of the two numbers if x ≥ y

C: A test T for program (P,R) is considered adequate if for each requirement r in
R there is at least one test case in T that tests the correctness of P with respect
to r

(ATSE) 7. Test-Adequacy CS@UNICAM 2 / 34

What is test adequacy?
It is necessary to know if the system has been tested thoroughly. The question is:

Is test suite T good enough?

Correspondingly this requires to define an adequacy criterion to make the assessment

Two different classes of criteria - to combine

I Black-box: based on models and requirements
I White-box: based on code

Example

Consider a program P developed to satisfy a set of requirements (P,R)

R1: Input two integers, x , y , from the standard input device

R2: Find and print to the standard output the sum if x < y

R3: Find and print to the standard output the product of the two numbers if x ≥ y

C: A test T for program (P,R) is considered adequate if for each requirement r in
R there is at least one test case in T that tests the correctness of P with respect
to r

(ATSE) 7. Test-Adequacy CS@UNICAM 2 / 34

Adequacy criteria push the improvements of test sets
begin
int x,y;
int product, count;
input(x,y);
if (y >= 0) {

product = 1; count = y;
while (count > 0) {
product = product * x;
count = count - 1;

}
output(product);

}
else

output("Input does not match its specification");
}

Criteria

C1: A test set is considered adequate if it tests the program for at least one
zero and one nonzero value of each of the two inputs x and y

C2: A test set is considered adequate if it tests all paths. In case the
program contains a loop, then it is adequate to traverse the loop body
zero times and once.

It is clearly possible that some criteria could be infeasible given P structure
(ATSE) 7. Test-Adequacy CS@UNICAM 3 / 34

Criteria based on control flow

Statement coverage
The statement coverage of T with respect to (P,R) is computed as
|Sc |/(|Se| − |Si |) where Sc is the set of statements covered, Si the set
of unreachable statements, and Se the set of statements in the
program, that is the coverage domain. T is considered adequate with
respect to the statement coverage criterion if the statement coverage
of T with respect to (P,R) is 1.

Block coverage
The block coverage of T with respect to (P,R) is computed as
|Bc |/(|Be| − |Bi |) where Bc is the set of blocks covered, Bi the set of
unreachable blocks, and Be the blocks in the program, that is the block
coverage domain. T is considered adequate with respect to the block
coverage criterion if the block coverage of T with respect to (P,R) is 1.

(ATSE) 7. Test-Adequacy CS@UNICAM 4 / 34

Conditions and decisions
Conditions can be classified as simple or compound
Conditions are generally used to define decision points
A decision is covered if the flow has been diverted to all possible destinations

Decision Coverage

The decision coverage of T with respect to (P,R) is computed as |Dc |/(|De| − |Di |)
where Dc is the set of decisions covered, Di the set of unfeasible decision, and De the
set of decision in the program, that is the decision coverage domain. T is considered
adequate with respect to the decision coverage criterion if the decision coverage of T
with respect to (P,R) is 1.
To be considered are peculiarities related to the switch statements

Condition Coverage

The condition coverage of T with respect to (P,R) is computed as |Cc |/(|Ce| − |Ci |)
where Cc is the set of simple conditions covered, Di the set of unfeasible simple
conditions, and Ce is the set of simple conditions in the program, that is the condition
coverage domain. T is considered adequate with respect to the decision coverage
criterion if the decision coverage of T with respect to (P,R) is 1.

(ATSE) 7. Test-Adequacy CS@UNICAM 5 / 34

Condition vs. decision coverage

Condition coverage does not guarantee decision coverage and
viceversa

Condition/decision coverage
The condition/decision coverage of T with respect to (P,R) is computed
as (|Cc |+ |Dc |)/((|Ce| − |Ci |) + (|De| − |Di |)) where variable as defined
as before. T is considered adequate with respect to the
condition/decision coverage criterion if the condition/decision coverage
of T with respect to (P,R) is 1.

(ATSE) 7. Test-Adequacy CS@UNICAM 6 / 34

Example

Consider a program that takes in input two integers x and y, and returns an integer z
according to the following table:

x<0 y<0 output(z)
true true foo1(x,y)
true false foo2(x,y)
false true foo2(x,y)
false false foo1(x,y)

Apply the test suite T = {t1 :< x = −3, y = −2 >, t2 :< x = −4, y = 2 >} to the
program below
begin
int x,y,z;
input(x,y);
if (x<0 and y<0)
z=foo1(x,y);

else
z=foo2(x,y);

output(z);
end

(ATSE) 7. Test-Adequacy CS@UNICAM 7 / 34

Multiple Condition Coverage

This criterion aims at assessing the software with all possible
combinations of simple conditions constituting a compound condition

Multiple condition coverage
The multiple condition coverage of T with respect to (P,R) is computed
as |Cc |/(|Ce| − |Ci |) where |Cc | denotes the set of combinations
covered, |Ci | denotes the set of infeasible simple combinations, and
|Ce| is the total number of combinations in the program. T is
considered adequate with respect to the multiple-condition coverage
criterion if the multiple-condition coverage of T with respect to (P,R) is
1.

Let’s consider a code composed of n decisions each one including Ki
with i ∈ [1 · · · n] simple conditions. In case all of them are feasible
which is the total number of possible combinations?

(ATSE) 7. Test-Adequacy CS@UNICAM 8 / 34

Example

Consider a program that takes in input three integers A, B and C, and returns a value S
according to the following table:

A<B A>C S
true true f1(A,B,C)
true false f2(A,B,C)
false true f3(A,B,C)
false false f4(A,B,C)

Apply the test suite T = {t1 :< A = 2,B = 3,C = 1 >, t2 :< A = 2,B = 1,C = 3 >} to
the program below
begin
int A,B,C,S=0;
input(A,B,C);
if (A<B and A>C) S=f1(A,B,C);
if (A<B and A>=C) S=f2(A,B,C);
if (A>=B and A<=C) S=f4(A,B,C);
output(S);

end

(ATSE) 7. Test-Adequacy CS@UNICAM 9 / 34

Modified Condition/Decision Coverage – MC/DC

I Combinations necessary to satisfy the Multiple Condition
Coverage is generally too big.

I MC/DC allows a coverage of all decisions and all conditions
avoiding the exponential explosion

I To derive the test set the idea is to identify those tuples which can
cover the two criteria without requiring a complete combinations of
values.

Let’s consider the compound condition (C1 ∧ C2) ∨ C3

(ATSE) 7. Test-Adequacy CS@UNICAM 10 / 34

Modified Condition/Decision Coverage – MC/DC

I Combinations necessary to satisfy the Multiple Condition
Coverage is generally too big.

I MC/DC allows a coverage of all decisions and all conditions
avoiding the exponential explosion

I To derive the test set the idea is to identify those tuples which can
cover the two criteria without requiring a complete combinations of
values.

Let’s consider the compound condition (C1 ∧ C2) ∨ C3

(ATSE) 7. Test-Adequacy CS@UNICAM 10 / 34

Modified Condition/Decision Coverage – MC/DC

I Combinations necessary to satisfy the Multiple Condition
Coverage is generally too big.

I MC/DC allows a coverage of all decisions and all conditions
avoiding the exponential explosion

I To derive the test set the idea is to identify those tuples which can
cover the two criteria without requiring a complete combinations of
values.

Let’s consider the compound condition (C1 ∧ C2) ∨ C3

(ATSE) 7. Test-Adequacy CS@UNICAM 10 / 34

Modified Condition/Decision Coverage – MC/DC

I Combinations necessary to satisfy the Multiple Condition
Coverage is generally too big.

I MC/DC allows a coverage of all decisions and all conditions
avoiding the exponential explosion

I To derive the test set the idea is to identify those tuples which can
cover the two criteria without requiring a complete combinations of
values.

Let’s consider the compound condition (C1 ∧ C2) ∨ C3

(ATSE) 7. Test-Adequacy CS@UNICAM 10 / 34

Definition of MC/DC coverage

The MC/DC criterion requires that:
Each block in P has been covered
Each simple condition in P has taken both true and false value
Each decision in P has taken all possible outcomes
Each simple condition within a compound condition C in P has
been shown to independently affect the outcome of C (limited to
the simple condition when it occurs more than once).

Measure
Measure the 4 different factors separately and for MC:

I MCc =
ΣN

i=1ei

ΣN
i=1(ni−fi)

where ni number of simple conditions, ei single conditions for which independent
effects have been shown, fi number of infeasible conditions.

(ATSE) 7. Test-Adequacy CS@UNICAM 11 / 34

MC/DC vs. Multiple conditions

n Multiple Condition MC/DC Multiple Condition MC/DC
1 2 2 2ms 2ms
4 16 5 16ms 5ms
8 256 9 256ms 9ms
16 65536 17 65.6s 17ms
32 4294967296 33 49.5 days 33ms

(ATSE) 7. Test-Adequacy CS@UNICAM 12 / 34

Example

Consider a program conceived to satisfy the following requirements:

R1: Given coordinate position x, y, and z, and a direction value d , the program must
invoke one of the three functions fire-1, fire-2, and fire-3 as per
conditions below:

R1,1: Invoke fire-1 when (x<y and (z*z>y) and (prev=”East”) where
prev and current denote, respectively, the previous and current
values of d .

R1,2: Invoke fire-2 when (x<y) and (z*z≤y) or (current=”South”)
R1,3: Invoke fire-3 when none of the two conditions above is true

R2: The invocation described above must continue until an input Boolean variable
becomes true

let’s generate test satisfying the conditions and let’s analyze the covered decision

(ATSE) 7. Test-Adequacy CS@UNICAM 13 / 34

Code

begin
float x,y,z; direction d; string prev,current; bool done;
input(done); current =’North’;
while(!done) {
input(d); prev=current;current=f(d); input(x,y,z);
if ((x<y) and (z*z>y) and (prev==’East’))
fire-1(x,y);

else if ((x<y) and (z*z <= y) or (current == ’South’))
fire-2(x,y);

else
fire-3(x,y); input(done);

}
output(’Firing completed’);
end

(ATSE) 7. Test-Adequacy CS@UNICAM 14 / 34

I generate tests to meet the requirements (4 tests generated)

Test Req. done d x y z
t1 R1,2 false East 10 15 3
t2 R1,1 false South 10 15 4
t3 R1,3 false North 10 15 5
t4 R2 true

I Which kind of coverage criteria are satisfied by the test set?
I Cover x < y to get condition coverage?
I What about Multiple Condition Coverage?
I What about MC/DC?

(ATSE) 7. Test-Adequacy CS@UNICAM 15 / 34

I generate tests to meet the requirements (4 tests generated)

Test Req. done d x y z
t1 R1,2 false East 10 15 3
t2 R1,1 false South 10 15 4
t3 R1,3 false North 10 15 5
t4 R2 true

I Which kind of coverage criteria are satisfied by the test set?
I Cover x < y to get condition coverage?
I What about Multiple Condition Coverage?
I What about MC/DC?

(ATSE) 7. Test-Adequacy CS@UNICAM 15 / 34

I generate tests to meet the requirements (4 tests generated)

Test Req. done d x y z
t1 R1,2 false East 10 15 3
t2 R1,1 false South 10 15 4
t3 R1,3 false North 10 15 5
t4 R2 true

I Which kind of coverage criteria are satisfied by the test set?
I Cover x < y to get condition coverage?
I What about Multiple Condition Coverage?
I What about MC/DC?

(ATSE) 7. Test-Adequacy CS@UNICAM 15 / 34

I generate tests to meet the requirements (4 tests generated)

Test Req. done d x y z
t1 R1,2 false East 10 15 3
t2 R1,1 false South 10 15 4
t3 R1,3 false North 10 15 5
t4 R2 true

I Which kind of coverage criteria are satisfied by the test set?
I Cover x < y to get condition coverage?
I What about Multiple Condition Coverage?
I What about MC/DC?

(ATSE) 7. Test-Adequacy CS@UNICAM 15 / 34

Tracing test cases to requirements

Enhancing a test set we should understand what portions of the
requirements are tested when the program under test is executed
against the newly added test case?

Trace back test to requirements is useful when they need to be
modified

(ATSE) 7. Test-Adequacy CS@UNICAM 16 / 34

Data Flow concepts

Criteria considered so far are based on the control flow
it is possible to conceive adequacy criteria based on data flow
characteristics

Consider the following program:

begin
int x,y; float z;
input(x,y);
z=0;
if (x!=0) z=z+y;
else z=z-y;

if (y!=0) z=z/x // Should be (y!=0 and x!=0)
else z=z*x;

output(z);
end

An MC/DC test set could not reveal the error while a test set based on definition and
usage of variables would have been able

(ATSE) 7. Test-Adequacy CS@UNICAM 17 / 34

Data Flow concepts

Criteria considered so far are based on the control flow
it is possible to conceive adequacy criteria based on data flow
characteristics

Consider the following program:

begin
int x,y; float z;
input(x,y);
z=0;
if (x!=0) z=z+y;
else z=z-y;

if (y!=0) z=z/x // Should be (y!=0 and x!=0)
else z=z*x;

output(z);
end

An MC/DC test set could not reveal the error while a test set based on definition and
usage of variables would have been able

(ATSE) 7. Test-Adequacy CS@UNICAM 17 / 34

Data flow criteria

I Data flow criteria based on two main concepts:

Definitions – points in which a variable is defined (e.g.
assignements, input statements)
Uses – points in which a variable is accessed

computational usage - c-use
predicate usage - p-use

input(x,y); z=0;
z = x+1
A[x-1]=B[2];
foo(x*x);
output(z);
if (z>0) output(x);
if (A[x+1]>0) output(x);

(ATSE) 7. Test-Adequacy CS@UNICAM 18 / 34

Global and Local

Variables can be defined in a block, used and redefined (killed) within
the same block:

I p = y+z; x = p+1; p = z*z;

Definition and use of variables can be referred to:
local
global

(ATSE) 7. Test-Adequacy CS@UNICAM 19 / 34

Data Flow Graph

A data-flow graph of a program (aka def-use graph) captures the flow
of definitions across the basic blocks constituting the program. The
graph can be constructed in the following way:

1 Construct defi , c − usei , p − usei for each basic block i in P
2 Associate each node i in N with defi , c − usei , p − usei

3 For each node i that has a non empty p − use set and ends in
condition C, associate edges (i , j) and (i , k) with C and !C,
respectively.

(ATSE) 7. Test-Adequacy CS@UNICAM 20 / 34

Data flow graph

begin
int x,y,z;
input(x,y); z=0;
if (x<0 and y<0) {
z=x*x;
if (y>=0) z=z+1; }

else z=x*x*x;
output(z);

end

(ATSE) 7. Test-Adequacy CS@UNICAM 21 / 34

Example
Let’s build a def-use graph for the following program:

begin
float x,y,z=0.0; int count; input (x,y,count);
do {
if (x<=o) {
if (y>= 0 {

z=y*z+1;
}

} else { z= 1/x; }
y=x*y+z; count = count -1;

} while (count > 0)
output(z);

end

def-clear paths

A def-clear path for a variable x is a path from a definition of the variable to a usage
without further definitions in the intermediate node of the path

(ATSE) 7. Test-Adequacy CS@UNICAM 22 / 34

(ATSE) 7. Test-Adequacy CS@UNICAM 23 / 34

Data coverage

c-use coverage
p-use coverage
all-uses coverage

(ATSE) 7. Test-Adequacy CS@UNICAM 24 / 34

Definition and use

Variables are defined by assigning values to them and are used in
expressions and conditions within a program

Let’s consider the following examples:
I z = &x;

I y = z+1;

I *z = 25;

I y = *z+1;

(ATSE) 7. Test-Adequacy CS@UNICAM 25 / 34

C-use and p-use

Computational use (c-use)
I z = x+1;

I A[x-1] = B[2];

I foo(x*x);

I output(x);

Predicate use (p-use)
I if (z>0) {output(x)};

I while (z>x) { ...};

I if (A[x+1]>0) {output(x)};

(ATSE) 7. Test-Adequacy CS@UNICAM 26 / 34

Def-use pairs

A def-use pair is constituted by a couple of nodes in which a variable is
defined in the first node and used in the second one. Two different
possibilities:

I dcu – this is a set of nodes that given a variable x and its
definition in a node i (di(x)) includes all node j such that it exists
uj(x) and there is a def-clear path from i to j for x (also indicated
as dcu(x , i))

I dpu: similarly but considering uses that occur within predicates
(also indicated as dpu(x , i))

Let’s compute the sets for the program shown before.

(ATSE) 7. Test-Adequacy CS@UNICAM 27 / 34

def-use chains

The def-use pair can be extended to a sequence of alternating
definitions and uses of variables. This is know as def-use chain where
the nodes in the sequence are distinct (aka k-dr interaction where k
denotes the length of the chain.

(ATSE) 7. Test-Adequacy CS@UNICAM 28 / 34

Adequacy criteria for data-flow

Given the total number of c-uses (CU) and p-uses (PU) for all variable
definitions we can define different coverage criteria for data-flow.

CU = Σn
i=1Σdi

j=1|dcu(vi ,nj)|
PU = Σn

i=1Σdi
j=1|dpu(vi ,nj)|

where v = {v1, v2, . . . , vn} is the set of variables in a program and
n = {n1,n2, . . . ,nk} is the set of blocks in the same program

(ATSE) 7. Test-Adequacy CS@UNICAM 29 / 34

Coverage

C-use coverage

The c-use coverage of T with respect to (P,R) is computed as:

CUc
CU−CUf

where CUc is the number of c-uses covered and CUf the number of infeasible c-uses.
T is considered adequate with respect to the c-use coverage criterion if its c-use
coverage is 1.

P-use coverage

The p-use coverage of T with respect to (P,R) is computed as:

PUc
PU−PUf

where PUc is the number of p-uses covered and PUf the number of infeasible p-uses.
T is considered adequate with respect to the p-use coverage criterion if its p-use
coverage is 1.

(ATSE) 7. Test-Adequacy CS@UNICAM 30 / 34

Coverage

C-use coverage

The c-use coverage of T with respect to (P,R) is computed as:

CUc
CU−CUf

where CUc is the number of c-uses covered and CUf the number of infeasible c-uses.
T is considered adequate with respect to the c-use coverage criterion if its c-use
coverage is 1.

P-use coverage

The p-use coverage of T with respect to (P,R) is computed as:

PUc
PU−PUf

where PUc is the number of p-uses covered and PUf the number of infeasible p-uses.
T is considered adequate with respect to the p-use coverage criterion if its p-use
coverage is 1.

(ATSE) 7. Test-Adequacy CS@UNICAM 30 / 34

Coverage’s

All-uses coverage

The all-uses coverage of T with respect to (P,R) is computed as:

CUc +PUc
(CU+PU)−(CUf +PUf)

where CUc and PUc are the number of c-uses and p-uses covered respectively. CUf

and PUf are the number of infeasible c-uses and p-uses respectively. T is considered
adequate with respect to the all-uses coverage criterion if its all-uses coverage is 1.

k-dr chain coverage

For a given K ≥ 2 the kdr(k) coverage of T with respect to (P,R) is computed as:

Ck
c

Ck−Ck
f

where Ck
c is the number of k-dr interactions covered, Ck is the number of elements in

K-dr(k), and Ck
f the number of infeasible interactions in k.dr(k). T is considered

adequate with respect to the kdr(k)coverage criterion if its k-dr(k) coverage is 1.

(ATSE) 7. Test-Adequacy CS@UNICAM 31 / 34

Coverage’s

All-uses coverage

The all-uses coverage of T with respect to (P,R) is computed as:

CUc +PUc
(CU+PU)−(CUf +PUf)

where CUc and PUc are the number of c-uses and p-uses covered respectively. CUf

and PUf are the number of infeasible c-uses and p-uses respectively. T is considered
adequate with respect to the all-uses coverage criterion if its all-uses coverage is 1.

k-dr chain coverage

For a given K ≥ 2 the kdr(k) coverage of T with respect to (P,R) is computed as:

Ck
c

Ck−Ck
f

where Ck
c is the number of k-dr interactions covered, Ck is the number of elements in

K-dr(k), and Ck
f the number of infeasible interactions in k.dr(k). T is considered

adequate with respect to the kdr(k)coverage criterion if its k-dr(k) coverage is 1.

(ATSE) 7. Test-Adequacy CS@UNICAM 31 / 34

Control flow vs. Data Flow

The subsumes relation
A coverage criterion C1 subsumes a coverage criterion C2 iff
whenever the satisfaction of C1 implies the satisfaction of C2

Figure: The subsumes relationship among the studied coverage criterion

(ATSE) 7. Test-Adequacy CS@UNICAM 32 / 34

Mutation analysis - Ch. 8

Sketch of the idea
Mutation is a powerful strategy to assess the quality of test suites. The
approach is based on the generation of program mutants and on the
score got by a test suite in “killing” them.

(ATSE) 7. Test-Adequacy CS@UNICAM 33 / 34

Regression testing - Ch. 9

Sketch of the idea
Definition of strategies to select subset of test cases in a test suite in
order to test a system that has undergone a modification in order to
reduce the costs of testing obviously getting enough confidence on the
quality of the software.

(ATSE) 7. Test-Adequacy CS@UNICAM 34 / 34

