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An example. . .

The municipality of Neverland want to activate a bike-sharing system.

A bicycle-sharing system is a service in which:

� bicycles are made available for shared use to individuals on a very
short term basis for a price;

� people can borrow a bike from point A and return it at point B;

� smartphone mapping apps show nearby stations with available bikes
and open docks.

The civil council ask you to develop a software architecture that. . .

� supports users in station selections while improving their satisfaction;

� guarantees a balanced use of resources;

� identifies anomalous situations.
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An example. . .

Question. . .

How can we design this kind of software architectures?

Answer. . .

We have to. . .

. . . build a model of our system. . .

. . . define possible scenario of use. . .

. . . study system behaviour and the impact of implementation choices on
these scenarios.
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Key Notions

A model can be constructed to represent some aspect of the dynamic
behaviour of a system.

Once constructed, such a model becomes a tool with which we can
investigate the behaviour of the system.
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The discrete event view

In this course we will consider discrete event systems.

The state of the system is characterised by variables which take distinct
values and which change by discrete events, i.e. at a distinct time
something happens within the system which results in a change in one or
more of the state variables.
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Example: Bike Sharing System
Discrete event system

We might be interested in the number of available bikes and available slots
at each station.

Let {`1, . . . `n} be the bike stations in our system, we can count the
number of bikes (resp. slots) B`i (resp. S`i ) available at each station `i .

� When a bike is retrieved form `i , B`i is decreased by 1 and S`i
increased;

� When a bike is returned at `i , B`i is incremented and S`i decremented.
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Discrete time vs Continuous time

Within discrete event systems there is a distinction between a discrete
time representation and a continuous time representation:

Discrete time: such models only consider the system at predetermined
moments in time, which are typically evenly spaced, eg. at
each clock “tick”.

Continuous time: such models consider the system at the time of each
event so the time parameter in such models is conceptually
continuous.

The use of discrete time or continuous time mainly depend on the levels of
abstraction considered in the model.
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Performance Modelling

Performance modelling is concerned with the dynamic behaviour of
systems and quantified assessment of that behaviour.

There are often conflicting interests at play:

� Users typically want to optimise external measurements of the
dynamics such as response time (as small as possible), throughput (as
high as possible) or blocking probability (preferably zero);

� In contrast, system managers may seek to optimize internal
measurements of the dynamics such as utilisation (reasonably high,
but not too high), idle time (as small as possible) or failure rates (as
low as possible).
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Performance Modelling: Motivation

Capacity planning

� How many clients can the
existing server support and
maintain reasonable response
times?
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Performance Modelling: Motivation

............

Mobile Telephone Antenna

System Configuration

� How many frequencies do
you need to keep blocking
probabilities low?
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Performance Modelling: Motivation

System Tuning

� What speed of conveyor belt
will minimize robot idle time
and maximize throughput
whilst avoiding lost widgets?
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Performance Modelling: Response time analysis

Quality of Service issues

� Can the server maintain
reasonable response times?
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Performance Modelling: Capacity planning

Scalability and capacity planning
issues

� How many times do we have
to replicate this service to
support all of the
subscribers?
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Performance Modelling: Scalability analysis

� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� � � �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� � � �� �� �
	 		 		 	
� �� �� �� �� �� �� �� �
    � �� �� �� �
� �� �� �� �� �� �� �� � � �� �� �
� �� �� �

� �� �� �
� �� �� �
� �� �� �
� �� �� �

� �� �� �
� �� �� �� �� �� �
� �� �� � � �� �� �
� �� �� � � �� �� �
� �� �� �� �� �� �� �        

Robustness and scalability issues

� Will the server withstand a
distributed denial of service
attack?
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Performance Modelling: Service Level Agreements

Service-level agreements

� What percentage of
downloads do complete
within the time we
advertised?
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Quantitative modelling

When systems are modelled to verify their functional behaviour
(correctness), all definite values are abstracted away — qualitative
modelling.

In contrast, performance modelling is quantitative modelling as we must
take into account explicit values for time (latency, service time etc.) and
probability (choices, alternative outcomes, mixed workload).

Probability will be used to represent randomness (e.g. from human users)
but also as an abstraction over unknown values (e.g. service times).
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Probability Theory
Sample space

A sample space is an arbitrary non empty set Ω, containing of all possible
outcomes or results of an experiment.

Examples:

Toss of a coin: ΩC = {H,T};
Toss of two coins: Ω2C = ΩC × ΩC = {(H,H), (H,T), (T,H), (T,T)};
Roll of a dice: ΩD = {1, 2, 3, 4, 5, 6}.
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Probability Theory
Events

A σ-algebra Σ ⊆ 2Ω (the powerset of Ω), called events, such that:

1. Σ contains the sample space, Ω ∈ Σ;

2. Σ is closed under complement: if A ∈ Σ then (Ω− A) ∈ Σ;

3. Σ is close under countable unions.

Examples: Toss of a coin

Let ΣC be the σ-algebra on ΩC = {H,T} containing:

� Neither head nor tail: {}
� Head: {H}
� Tail: {T}
� Either head or tail: {H,T}
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Probability Theory
Probability measure

Let Σ ⊆ 2Ω, be a σ-algebra. A probability measure is a function
Pr : Σ→ [0, 1] associating elements in Σ with a real value in [0, 1] such
that:

� Pr is countably additive, if {Ai}i∈I is a countable collection of
pairwise disjoint set, then:

Pr

(⋃
i∈I

Ai

)
=
∑
i∈I

Pr(Ai )

� the measure of the entire sample space is 1:

Pr (Ω) = 1
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Probability Theory
Probability space

A probability space is a triple (Ω,Σ,Pr) such that:

� Ω is a sample space;

� Σ is a σ-algebra on Ω;

� Pr is a probability measure for Σ.

Examples: Toss of a coin

We can consider the probability space (ΩC ,ΣC ,PrC ) such that:

� PrC ({}) = 0;

� PrC ({H}) = PrC ({T}) = 1
2 ;

� PrC ({H,T}) = 1.
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Probability Space: Some Properties

Let (Ω,Σ,Pr) be a probability space. The following properties hold:

� For any A ∈ Σ:
Pr(Ω− A) = 1− Pr(A)

� For any A,B ∈ Σ:

Pr(A ∪ B) = Pr(A) + Pr(B)− Pr(A ∩ B)
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Conditional Probability
Let (Ω,Σ,Pr) be a probability space

Let A,B ∈ Σ, the Conditional Probability of A occurring, give that B has
occurred, is:

Pr(A|B) =
Pr(A ∩ B)

Pr(B)

� If A and B are mutually exclusive Pr(A | B) = 0.

� If B is a precondition for A, then Pr(A ∩ B) = Pr(A).

� Two events are independent if knowledge of the occurrence of one of
them tells us nothing about the probability of the other, i.e.
Pr(A | B) = Pr(A), or

Pr(A ∩ B) = Pr(A)× Pr(B)
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Random variables

We are interested in the dynamics of a system as events happen over time.

A function which associates a (real-valued) number with the outcome of
an experiment is known as a random variable.

Let (Ω,Σ,Pr) be a probability space, a random variable X : Ω→ R is a
measurable function from Ω to R.

The probability that X takes value in a measurable set S ⊆ R is written as:

Pr(X ∈ S) = Pr({ω ∈ Ω|X (ω) ∈ S})
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Distribution function

Let X a random variable on the probability space (Ω,Σ,Pr), we define the
distribution function FX for each real x ∈ R by

FX (x) = Pr[X ≤ x ] = Pr({ω|X (ω) ≤ x})

We associate another function pX (·), called the probability mass function,
with X (pmf), for each x ∈ R:

p(x) = Pr[X = x ] = Pr({ω|X (ω) ≤ x})

A random variable X is continuous if p(x) = 0 for all real x .

NB: If X is a continuous random variable, then X can assume infinitely
many values, and so it is reasonable that the probability of its assuming
any specific value we choose beforehand is zero.
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Example: Dice Roll

A random variable can be used to describe the process of rolling two (fair)
dice and the possible outcomes.

We can consider the probability space (Ω2D ,Σ2D ,Pr2D) such that:

Ω2D = {(n1, n2)|1 ≤ n1, n2 ≤ 6} Σ2D = 2Ω2D Pr(A) =
|A|
36

The total number rolled is then a random variable X given by the function
that maps the pair to the sum: X ((n1, n2)) = n1 + n2

The pms function pX and the df FX function can be defined as:

pX (x) =

{
min(x−1,13−x)

36 2 ≤ x ≤ 12
0 otherwise

FX (x) =
∑
y≤x

pX (y)
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Mean, or expected value

If X is a discrete random variable with probability mass function p(·), we
define the mean or expected value of X ∈ S , µ = E [X ] by

E (X ) =
∑
x∈S

x · p(x)

If X is a continuous random variable with density function f (·) = dF (·)
dx , we

define the mean or expected value of X , µ = E [X ] by

µ = E [X ] =

∫ ∞
−∞

x · f (x)dx
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Variance

The expectation only gives us an idea of the average value assumed by a
random variable, not how much individual values may differ from this
average.

The variance, Var(X ), gives us an indication of the “spread” of values:

Var(X ) = E
[
(X − E [X ])2

]
= E

[
X 2
]
− E [X ]2
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Random variables

A random variable is a function that assigns a numerical quantity to an
event in a give probability space.

Random variables enables the use of standard operations on functions to
model randomness of a syste.

We can focus on the distribution function of a random variable without
consider a specific probability space.
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Exponential random variables, distribution func-
tion

The random variable X is said to be an exponential random variable with
parameter λ (λ > 0) or to have an exponential distribution with parameter
λ if it has the distribution function

F (x) =

{
1− e−λx for x > 0
0 for x ≤ 0

Some authors call this distribution the negative exponential distribution.
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Exponential random variables, density function

The density function f = dF/dx is given by

f (x) =

{
λe−λx if x > 0
0 if x ≤ 0
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Mean, or expected value, of the exponential dis-
tribution

Suppose X has an exponential distribution with parameter λ > 0. Then

µ = E [X ] =

∫ ∞
−∞

xλe−λxdx

=
1

λ
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Variance of the exponential distribution

Suppose X has an exponential distribution with parameter λ > 0. Then

Var(X ) = E
[
X 2
]
− E [X ]2

=

∫ ∞
0

x2λe−λxdx −
(

1

λ

)2

=
2

λ2
− 1

λ2

=
1

λ2
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Exponential inter-event time distribution

The time interval between successive events can also be deduced.

Let F (t) be the distribution function of T , the time between events.
Consider Pr(T > t) = 1− F (t):

Pr(T > t) = Pr(No events in an interval of length t)

= 1− F (t)

= 1− (1− e−λt)

= e−λt
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Memoryless property exponential distribution

The exponential distribution is said to have the memoryless property
because the time to the next event is independent of when the last event
occurred.
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Memoryless property exponential distribution

Suppose the last event occurred at time 0.

What is the probability that the next event will be after t + s, given that
time t has elapsed since the last event, and no events have occurred?

Pr(T > t + s | T > t) =
Pr(T > t + s and T > t)

Pr(T > t)

=
Pr(T > t + s)

Pr(T > t)

=
e−λ(t+s)

e−λt

= e−λs = Pr(T > s)

This value is independent of t (and so the time already spent has not been
remembered).
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The Poisson distribution

The exponential distribution function is closely related to a discrete
random variable, the Poisson distribution.

This random variable takes values in the set {0, 1, 2, . . .} and has the mass
function

pi = e−µ
µi

i !
i ≥ 0.

The expectation of a Poisson random variable with parameter µ is also µ.
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The Poisson random variable

The Poisson random variable is typically used as a counting variable,
recording the number of events that occur in a given period of time.

If we observe a Poisson process with parameter µ for some short time
period of length h then:

� the probability that one event occurs is µh + o(h).

� the probability that two or more events occur is o(h).

� the probability that no events occur is 1− µh + o(h).
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Poisson vs exponential distributions

If we observe a Poisson process for a infinitesimal time period dt the
probability that an event occurs is µdt.

If the occurrence of events is governed by a Poisson distribution then the
inter-event times are governed by an exponential distribution with the
same parameter, and vice versa.

Therefore, if we know that the delay until an event is exponentially
distributed then the probability that it will occur in the infinitesimal time
interval of length dt, is µdt.
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Exponential distributions: properties

Let X and Y two exponentially distributed random variables, with
parameters λX and λY respectively.

The random variable Z = min(X ,Y ) is also an exponentially distributed
random variable, with parameter λX + λY .

Consider a stream of events which has events of two types — type A and
type B — and assume that the probability that an event has type A is pA
and the probability it has type B is pB (pA + pB = 1).

Then if the inter-event time for any events is exponentially distributed
with parameter λ, then the inter-event time for type A events is pA × λ
and similarly for type B events it is pB × λ.
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To be continued. . .
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