

5. Test Generation – Finite State Models

Andrea Polini

Advanced Topics on Software Engineering – Software Testing MSc in Computer Science University of Camerino

5. Test Generation - Finite State Models

CS@UNICAM 1/31

• • • • • • • • • • • • •

Models in the Design Phase

Design Phase

- Between the requirements phase and the implementation phase "The last you start the first you finish"
- Produce models in order to clarify requirements and to better formalize them
- Models can be the source of test set derivation strategies

Various modeling notations for behavioral specification of a software system have been proposed. Which to use depends on the system you are developing, and the aspects you would like to highlight:

- Finite State Machines
- Petri Nets
- Statecharts
- Message sequence charts

Finite State Machines

FSM

A finite state machine is a six-tuple $\langle \mathscr{X}, \mathscr{Y}, \mathscr{Q}, q_0, \delta, \mathscr{O} \rangle$ where:

- ▶ X: finite set of input symbols
- ▶ 𝒴: finite set of output symbols
- 2: finite set of states
- $q_0 \in \mathscr{Q}$: initial state
- δ : transition function ($\mathscr{Q} \times \mathscr{X} \to \mathscr{Q}$)
- \mathscr{O} : output function ($\mathscr{Q} \times \mathscr{X} \to \mathscr{Y}$)

Many possible extensions:

- Transition and output functions can consider strings
- Definiton of the set of accepting states $\mathscr{F} \subseteq \mathscr{Q}$
- Non determinism

< 回 > < 三 > < 三 >

Properties of FSM

Useful properties/concepts for test generation

- Completely specified (input enabled)
 - $\forall (q_i \in \mathscr{Q}, a \in \mathscr{X}) . \exists q_j \in \mathscr{Q} . \delta(q_i, a) = q_j$
- Strongly connected

• $\forall (q_i, q_j) \in \mathscr{Q} \times \mathscr{Q}. \exists s \in X^*. \delta^*(q_i, s) = q_j$

V-equivalence (distinguishable)

• Let M_1 and M_2 two FSMs. Let \mathscr{V} denote a set of non-empty string on the input alphabet \mathscr{X} , and $q_i \in \mathscr{Q}_1$ and $q_j \in \mathscr{Q}_2$. q_i and q_j are considered $\mathscr{V} - equivalent$ if $\mathscr{O}_1(q_i, s) = \mathscr{O}_2(q_j, s)$. If q_i and q_j are $\mathscr{V} - equivalent$ given any set $\mathscr{V} \subseteq \mathscr{X}^+$ than they are said to be equivalent ($q_i \equiv q_j$). If states are not equivalent they are said to be distinguishable.

Properties of FSM....cntd

Useful properties/concepts for test generation...cntd

- Machine equivalence
 - *M*₁ and *M*₂ are said to be *equivalent* if ∀q_i ∈ *Q*₁.∃q_j ∈ *Q*₂.q_i ≡ q_j and viceversa.
- k-equivalence
 - Let M_1 and M_2 two FSMs and $q_i \in \mathcal{Q}_1$ and $q_j \in \mathcal{Q}_1$ and $k \in \mathbb{N}$. q_i and q_j are said to be $\mathscr{K} - equivalent$ if they are $\mathscr{V} - equivalent$ for $\mathscr{V} = \{s \in X^+ | | s | \le k\}$
- Minimal machine
 - an FSM is considered *minimal* if the number of its states is less than or equal to any other *equivalent* FSM

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Conformance Testing

Conformance Testing

Relates to testing of communication protocols. It aims at assessing that an implementation of a protocol conform to its specification. Protocols generally specify:

- Control rules (FSM)
- Data rules

Developed techniques are equally applicable when the specification is refined into an FSM

The Testing Problem

FSM and Testing

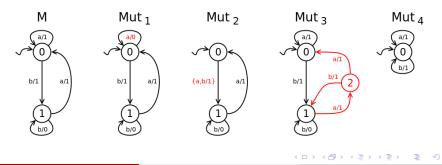
- Reset inputs ($\mathscr{X} = \mathscr{X} \cup \{Re\}$, and $\mathscr{Y} = \mathscr{Y} \cup \{null\}$)
- Testing based on requirements checks if the implementation conforms to the machine on a given requirement.
- The testing problem is reconducted to an equivalence (nevertheless finite experiments). Is the SUT (IUT) equivalent to the machine defined during design?
- Fault model for FSM given a fault model the challenge is to generate a test set *T* from a design *M_d* where any fault in *M_i* of the type in the fault model is guaranteed to be revealed when tested against *T*
 - Operation error (refers to issues with 𝒪)
 - Transfer error (refers to issues with δ)
 - Extra-state error (refers to issues with $\mathcal Q$ and δ)
 - Missing-state error (refers to issues with ${\mathscr Q}$ and $\delta)$

Mutation of FSMs

Mutant

A mutant of an FMS M_d is an FSM obtained by introducing one one or more errors one or more times.

Equivalent mutants: mutants that could not be distinguishable from the originating machine



5. Test Generation - Finite State Models

The Testing Problem

Fault coverage

Techniques to measure the goodness of a test set in relation to the number of errors that it reveals in a given implementation M_i .

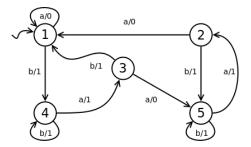
- *N_t*: total number of first order mutants of the machine M used for generating tests.
- ► *N_e*: Number of mutants that are equivalent to M
- N_f: Number of mutants that are distinguished by test set T generated using some test generation method.
- N_l : Number of mutants that are not distinguished by T

The fault coverage of a test suite T with respect to a design M is denoted by FC(T, M) and computed as follows:

 $FC(T, M) = \text{Number of mutants not distinguished by T / Number of mutants that are not equivalent to M} = (N_t - N_e - N_t)/(N_t - N_e)$

Characterization Set

Let $M = \langle \mathscr{X}, \mathscr{Y}, \mathscr{Q}, q_1, \delta, \mathscr{O} \rangle$ an FSM that is minimal and complete. A characterization set for M, denoted as \mathscr{W} , is a finite set of input sequences that distinguish the behaviour of any pair of states in M.



5. Test Generation - Finite State Models

CS@UNICAM 10/31

B + 4 B +

4 A N

The notion of \mathcal{K} – equivalence leads to the notion of \mathcal{K} – equivalence partitions.

Given an FSM a \mathscr{K} – equivalence partition of \mathscr{Q} , denoted by \mathscr{P}_k , is a collection of *n* finite sets of states denoted as $\Sigma_{k_1}, \Sigma_{k_2}, ..., \Sigma_{k_n}$ such that:

- ► $\cup_{i=1...n} \Sigma_{K_1} = \mathscr{Q}$
- ► States in Σ_{k_i} , for $1 \le j \le n$ are \mathcal{K} *equivalent*
- ► if $q_i \in \Sigma_{k_i}$ and $q_m \in \Sigma_{k_j}$, for $i \neq j$, then q_i and q_m must be \mathcal{K} *distinguishable*

 $\mathscr{K}-\textit{equivalence}$ partitions can be derived using an iterative approach for increasing number of \mathscr{K}

The notion of \mathcal{K} – equivalence leads to the notion of \mathcal{K} – equivalence partitions.

Given an FSM a \mathscr{K} – equivalence partition of \mathscr{Q} , denoted by \mathscr{P}_k , is a collection of *n* finite sets of states denoted as $\Sigma_{k_1}, \Sigma_{k_2}, ..., \Sigma_{k_n}$ such that:

► $\cup_{i=1...n} \Sigma_{K_1} = \mathscr{Q}$

► States in Σ_{k_i} , for $1 \le j \le n$ are \mathcal{K} – *equivalent*

► if $q_i \in \Sigma_{k_i}$ and $q_m \in \Sigma_{k_j}$, for $i \neq j$, then q_i and q_m must be \mathcal{K} – *distinguishable*

 $\mathscr{K}-\textit{equivalence}$ partitions can be derived using an iterative approach for increasing number of \mathscr{K}

How to derive *W* from K-equivalence partitions

- **1** Let M an FSM for which $P = \{P_1, P_2, ..., P_n\}$ is the set of k-equivalence partition. $\mathcal{W} = \emptyset$
- Provide the steps (a) through (d) given below for each pair of states (q_i, q_j), i ≠ j, in M
 - (a) Find *r* (1 ≤ *r* < *n* such that the states in pair (*q_i*, *q_j*) belong to the same group in *P_r* but not in *P_{r+1}*. If such an *r* is found then move to step (b) otherwise we find an η ∈ X such that *O*(*q_i*, η) ≠ *O*(*q_j*, η), set W = W ∪ {η} and continue with the next available pair of states. The length of the minimal distinguishing sequence for (*q_i*, *q_j*) is *r* + 1.
 - (b) Initialize $z = \epsilon$. Let $p_1 = q_i$ and $p_2 = q_j$ be the current pair of states. Execute steps (i) through (iii) given below for m = r, r - 1, ..., 1
 - (i) Find an input symbol η in P_m such that 𝒢(p₁, η) ≠ 𝒢(p₂, η). In case there is more than one symbol that satisfy the condition in this step, then select one arbitrarily.
 - (ii) set $z = z\eta$
 - (iii) set $p_1 = \delta(p_1, \eta)$ and $p_2 = \delta(p_2, \eta)$
 - (c) Find an $\eta \in \mathscr{X}$ such that $\mathscr{O}(p_1, \eta) \neq \mathscr{O}(p_2, \eta)$. Set $z = z\eta$
 - (d) The distinguishing sequence for the pair (q_i, q_j) is the sequence z. Set $\mathscr{W} = \mathscr{W} \cup \{z\}$

Example

Termination of the *# – procedure* guarantees the generation of distinguishing sequence for each pair.

S_i	S_i	X	$\mathcal{O}(S_i, x)$	$\mathcal{O}(S_j, x)$
1	2	baaa	1	0
1	3	aa	0	1
1	4	а	0	1
1	5	а	0	1
2	3	aa	0	1
2	4	а	0	1
2	5	а	0	1
3	4	а	0	1
3	5	а	0	1
4	5	aaa	1	0

Example

Termination of the *# – procedure* guarantees the generation of distinguishing sequence for each pair.

S_i	S_i	X	$\mathscr{O}(S_i, x)$	$\mathscr{O}(S_j, x)$
1	2	baaa	1	0
1	3	aa	0	1
1	4	а	0	1
1	5	а	0	1
2	3	aa	0	1
2	4	а	0	1
2	5	а	0	1
3	4	а	0	1
3	5	а	0	1
4	5	aaa	1	0

モトイモト

The W-Method aims at deriving a test set to check the implementation (Implementation Under Test - IUT) of an FSM model

Assumptions

- M is completely specified, minimal, connected, and deterministic
- M starts in a fixed initial states
- M can be reset to the initial state. A null output is generated by the reset
- M and IUT have the same input alphabet

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The W-Method aims at deriving a test set to check the implementation (Implementation Under Test - IUT) of an FSM model

Assumptions

- M is completely specified, minimal, connected, and deterministic
- M starts in a fixed initial states
- M can be reset to the initial state. A null output is generated by the reset
- M and IUT have the same input alphabet

< 回 > < 三 > < 三 >

Given an FSM $\mathcal{M} = \langle \mathcal{X}, \mathcal{Y}, \mathcal{Q}, q_0, \delta, \mathcal{O} \rangle$ the W-method consists of the following steps:

- Estimate the maximum number of states in the correct design
- 2 Construct the characterization set ${\mathscr W}$ for the given machine ${\mathscr M}$
- Construct the testing tree for *M* and determine the transition cover set *P*
- Construct set *L*
- **(**) $\mathscr{P} \cdot \mathscr{Z}$ is the desired test set

Computation of the transition cover set

𝒫 - transition cover set

Let q_i and q_j , $i \neq j$ be two states of \mathscr{M} . \mathscr{P} consists of sequences $s \cdot x$ s.t. $\delta(q_0, s) = q_i \wedge \delta(q_i, x) = q_j$ for $s \in \mathscr{X}^* \wedge x \in \mathscr{X}$. The set can be constructed using the testing tree for \mathscr{M} .

Testing tree

The testing tree for an FSM \mathcal{M} can be constructed as follows:

• State q_0 is the root of the tree

- Suppose that the testing tree has been constructed till level k. The $(k + 1)^{th}$ level is built as follows:
 - Select a node *n* at level *k*. If *n* appears at any level from 1 to k 1 then *n* is a leaf node. Otherwise expand it by adding branch from node *n* to a new node *m* if $\delta(n, x) = m$ for $x \in \mathscr{X}$. This branch is labeled as *x*.

・ロン ・日 ・ ・ ヨン ・ ヨン

Computation of the transition cover set

P - transition cover set

Let q_i and q_j , $i \neq j$ be two states of \mathscr{M} . \mathscr{P} consists of sequences $s \cdot x$ s.t. $\delta(q_0, s) = q_i \wedge \delta(q_i, x) = q_j$ for $s \in \mathscr{X}^* \wedge x \in \mathscr{X}$. The set can be constructed using the testing tree for \mathscr{M} .

Testing tree

The testing tree for an FSM \mathcal{M} can be constructed as follows:

- **()** State q_0 is the root of the tree
- Suppose that the testing tree has been constructed till level k. The $(k + 1)^{th}$ level is built as follows:
 - Select a node *n* at level *k*. If *n* appears at any level from 1 to k 1 then *n* is a leaf node. Otherwise expand it by adding branch from node *n* to a new node *m* if $\delta(n, x) = m$ for $x \in \mathscr{X}$. This branch is labeled as *x*.

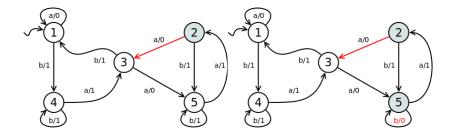
(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

The set \mathscr{Z}

Suppose number of states estimates to be *m* for the IUT, and *n* in the specification m > n. We compute \mathscr{Z} as: $\mathscr{Z} = (\mathscr{X}^0 \cdot \mathscr{W}) \cup (\mathscr{X} \cdot \mathscr{W}) \cup (\mathscr{X}^1 \cdot \mathscr{W}) \cdots \cup (\mathscr{X}^{m-1-n} \cdot \mathscr{W}) \cup (\mathscr{X}^{m-n} \cdot \mathscr{W})$

CS@UNICAM 17/31

Deriving a test set – $\mathscr{P} \cdot \mathscr{Z}$



Try sequences:

▶ baaaaaa

(ATSE)

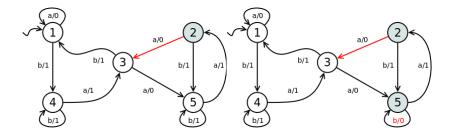
▶ baaba

CS@UNICAM 18/31

æ

イロト イヨト イヨト イヨト

Deriving a test set – $\mathscr{P} \cdot \mathscr{Z}$



Try sequences: baaaaaa
baaba

CS@UNICAM 18/31

э

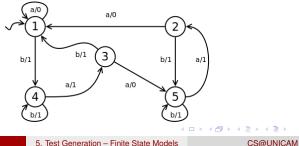
イロト イヨト イヨト イヨト

W-method fault detection rationale

• A test case generated by the \mathscr{W} – method is of the form $r \cdot s$ where $r \in \mathscr{P}$ and $s \in \mathscr{W}$

- Why can we detect operation errors?
- Why can we detect transfer errors?

 $\mathscr{P} = \{\epsilon, a, b, bb, ba, bab, baa, baab, baaa, baaab, baaaa\}$ $\mathcal{W} = \{a, aa, aaa, baaa\}$



19/31

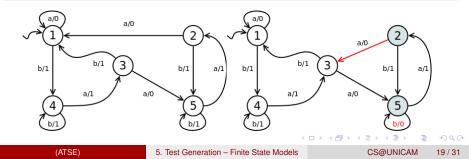
Test Generation – Finite State Models

W-method fault detection rationale

• A test case generated by the \mathscr{W} – method is of the form $r \cdot s$ where $r \in \mathscr{P}$ and $s \in \mathscr{W}$

- Why can we detect operation errors?
- Why can we detect transfer errors?

 $\mathscr{P} = \{\epsilon, a, b, bb, ba, bab, baa, baab, baaa, baaab, baaaa\}$ $\mathscr{W} = \{a, aa, aaa, baaa\}$

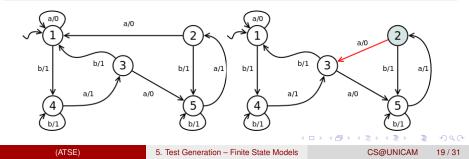


W-method fault detection rationale

• A test case generated by the \mathcal{W} – method is of the form $r \cdot s$ where $r \in \mathcal{P}$ and $s \in \mathcal{W}$

- Why can we detect operation errors?
- Why can we detect transfer errors?

 $\mathscr{P} = \{\epsilon, a, b, bb, ba, bab, baa, baab, baaa, baaab, baaaa\}$ $\mathscr{W} = \{a, aa, aaa, baaa\}$



The partial \mathcal{W} – method (aka Wp – method)

Wp – method

Main characteristics:

- It considers minimal, complete and connected FSM
- ► is inspired by the *W* − method it generates smaller test sets
- ► uses a derivation phase split in two phases that make use of state identification sets *W_i* instead of characterization set *W*
- uses the state cover set (\mathscr{S}) to derive the test set.

CS@UNICAM 20 / 31

< 日 > < 同 > < 回 > < 回 > < □ > <

Identification Set and State Cover Set

Identification Set

The Identification Set is associated to each state $q \in \mathcal{Q}$ of an FSM.

An Identification set for state $q_i \in \mathcal{Q}$, where $|\mathcal{Q}| = n$, is denoted by \mathcal{W}_i and has the following properties:

•
$$\mathscr{W}_i \subseteq \mathscr{W}$$
 per $1 < i \leq n$

$$\textbf{2} \hspace{0.1in} \exists j, s. 1 \leq j \leq n \wedge s \in \mathscr{W}_i \wedge \mathscr{O}(\boldsymbol{q}_i, s) \neq \mathscr{O}(\boldsymbol{q}_j, s)$$

3 No subset of \mathcal{W}_i satisfies property 2.

State Cover Set

The state cover set is a nonempty set of sequences ($\mathscr{S} \subseteq \mathscr{X}^*$ s.t.:

 $\blacktriangleright \forall q_i \in \mathcal{Q} \exists r \in \mathscr{S}s.t.\delta(q_0, r) = q_i$

From the definition it is evident that $\mathscr{S} \subseteq \mathscr{P}$

Identification Set and State Cover Set

Identification Set

The Identification Set is associated to each state $q \in \mathcal{Q}$ of an FSM.

An Identification set for state $q_i \in \mathcal{Q}$, where $|\mathcal{Q}| = n$, is denoted by \mathcal{W}_i and has the following properties:

•
$$\mathscr{W}_i \subseteq \mathscr{W}$$
 per 1 < $i \le n$

$$\textbf{2} \hspace{0.1in} \exists j, \textbf{s}. \textbf{1} \leq j \leq \textbf{\textit{n}} \land \textbf{\textit{s}} \in \mathscr{W}_i \land \mathscr{O}(\textbf{\textit{q}}_i, \textbf{\textit{s}}) \neq \mathscr{O}(\textbf{\textit{q}}_j, \textbf{\textit{s}})$$

3 No subset of \mathcal{W}_i satisfies property 2.

State Cover Set

The state cover set is a nonempty set of sequences ($\mathscr{S} \subseteq \mathscr{X}^*$ s.t.:

$$\blacktriangleright \forall q_i \in \mathscr{Q} \exists r \in \mathscr{S}s.t.\delta(q_0, r) = q_i$$

From the definition it is evident that $\mathscr{S} \subseteq \mathscr{P}$

The $\mathscr{W} p$ procedure (assuming m = n)

The test set derived using the $\mathscr{W}p$ – *method* is given by the union to two test sets \mathscr{T}_1 , \mathscr{T}_2 calculated according to the following procedure:

1 Compute sets $\mathcal{P}, \mathcal{S}, \mathcal{W}$, and \mathcal{W}_i

$$2 \mathcal{T}_1 = \mathscr{S} \cdot \mathscr{W}$$

3 Let
$$\mathcal{W} = \{\mathscr{W}_1, \mathscr{W}_2, \dots, \mathscr{W}_n\}$$

- Let $\mathcal{R} = \{r_1, r_2, \dots, r_k\}$ where $\mathcal{R} = \mathscr{P} \mathscr{S}$ and $r_j \in \mathcal{R}$ is s.t. $\delta(q_0, r_j) = q_i$
- $\mathscr{T}_2 = \mathcal{R} \otimes \mathcal{W} = \bigcup_{j=1}^{K} (\{r_j\} \cdot \mathscr{W}_i)$ where $\mathscr{W}_i \in \mathcal{W}$ is the state identification set for state q_i

CS@UNICAM

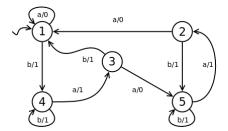
22/31

$\mathcal{W}p-method$ rationale

- Phase 1: test are of the form *uv* where *u* ∈ and *v* ∈ . Reach each state than check if it is distinguishable from another one
- Phase 2: test covers all the missing transitions and then check if the reached state is different from the one specified in the model

A B F A B F

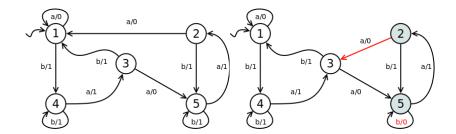
$\mathcal{W}p$ – method in practice



$$\begin{split} \mathscr{W} &= \{a, aa, aaa, baaa\} \\ \mathscr{P} &= \{\epsilon, a, b, bb, ba, bab, baa, baab, baaa, baaab, baaaa\} \\ \mathscr{S} &= \{\epsilon, b, ba, baa, baaa\} \\ \mathscr{W}_1 &= \{baaa, aa, a\}, \, \mathscr{W}_2 &= \{baaa, aa, a\}, \, \mathscr{W}_3 &= \{aa, a\} \\ \mathscr{W}_4 &= \{aaa, a\}, \, \mathscr{W}_5 &= \{aaa, a\} \end{split}$$

CS@UNICAM 24/31

$\mathcal{W}p$ – method in practice

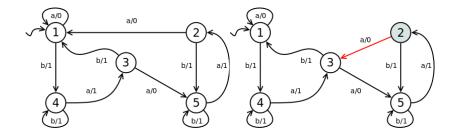


$$\begin{split} & \mathscr{W} = \{a, aa, aaa, baaa\} \\ & \mathscr{P} = \{\epsilon, a, b, bb, ba, bab, baa, baab, baaa, baaab, baaaa\} \\ & \mathscr{S} = \{\epsilon, b, ba, baa, baaa\} \\ & \mathscr{W}_1 = \{baaa, aa, a\}, \mathscr{W}_2 = \{baaa, aa, a\}, \mathscr{W}_3 = \{aa, a\} \\ & \mathscr{W}_4 = \{aaa, a\}, \mathscr{W}_5 = \{aaa, a\} \end{split}$$

CS@UNICAM 24/31

< ロ > < 同 > < 回 > < 回 >

$\mathcal{W}p$ – method in practice



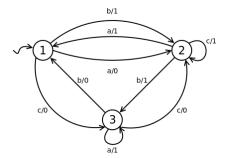
$$\begin{split} \mathscr{W} &= \{a, aa, aaa, baaa\} \\ \mathscr{P} &= \{\epsilon, a, b, bb, ba, bab, baa, baab, baaa, baaab, baaaa\} \\ \mathscr{S} &= \{\epsilon, b, ba, baa, baaa\} \\ \mathscr{W}_1 &= \{baaa, aa, a\}, \, \mathscr{W}_2 &= \{baaa, aa, a\}, \, \mathscr{W}_3 &= \{aa, a\} \\ \mathscr{W}_4 &= \{aaa, a\}, \, \mathscr{W}_5 &= \{aaa, a\} \end{split}$$

CS@UNICAM 24/31

< ロ > < 同 > < 回 > < 回 >

Is it phase 2 needed?

Let's consider the following FSM:



Now introduce an operation error or a transfer error on a "c" transition

< (T) > <

The $\mathscr{W} p$ procedure (assuming m > n)

Modify the derivation of the two sets as follows:

•
$$\mathscr{T}_1 = \mathscr{S} \cdot \mathscr{Z}$$
 where $\mathscr{Z} = \mathscr{X}[m-n] \cdot \mathscr{W}$

►
$$\mathscr{T}_2 = (\mathcal{R} \cdot \mathscr{X}[m-n]) \otimes \mathcal{W}$$

• Let $\mathscr{S} = \mathcal{R} \cdot \mathscr{X}[m-n] = \{s | s = r \cdot u \text{ s.t. } r \in \mathcal{R} \land u \in \mathscr{X}[m-n]\}$
then $\mathscr{T}_2 = \mathscr{S} \otimes \mathscr{W} = \bigcup_{s \in \mathscr{S}} (s \cdot \mathscr{W}_l)$ where $\delta(q_0, s) = \delta(\delta(q_0, r), u) = q_l$

< ロ > < 同 > < 回 > < 回 >

UIO-Sequence Method

UIO-Sequence

A UIO sequence is a sequence of input and output pairs that distinguish a state of an *FSM* from the remaining states. $UIO(s) = i_1/o_1, i_2/o_2, \dots, i_n/o_n$ s.t. $\forall t \in \mathcal{Q} \land s \neq t. \exists j \in [1 \dots n]. \mathcal{O}(\delta(s, i_1i_2 \dots i_{j-1}), i_j) \neq \mathcal{O}(\delta(t, i_1i_2 \dots i_{j-1}), i_j)$

Assumptions

- M is completely specified, minimal, connected, and deterministic
- M starts in a fixed initial states
- M can be reset to the initial state. A null output is generated by the reset
- M and IUT have the same input alphabet
- M and IUT have the same number of states

CS@UNICAM 27 / 31

イロン イボン イヨン イヨ

Distinguishing Signatures

Distinguishing Signature or Sequence (DS)

Sequence of input/output labels that is unique to a state s

Minimal transfer sequence

A minimal transfer sequence is a sequence of input/output that brings the machine from state *j* to state *i* along the shortest path $\mathcal{P}_i(j)$

Given a state *i* a DS can be built using the identification set and minimal transfer sequences for each state *j* with $j \neq i$. In particular for an *FSM M* with *k* states a DS is given by the following concatenation: $DS(q_i) = W(q_i, q_1) \cdot P_i(t_1) \cdot W(q_i, q_2) \cdots P_i(t_{k-1})W(q_i, q_k)$

イロト 不得 トイヨト イヨト

Distinguishing Signatures

Distinguishing Signature or Sequence (DS)

Sequence of input/output labels that is unique to a state s

Minimal transfer sequence

A minimal transfer sequence is a sequence of input/output that brings the machine from state *j* to state *i* along the shortest path $\mathcal{P}_i(j)$

Given a state *i* a DS can be built using the identification set and minimal transfer sequences for each state *j* with $j \neq i$. In particular for an *FSM M* with *k* states a DS is given by the following concatenation: $DS(q_i) = W(q_i, q_1) \cdot P_i(t_1) \cdot W(q_i, q_2) \cdots P_i(t_{k-1})W(q_i, q_k)$

Let $M = \langle \mathscr{Q}, \mathscr{X}, \mathscr{Y}, q_1, \delta, \mathscr{O} \rangle$ an FSM and $\mathscr{E} = \{ \langle q_i, x, y, q_j \rangle | q_i, q_j \in \mathscr{Q} \land x \in \mathscr{X} \land y \in \mathscr{Y} \land \delta(q_i, x) = q_j \land \mathscr{O}(q_i, x) = y \}$ the set of edges of M

- Find the UIO for each state in M
- Find the shortest path from the initial state to each of the remaining states.
- Solution For each edge $e = \langle q_i, x, y, q_j \rangle \in \mathscr{E}$, build $\mathcal{TE}(e) = \mathcal{P}_{head(e)}(1) \cdot label(e) \cdot UlO(tail(e))$ where $head(e) = q_i$, $tail(e) = q_j$, label(e) = x/y

Optionally a unique sequence can be derived using reset actions.

Assessment of automata theoretic strategies

Control Flow based techniques are typically assessed according to different criteria:

State coverage

A test set T is considered adequate with respect to the state cover criterion for an FSM M if the execution of M agianst each element of T causes each state in M to be visited at least once

Transition coverage

A test set T is considered adequate with respect to the branch, or transition, cover criterion for an FSM M if the execution of M against each element of T causes each transition in M to be taken at least once

< 日 > < 同 > < 回 > < 回 > < 回 > <

Assessment of automata theoretic strategies

Switch coverage (n-switch coverage)

A test set *T* is considered adequate with respect to the 1-switch cover criterion for an FSM *M* if the execution of *M* against each element of *T* causes each pair of transition (tr_1, tr_2) in *M* to be taken at least once, where for some input substring $ab \in X^*$, $tr_1 : q_i = \delta(q_j, a) \land$ $tr_2 : q_k = \delta(q_i, b)$ and q_i, q_j, q_k are states of *M*

Boundary-interior coverage

A test set T is considered adequate with respect to the boundary-interior cover criterion for an FSM M if the execution of Magainst each element of T causes each loop body to be traversed zero times and at least once. Exiting the loop upon arrival covers the "boundary" condition and entering it and traversing the body at least once covers the "interior" condition.