
Research Papers Assignment

Andrea Polini

Software Engineering II – Software Testing
MSc in Computer Science

University of Camerino

(Software Engineering II – Software Testing) Research Papers Assignment CS@UNICAM 1 / 10



Papers List

1 Testing environment for CPS by cooperating model checking with
execution testing

2 Conformance Testing for Cyber-Physical Systems
3 Automatically Discovering, Reporting and Reproducing Android

Application Crashes
4 Systematic Execution of Android Test Suites in Adverse

Conditions
5 Sapienz: Multi-objective Automated Testing for Android

Applications
6 Predicting Testability of Concurrent Programs
7 How well are your requirements tested?
8 Automatic Generation of Oracles Exceptional Behaviors

(Software Engineering II – Software Testing) Research Papers Assignment CS@UNICAM 2 / 10



1. Testing environment for CPS by cooperating model
checking with execution testing

Abstract
In this study, we propose a testing environment for cyber-physical systems (CPS). In
system testing for CPS, many tests are difficult to design or implement because of
these systems’ many product variations. The proposed environment executes the
tests and guarantees that these systems operate reliably using two methods. The first
method provides easy management of test cases by managing functions to be tested
and configurations to be tested separately. The second method involves automatic
testing of real devices based on model checking technologies. The authors have
developed a horizontal prototype of the proposed environment and confirmed its
feasibility and applicability.

(Software Engineering II – Software Testing) Research Papers Assignment CS@UNICAM 3 / 10



2. Conformance Testing for Cyber-Physical Systems

Abstract
Cyber-Physical Systems (CPS) require a high degree of reliability and robustness.
Hence it is important to assert their correctness with respect to extra-functional
properties, like power consumption, temperature, etc. In turn the physical quantities
may be exploited for assessing system implementations. This article develops a
methodology for utilizing measurements of physical quantities for testing the
conformance of a running CPS with respect to a formal description of its required
behavior allowing to uncover defects. We present foundations and implementations of
this approach and demonstrate its usefulness by conformance testing power
measurements of a wireless sensor node with a formal model of its power
consumption.

(Software Engineering II – Software Testing) Research Papers Assignment CS@UNICAM 4 / 10



3. Automatically Discovering, Reporting and
Reproducing Android Application Crashes

Abstract
Mobile developers face unique challenges when detecting and reporting crashes in
apps due to their prevailing GUI event-driven nature and additional sources of inputs
(e.g., sensor readings). To support developers in these tasks, we introduce a novel,
automated approach called CRASHSCOPE . This tool explores a given Android app
using systematic input generation, according to several strategies informed by static
and dynamic analyses, with the intrinsic goal of triggering crashes. When a crash is
detected, CRASHSCOPE generates an augmented crash report containing
screenshots, detailed crash reproduction steps, the captured exception stack trace,
and a fully replayable script that automatically reproduces the crash on a target
device(s). We evaluated CRASHSCOPE’s effectiveness in discovering crashes as
compared to five state-of-the-art Android input generation tools on 61 applications.
The results demonstrate that CRASHSCOPE performs about as well as current tools
for detecting crashes and provides more detailed fault information. Additionally, in a
study analyzing eight real-world Android app crashes, we found that CRASHSCOPE’s
reports are easily readable and allow for reliable reproduction of crashes by
presenting more explicit information than human written reports.

(Software Engineering II – Software Testing) Research Papers Assignment CS@UNICAM 5 / 10



4. Systematic Execution of Android Test Suites in
Adverse Conditions

Abstract
Event-driven applications, such as, mobile apps, are difficult to test thoroughly. The
application programmers often put significant effort into writing end-to-end test suites.
Even though such tests often have high coverage of the source code, we find that they
often focus on the expected behavior, not on occurrences of unusual events. On the
other hand, automated testing tools may be capable of exploring the state space more
systematically, but this is mostly without knowledge of the intended behavior of the
individual applications. As a consequence, many programming errors remain
unnoticed until they are encountered by the users. We propose a new methodology for
testing by leveraging existing test suites such that each test case is systematically
exposed to adverse conditions where certain unexpected events may interfere with the
execution. In this way, we explore the interesting execution paths and take advantage
of the assertions in the manually written test suite, while ensuring that the injected
events do not affect the expected outcome. The main challenge that we address is
how to accomplish this systematically and efficiently. We have evaluated the approach
by implementing a tool, Thor, working on Android. The results on four real-world apps
with existing test suites demonstrate that apps are often fragile with respect to certain
unexpected events and that our methodology effectively increases the testing quality:
Of 507 individual tests, 429 fail when exposed to adverse conditions, which reveals 66
distinct problems that are not detected by ordinary execution of the tests.

(Software Engineering II – Software Testing) Research Papers Assignment CS@UNICAM 6 / 10



5. Sapienz: Multi-objective Automated Testing for
Android Applications

Abstract
We introduce Sapienz, an approach to Android testing that uses multi-objective
search-based testing to automatically explore and optimise test sequences,
minimising length, while simultaneously maximising coverage and fault revelation.
Sapienz combines random fuzzing, systematic and search-based exploration,
exploiting seeding and multi-level instrumentation. Sapienz significantly outperforms
(with large effect size) both the state-of-the-art technique Dynodroid and the
widely-used tool, Android Monkey, in 7/10 experiments for coverage, 7/10 for fault
detection and 10/10 for fault-revealing sequence length. When applied to the top
1,000 Google Play apps, Sapienz found 558 unique, previously unknown crashes. So
far we have managed to make contact with the developers of 27 crashing apps. Of
these, 14 have confirmed that the crashes are caused by real faults. Of those 14, six
already have developer-confirmed fixes.

(Software Engineering II – Software Testing) Research Papers Assignment CS@UNICAM 7 / 10



6. Predicting Testability of Concurrent Programs

Abstract
Concurrent programs are difficult to test due to their inherent non-determinism. To
address the nondetermin- ism problem, testing often requires the exploration of thread
schedules of a program; this can be time-consuming for testing real-world programs.
We believe that testing resources can be distributed more effectively if testability of
concurrent programs can be estimated, so that developers can focus on exploring the
low testable code. Voas introduces a notion of testability as the probability that a test
case will fail if the program has a fault, in which testability can be measured based on
fault-based testing and mutation analysis. Much research has been proposed to
analyze testability and predict defects for sequential programs, but to date, no work
has considered testability prediction for concurrent programs, with program
characteristics distinguished from sequential programs. In this paper, we present an
approach to predict testability of concurrent programs at the function level. We
propose a set of novel static code metrics based on the unique properties of
concurrent programs. To evaluate the performance of our approach, we build a family
of testability prediction models combining both static metrics and a test suite metric
and apply it to real projects. Our empirical study reveals that our approach is more
accurate than existing sequential program metrics.

(Software Engineering II – Software Testing) Research Papers Assignment CS@UNICAM 8 / 10



7. How well are your requirements tested?

Abstract
We address the question: to what extent does covering requirements ensure that a
test suite is effective at revealing faults? To answer it, we generate minimal test suites
that cover all requirements, and assess the tests they contain. They turn out to be
very poor-ultimately because the notion of covering a requirement is more subtle than
it appears to be at first. We propose several improvements to requirements tracking
during testing, which enable us to generate minimal test suites close to what a human
developer would write. However, there remains a class of plausible bugs which such
suites are very poor at finding, but which random testing finds rather easily.

(Software Engineering II – Software Testing) Research Papers Assignment CS@UNICAM 9 / 10



8. Automatic Generation of Oracles Exceptional
Behaviors

Abstract
Test suites should test exceptional behavior to detect faults in error-handling code.
However, manually-written test suites tend to neglect exceptional behavior.
Automatically-generated test suites, on the other hand, lack test oracles that verify
whether runtime exceptions are the expected behavior of the code under test. This
paper proposes a technique that automatically creates test oracles for exceptional
behaviors from Javadoc comments. The technique uses a combination of natural
language processing and run-time instrumentation. Our implementation, Toradocu,
can be combined with a test input generation tool. Our experimental evaluation shows
that Toradocu improves the fault-finding effectiveness of EvoSuite and Randoop test
suites by 8% and 16% respectively, and reduces EvoSuite’s false positives by 33%.

(Software Engineering II – Software Testing) Research Papers Assignment CS@UNICAM 10 / 10



Organizing the presentation

Which is the problem?
Why the problem is indeed a problem?
Which is the proposed solution?
Why the solution is a solution?
Which are other approaches to solve the problem, how they relate
to the presented one?

The presentation should last 30 minutes

(Software Engineering II – Software Testing) Research Papers Assignment CS@UNICAM 11 / 10



Organizing the presentation

Which is the problem?
Why the problem is indeed a problem?
Which is the proposed solution?
Why the solution is a solution?
Which are other approaches to solve the problem, how they relate
to the presented one?

The presentation should last 30 minutes

(Software Engineering II – Software Testing) Research Papers Assignment CS@UNICAM 11 / 10


