
6. Generation from Combinatorial Design

Andrea Polini

Advanced Topics on Software Engineering – Software Testing
MSc in Computer Science

University of Camerino

(ATSE) 6. Generation from Combinatorial Design CS@UNICAM 1 / 32



Combinatorial Design

I Configuration space: all possible settings of the environment
variable under which P could be used

I Input space: all possible values that can be taken by input
variables

Combination of hardwares, OSs, platforms etc. is generally referred to
as compatibility testing
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Combinatorial Design

Example
Consider a program P that takes two positive integers x , y as input,
and that is meant to be executed on the OSs Windows, Mac Os, and
Linux through Mozilla, Explorer or Chrome browsers. Which are the
Configuration and input spaces?

I factors: parameters possibly influencing program behaviour
I levels: values that can be assumed by a factor

I Factor combination leads to exponential growth
I test configuration is a static selection while test values

(parameters) are input provided to a running IOT
I it is in general not meaningful to combine input parameters and

the configuration space
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Combinatorial test-design process

Each factor combination may lead to one or more test cases where
each test case consists of values of input variables and the expected
output. Nevertheless, as usual the generation of all combinations is
generally not feasible
k factors with n level each lead to nk possible combinations
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Fault model

The approach we are going to discuss targets interaction faults
I interaction faults are triggered when a certain combination of t ≥ 1

parameter values causes the program containing the fault to enter
an invalid state

I faults triggered by some value of input variables regardless of the
values of other inputs variables are known as simple faults. When
t = 2 they are known as pairwise interaction faults. For arbitrary
value of t we refer to t-way interaction faults.
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Example - 1

Imagine a program that should return the value calculated by different
combinations of a couple of functions. In particular when x=x1 and y=y1 the
returned value should be f(x,y,z)+g(x,y) and f(x,y,z)-g(x,y) when
x=x2 and y=y2. Now consider the program:

begin
int x,y,z;
input(x,y,z);
if (x==x1 and y==y2)
output(f(x,y,z));

else
if (x==x2 and y==y1)

output(g(x,y));
else

output(f(x,y,z)+g(x,y));
end
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Example - 2

Let x , y ∈ {−1,0,1} and z ∈ {0,1}. Are there interaction faults that
can be discovered in the following code snippet?

begin
int x,y,z,p;
input(x,y,z);
p = (x+y)*z; // instead should be (x-y)*z
if (p >= 0)
output(f(x,y,z));

else
output(g(x,y));

end
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Fault vectors and Latin squares

I A fault vector is a k-uple of values for the factors of a program able
to trigger a fault. The vector is considered a t-fault vector if any
t ≤ k elements in V are needed to trigger the fault in P.

I A Latin Square of order n is an n × n matrix such that no symbol
appears more than once in a row and a column where the
alphabet set Σ as cardinality n.
e.g. Σ = {A,B} and Σ = {1,2,3}

Latin squares are a useful tool to derive factor combinations in a
smaller number with respect to brute force strategies
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Latin squares properties

Given a Latin square described by matrix M a large number of same
order matrices can be obtained through row and column interchange
and symbol-renaming operations
A latin square obtained by the mentioned operations is said to be
isomorphic to the starting latin square

A latin square can be easily derived using modulo arithmetic
M(i , j) = (i + j) mod k – where k is the order of the square
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Mutually orthogonal latin squares (MOLS)

MOLS
MOLS are a useful tool to generate t −wise vectors from latin squares.
Two latin squares are mutually orthogonal if their combination in a
matrix of the same order does not generate duplicates.
Let’s consider the case of two latin squares of order 3

MOLS(n) indicates a set of MOLS of order n. If n is prime MOLS(n)
contains n− 1 MOLS and it is referred as a complete set. MOLS exists
for each n > 2 ∧ n 6= 6

Let’s build the MOLS(5) set
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Pairwise design - binary factors

Let’s consider three factors X, Y, Z each one with two levels, and let’s generate a
pairwise design.

A set of combinations is balanced when each value occurs exactly the same number
of times
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Pairwise design - binary factors

Generalizing the problem on n factors each one having two levels.
I we need to define S2k−1 to be the set of strings of lenght 2k − 1 such that each

string has exactly k 1s. e.g. k = 3

1 2 3 4 5
1 0 0 1 1 1
2 0 1 1 1 0
3 1 1 1 0 0
4 1 0 1 1 0
5 0 1 1 0 1
6 1 1 0 1 0
7 1 0 1 0 1
8 0 1 0 1 1
9 1 1 0 0 1

10 1 0 0 1 1

(ATSE) 6. Generation from Combinatorial Design CS@UNICAM 12 / 32



The SAMNA procedure

Input: n - number of two-valued input variables (factors) Output: A set of factor
combinations such that all pairs of input values are covered

1 Compute the smallest integer k such that n ≤ |S2k−1|
2 Select any subset of n strings from S2k−1. Arrange these to form an n× (2k − 1)

matrix with one string in each row, while the columns contain different bits each
string

3 Append a columns of 0s to the end of each string selected
4 Each one of the 2k columns contain a bit pattern from which we generate a

combination is of the kind (X∗1 ,X
∗
2 , . . . ,X

∗
n ) where the value of each variable is

selected depending on whether the bit in column i , i ≤ i ≤ n is a 0 or a 1
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Example

Consider a simple Java applet named ChemFun that allows a user to
create an in-memory database of chemical elements and search for an
element.

Factor Name Levels Comments
1 Operation {Create,Show} Two buttons
2 Name {Empty,Nonempty} Data Field, String
3 Symbol {Empty,Nonempty} Data Field, String
4 Atomic Number {Invalid, Valid} Data Field, data > 0
5 Properties {Empty,Nonempty} Data Field, String

Testing for all combinations would require a total of 25 tests, but if we
are interested for testing for pairwise interactions we can reduce the
number of tests to 6.

(ATSE) 6. Generation from Combinatorial Design CS@UNICAM 14 / 32



Pairwise design for multivalued factors

In most practical cases factors can assume more than just two levels
I SAMNA cannot be applied
I MOLS(n) can be used to derive test set to satisfy the pairwise

criterion
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PDMOLS algorithm

Input: n - number of factors
Output: a test set satisfying the pairwise criterion

1 Label the factors as F1,F2, . . . ,Fn such that the following ordering constraint is
satisfied: |F1| ≥ |F2| ≥ . . . ≥ |Fn−1| ≥ |Fn|. Let b = |F1| and k = |F2|.

2 Prepare a table containing n columns and b × k rows divided into b blocks.
Label the columns as F1,F2, . . . ,Fn. Each block contains k rows.

3 Fill column F1 with 1s in block 1, 2s in block 2 and so on. Fill block 1 of columns
F2 with the sequence 1,2,. . . ,k.

4 Find s = n(k) MOLS of order k . Denote them as M1,M2, . . . ,Ms. Note that
s < k for k > 1.

5 Fill block 1 of column F3 with entries from column 1 of M1, block 2 with entries
from column 2 of M1, and so on. If the number of blocks b = b1 > k then reuse
columns of M1 to fill rows in the remaining b1 − k blocks. Repeat the procedure
for the remaining columns. If s < (n − 2) then fill columns by randomly selecting
the values.

6 Generate the test set from the rows of the resulting filled table.
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PDMOLS and combination constraints

In most real cases it is not meaningful/possible to use all the possible
tests generated according to PDMOLS.

If the factor X assumes level x than factor Y cannot assume level y

The AGTCS system
Factor Levels
F ′1:Hardware (H) PC Mac
F ′2:OS (O) Win2000 Win XP OS9 OS10
F ′3:Browser(B) Explorer Netscape 4.x Firefox Chrome
F ′4:PI(P) New Existing

How to handle constraints
The “PC” level is incompatible with “OSx” families.

The “Mac” level is incompatible with “Win OS” families.

there are invalid levels
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Consider a system that needs to be tested according to possible configurations given
by the combination of 6 different factors each one constituted by the following levels:

I A = {a1, a2, a3, a4}
I B = {b1, b2, b3}
I C = {c1, c2, c3, c4}
I D = {d1, d2, d3, d4}
I E = {e1, e2, e3}
I F = {f1, f2, f3}

Derive a test set according to the pairwise design using the most suitable approach
among the ones presented in the course. In the generation consider that there are
some constraints that have to be respected:

I factors D, E, F are strongly interrelated factors and among all the possible
configurations that are theoretically possible, only the following 3 should be
considered as real (d1, e1, f2), (d2, e2, f1), (d3, e3, f2).

I for factors A and B the levels a4 and b3 cannot be assumed together

(ATSE) 6. Generation from Combinatorial Design CS@UNICAM 18 / 32



MOLS shortcomings

A sufficient number of MOLS might not exist for the problem at
hand
MOLS assist with the generation of balanced design but the
number of configuration could be larger than necessary

To address such issues other approaches have been proposed:
Orthogonal arrays
Mixed-level orthogonal arrays
Covering arrays
Mixed-level covering arrays
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Orthogonal Arrays

Definition

An Orthogonal Array is an N × k matrix in which the entries are from a finite set S of s
symbols such that any N × t subarray contains each t-uple exactly the same number
of times. Such an orthogonal array is denoted by OA(N, k , s, t). The index of an
orthogonal array, denoted by λ, is equal to N/st .

When used in software testing:

each column corresponds to a factor

elements of cells to the levels for the corresponding factor

each row leads to a test case or test configuration
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Orthogonal Arrays

Example
The following is an orthogonal array with 4 runs and strength 2 –
OA(4,3,2,2):

Run F1 F2 F3
1 1 1 1
2 1 2 2
3 2 1 2
4 2 2 1

Orthogonal arrays assume that each factor assumes values from the
same set of s values. This is not generally the case and Mixed Level
Orthogonal Arrays can be used in such contexts.
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Mixed-level Orthogonal Arrays
Definition

A mixed-level orthogonal array is an N × n matrix in which the entries are from a finite
list of sets (factors) Fj (1 ≤ j ≤ n) each one including fj symbols (levels) such that any
N × t subarray contains each t-tuple exactly the same number of times.
A mixed-level orthogonal array is denoted by MA(N, sk1

1 , s
k2
2 , . . . , s

kp
p , t) indicating N

runs where ki factors (1 ≤ i ≤ p) have si levels (n = Σp
i=1ki )

e.g. MA(8, 24, 41, 2)

Run F1 F2 F3 F4 F5

1 1 1 1 1 1
2 2 2 2 2 1
3 1 1 2 2 2
4 2 2 1 1 2
5 1 2 1 2 3
6 2 1 2 1 3
7 1 2 2 1 4
8 2 1 1 2 4
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Exercise

The Pizza Delivery Service

Let’s consider the testing on an online Pizza Delivery Service (PDS). The service
behaviour is based on 4 factors (Size, Toppings, Address, Phone). Let’s immagine that
factors have the following levels:

Factor Levels
Size Large Medium Small
Toppings Custom Preset
Address Valid Invalid
Phone Valid Invalid

How can you derive a set fo tests satisfying the pairwise constraint?

Build a MA(??, 23, 31, 2)
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Covering Arrays

Introduced techniques produce balanced combitonatorial designs. On the other hand
for testing purpose this is not necessarily needed.

Definition

A Covering Array, denoted as CA(N, k , s, t) is an N × k matrix in which entries are
from a finite set S of s symbols such that each N × t subarray contains each possible
t-uple at least λ times. In this case we have an unbalanced design.

Definition

Mixed level covering arrays are analogous to mixed-level arrays permitting to factors to
assume levels for sets of different cardinality. A mixed-level covering array is an N × n
matrix in which the entries are from a finite list of sets (factors) Fj (1 ≤ j ≤ n) each one
including fj symbols (levels) such that any N × t subarray contains each t-tuple at least
once.
A mixed-level orthogonal array is denoted by MCA(N, sk1

1 , s
k2
2 , . . . , s

kp
p , t) indicating N

runs where ki factors (1 ≤ i ≤ p) have si levels (n = Σp
i=1ki )
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Covering Arrays

OA(8, 5, 2, 2)

Run F1 F2 F3 F4 F5

1 1 1 1 1 1
2 2 1 1 2 2
3 1 2 1 2 1
4 1 1 2 1 2
5 2 2 1 1 2
6 2 1 2 2 1
7 1 2 2 2 2
8 2 2 2 1 1

CA(6, 5, 2, 2)

Run F1 F2 F3 F4 F5

1 1 1 1 1 1
2 2 2 1 2 1
3 1 2 2 1 2
4 2 1 2 2 2
5 2 2 1 1 2
6 1 1 1 2 2

(ATSE) 6. Generation from Combinatorial Design CS@UNICAM 25 / 32



Covering Arrays

MA(12, 23, 3, 2)

Run S T A P
1 1 1 1 1
2 1 1 2 1
3 1 2 1 2
4 1 2 2 1
5 2 1 1 2
6 2 1 2 2
7 2 2 1 1
8 2 2 2 1
9 3 1 1 2

10 3 1 2 1
11 3 2 1 1
12 3 2 2 2

MCA(6, 23, 3, 2)

Run S T A P
1 1 1 1 1
2 2 2 1 2
3 3 1 2 2
4 1 2 2 2
5 2 1 2 1
6 3 2 1 1
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Generation of mixed-level covering arrays
IPO

The In-Parameter-Order (IPO) procedure permits the derivation of mixed-level
covering arrays for pairwise designs.

Let F1,F2, . . . ,Fn, a list of n ordered factors with q1, q2, . . . , qn levels respectively
Let D(Fi ) = {v1

i , v
2
i , . . . v

qi
i } domain of Fi and lets use vi to represents a generic

element of D(Fi ) (clearly it results |D(Fi )| = qi )

1: procedure IPO
Input: Number of factors and levels
Output: MCA

2: T = D(F1)×D(F2)
3: if n=2 then set MCA = T ; exit;
4: end if
5: for all Fk (k ∈ [3 . . . n]) do
6: [Horizontal Growth]
7: [Uncovered Pairs] compute the set U of all uncovered pairs
8: [Vertical Growth]
9: end for

10: end procedure
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Horizontal Growth

HG

Objective: Replace each partial run (v1, v2, . . . , vk−1) ∈ T with (v1, v2, . . . , vk−1, vk )
where vk is suitably selected from D(Fk ).

Let T = t1, t2, . . . , tm where |T | = m
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Horizontal Growth

1: procedure HORIZONTAL GROWTH
Input: T = {(v1, v2, . . . , vk−1)|vi ∈ Fi} and a factor Fk

Output: T ′ = {(v1, v2, . . . , vk )|(v1, v2, . . . , vk−1) ∈ T ∧ vk ∈ Fk}

2: AP =
k−1⋃
i=1

(Fi ×Fk )

3: Let T ′ = ∅ and c = min(m, qk )
4: for i=1 to c do t ′j = extend(ti , v j

k ),T ′ = T ′ ∪ t ′j ,AP = AP − pairs(t ′j )
5: end for
6: if c = m then return T ′
7: end if
8: for j=c+1 to m do Let AP ′ = ∅
9: for i=1 to qk do t ′ = (v1, v2, . . . , vk−1) ∈ T s.t. max(|AP ′′|)

10: where AP ′′ = {(vl , v i
k )|(vl , v i

k ) /∈ AP ∧ (1 ≤ l ≤ k − 1)}
11: if |AP ′′| > |AP ′| then AP ′ = AP ′′ and v ′ = v i

k
12: end if
13: end for
14: t ′j = extend(ti , v j

k ),T ′ = T ′ ∪ t ′j , AP = AP −AP ′
15: end for
16: end procedure
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Vertical Growth

VG

Objective: add runs to T so to cover the remaining uncovered pairs

In run (v1, v2, . . . , vi−1, ∗, vi+1, . . . , vk ) a “*” denotes a non care values for
parameter Fi

1: procedure VERTICAL GROWTH
Input: T = {(v1, v2, . . . , vk )|vi ∈ Fi} and U set of uncovered pairs
Output: T ′ such that all pairs are covered

2: T ′ = ∅
3: for all (vl , vk ) ∈ U s.t. 1 ≤ l ≤ (k − 1) do
4: if (∃v ′ = (v1, v2, . . . , vl−1, ∗, vl+1, . . . , vk ) ∈ T ′ then
5: T ′ = (T ′ − v ′) ∪ {(v1, v2, . . . , vl−1, vl , vl+1, . . . , vk )}
6: else T ′ = T ′ ∪ {(∗, ∗, . . . , ∗, vl , ∗, . . . , vk )}
7: end if
8: end for
9: For each run in T ′ replace any don’t care entry by an arbitrarly selected value

10: Return T ∪ T ′
11: end procedure
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Exercise

Mixed-level coverying arrays
Suppose you have three different factors A,B,C where factors A,C
can assume values in the sets {a1,a2,a3} and {c1, c2, c3} respectively,
while factor B can assume values in the set {b1,b2}. Derive
mixed-level coverying arrays for pairwise design for this configuration
space.
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