
8. Unit and Integration Testing

Andrea Polini

Software Engineering II – Software Testing
MSc in Computer Science

University of Camerino

(Software Engineering II – Software Testing) 8. Unit and Integration Testing CS@UNICAM 1 / 14



Testing Phases and Objectives

I Unit test: each program unit functions as expected
I Integration test: integration of more units interact as expected
I System test: the whole systems behave as expected

(Software Engineering II – Software Testing) 8. Unit and Integration Testing CS@UNICAM 2 / 14



Unit testing

Main characteristics
I generally performed by the developer of the unit
I test could be defined before writing the code
I white box adequacy criteria should be defined and targeted

Testing activities
I Test plan
I Test design
I Test codification
I Test environment setting
I Test execution
I Test result analysis

(Software Engineering II – Software Testing) 8. Unit and Integration Testing CS@UNICAM 3 / 14



Unit testing strategies

Test derivation
Random testing is a strategy often used to select runs to execute (test
cases). In some situations it behaves rather well, in comparisons with
more complex strategies. On the other hands there are situations in
which performances are not so good. The well-known triangle problem.

(Software Engineering II – Software Testing) 8. Unit and Integration Testing CS@UNICAM 4 / 14



JUnit

What’s that
JUnit is the implementation for the Java world of the xUnit framework.
This is a framework that support the phases of:

I coding
I environment setting
I execution
I analysis

(Software Engineering II – Software Testing) 8. Unit and Integration Testing CS@UNICAM 5 / 14



Mocks and Stubs

Unit to test could depends on “server” units
I stubs: simple software elements that provide dummy responses

to requests from a unit under test
I mocks: more complex software elements that provide responses

to requests from a unit under tests and can also check
correctness of invocations

(Software Engineering II – Software Testing) 8. Unit and Integration Testing CS@UNICAM 6 / 14



Integration testing

Integration testing rationale
Integration testing aims at showing mismatches in the interactions
among components

It is possible that faults are discovered in relation of uncorrect
behaviour of integrated units nevertheless this is not the objective of
integration testing

The Mars orbiter example

(Software Engineering II – Software Testing) 8. Unit and Integration Testing CS@UNICAM 7 / 14



Integration testing

Questions to answer
I Integration hierarchy
I Sequencing and stubbing
I Test generation

Assumption: all components have been tested well during unit testing

(Software Engineering II – Software Testing) 8. Unit and Integration Testing CS@UNICAM 8 / 14



Integration sequence

Dependencies
The definition of an integration strategy should consider dependency
(relations) among units.

I data dependency
I functional dependency
I control dependecy

Dependencies have an impact on the integration sequence. Object
Relation Diagram permit to capture dependencies among components

(Software Engineering II – Software Testing) 8. Unit and Integration Testing CS@UNICAM 9 / 14



Integration sequence

Which are the information that can be used for deciding integration
strategies?

Programming paradigm
I OO Programming

inheritance, association, aggregation/composition, dependencies
(uses, calls, parameter, send, instantiates)
In OO programming particularly complex is the management of
polymorphism, that creates dynamic dependencies

I Procedural programming
call graph

(Software Engineering II – Software Testing) 8. Unit and Integration Testing CS@UNICAM 10 / 14



Integration sequence

Which are the information that can be used for deciding integration
strategies?

Programming paradigm
I OO Programming

inheritance, association, aggregation/composition, dependencies
(uses, calls, parameter, send, instantiates)
In OO programming particularly complex is the management of
polymorphism, that creates dynamic dependencies

I Procedural programming
call graph

(Software Engineering II – Software Testing) 8. Unit and Integration Testing CS@UNICAM 10 / 14



Deciding on the integration strategy

Integration hierarchy
I Big bang

not the same as system integration
can lead to difficulties in locating bugs
applicable when few components need to be integrated
no stubs or mocks need to be created

I Top-down
I Bottom-up

(Software Engineering II – Software Testing) 8. Unit and Integration Testing CS@UNICAM 11 / 14



Deciding on the integration strategy

I Availability of code
I Difficulty or ease of constructing stubs (strictly coupled classes)
I difficulty or ease of constructing drivers
I size of the test team
I need of showing partially working programs

(Software Engineering II – Software Testing) 8. Unit and Integration Testing CS@UNICAM 12 / 14



Optimal test order

The problem of finding an optimal integration sequence is
NP-complete in literature different approaches to derive sub optimal

solutions have been proposed.

Tai-Daniels
Traon-Jeron-Jezequel-Morel
Briand-Labiche-Wang

Strategies foresees the analysis of the ORD to identify Strongly
Connected Components (SCC) and then the removal of dependencies
so to generate DAG with no cycles. Then the analysis give the number
of stubs needed to proceed with integration testing.

(Software Engineering II – Software Testing) 8. Unit and Integration Testing CS@UNICAM 13 / 14



Test derivation and adequacy

I What are the techniques to derive tests for integration purpose?
I What are the adequacy criteria that can be used?

(Software Engineering II – Software Testing) 8. Unit and Integration Testing CS@UNICAM 14 / 14


