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Operational Laws

� Operational laws are simple equations which may be used as an
abstract representation or model of the average behaviour of almost
any system.

� The laws are very general and make almost no assumptions about the
behaviour of the random variables characterising the system.

� Another advantage of the laws is their simplicity: this means that
they can be applied quickly and easily by almost anyone.
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Observable variables

REQUESTS

ARRIVE

REQUESTS

SATISFIEDSYSTEM

� Operational laws are based on observable variables — values which we could
derive from watching a system over a finite period of time.

� We assume that the system receives requests from its environment.

� Each request generates a job or customer within the system.

� When the job has been processed the system responds to the environment
with the completion of the corresponding request.
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Observations and measurements

If we observed such an abstract system we might measure the following
quantities:

T , the length of time we observe the system;

A, the number of request arrivals we observe;

C , the number of request completions we observe;

B, the total amount of time during which the system is busy
(B ≤ T );

N, the average number of jobs in the system.
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Four important quantities

From these observed values we can derive the following four important
quantities:

λ = A/T , the arrival rate;

X = C/T , the throughput or completion rate,

U = B/T , the utilisation;

S = B/C , the mean service time per completed job.
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Job flow balance

� We will assume that the system is job flow balanced. This means that
the number of arrivals is equal to the number of completions during
an observation period, i.e. A = C .

� This is a testable assumption because an analyst can always test
whether the assumption holds.

� Note that if the system is job flow balanced the arrival rate will be
the same as the completion rate, that is, λ = X .
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Little’s Law

N = XW
Little’s Law

The average number of jobs N in a system is equal to the product of the
throughput of the system X and the average time W spent in that system
by a job.
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Example

Consider a disk that serves 40 requests/second (X = 40) and suppose that
on average there are 4 requests present in the disk system (waiting to be
served or in service) (N = 4).

Little’s law tells us that the average time spent at the disk by a request
must be 4/40 = 0.1 seconds.

If we know that each request requires 0.0225 seconds of disk service we
can then deduce that the average queueing time is 0.0775 seconds.
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Subsystems within Systems
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� A system may be regarded as being made up of a number of devices
or resources.

� Each of these may be treated as a system in its own right from the
perspective of operational laws.
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Subsystems within Systems
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An external request generates a job within the system; this job may then
circulate between the resources until all necessary processing has been
done; as it arrives at each resource it is treated as a request, generating a
job internal to that resource.
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Visit count
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In an observation interval we can count not only completions external to
the system, but also the number of completions at each resource within
the system.
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Visit count
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We define the visit count, Vi , of the ith resource to be the ratio of the
number of completions at that resource to the number of system
completions Vi ≡ Ci/C .
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Visit count: example

For example, if, during an observation interval, we measure. . .

. . . 10 system completions

. . . and 150 completions at a specific disk

Then on the average each system-level request requires. . .

15 disk operations.
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Forced Flow Law

The forced flow law captures the relationship between the different
components within a system. It states that the throughputs or flows, in all
parts of a system must be proportional to one another.

Xi = XVi
Forced Flow Law

The throughput at the ith resource is equal to the product of the
throughput of the system and the visit count at that resource.
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Example

� Consider a robotic workcell within a computerised manufacturing
system which processes widgets.

� Suppose that processing each widget requires 4 accesses to the lathe
and 2 accesses to the press.

� We know that the lathe processes 8 widgets in a minute and we want
to know the throughput of the press.

� The throughput of the workcell will be proportional to the lathe
throughput, i.e. X = Xlathe/Vlathe = 8/4 = 2.

� The throughput of the press will be Xpress = X × Vpress = 2× 2 = 4.

� Thus the press throughput is 4 widgets per minute.
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Utilisation Law

� If we know the amount of processing each job requires at a resource
then we can calculate the utilisation of the resource.

� Let us assume that each time a job visits the ith resource the amount
of processing, or service time it requires is Si .

� (Note that service time is not necessarily the same as the residence
time of the job at that resource: in general a job might have to wait
for some time before processing begins.)

� The total amount of service that a system job generates at the ith
resource is called the service demand, Di :

Di = SiVi
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Utilisation Law

The utilisation of a resource, the percentage of time that the ith resource
is in use processing to a job, is denoted Ui .

Ui = XiSi = XDi
Utilisation Law

The utilisation of a resource is equal to the product of the throughput of
that resource and the average service requirement at that resource.
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Utilisation Example

� Consider again the disk that is serving 40 requests/second, each of
which requires 0.0225 seconds of disk service.

� The utilisation law tells us that the utilisation of the disk must be
40× 0.0225 = 90%.

Prof. Michele Loreti Operational Laws 57 / 76



Utilisation Example

� Consider again the disk that is serving 40 requests/second, each of
which requires 0.0225 seconds of disk service.

� The utilisation law tells us that the utilisation of the disk must be
40× 0.0225 = 90%.

Prof. Michele Loreti Operational Laws 57 / 76



General Residence Time Law

� One method of computing the mean residence or response time per
job in a system is to apply Little’s Law to the system as a whole.

� However, if the mean number of jobs in the system, N, or the system
level throughput, X , are not known an alternative method can be
used.

� Applying Little’s Law to the ith resource we see that Ni = XiWi ,
where Ni is the mean number of jobs at the resource and Wi is the
average response time of the resource.

� From the Forced Flow Law we know that Xi = XVi . Thus we can
deduce that

Ni/X = ViWi .
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General Residence Time Law

The total number of jobs in the system is clearly the sum of the number of
jobs at each resource, i.e. N = N1 + · · ·+ NM if there are M resources.
From Little’s Law that W = N/X and so:

W =
M∑
i=1

WiVi

General Residence Time Law

The average residence time of a job in the system will be the sum of the
product of its average residence time at each resource and the number of
visits it makes to that resource.
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General Residence Time Law: Example

� A program running on a compute server requires 126 bursts of CPU
time and makes 75 I/O requests to disk A and 50 I/O requests to
disk B.

� On average each CPU burst requires 30 milliseconds (waiting +
processing time).

� Monitoring has shown that the throughput of disk A is 15 requests
per second and the average number in the buffer is 4 whilst at disk B
the throughput is 10 requests per second and the average number in
the buffer is 3.
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General Residence Time Law: Example (contin-
ued)

Using Little’s Law we calculate the residence time at each of the disks
(remembering that the number in the system is the number in the buffer
+1):

WdiskA =
NdiskA

XdiskA

=
5

15/1000
=

5000

15

WdiskB =
NdiskB

XdiskB
=

4

10/1000
=

4000

10
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=

5

15/1000
=

5000

15

WdiskB =
NdiskB

XdiskB
=

4

10/1000

=
4000

10

Prof. Michele Loreti Operational Laws 61 / 76



General Residence Time Law: Example (contin-
ued)

Using Little’s Law we calculate the residence time at each of the disks
(remembering that the number in the system is the number in the buffer
+1):

WdiskA =
NdiskA

XdiskA
=

5

15/1000
=

5000

15

WdiskB =
NdiskB

XdiskB
=

4

10/1000
=

4000

10

Prof. Michele Loreti Operational Laws 61 / 76



General Residence Time Law: Example (con-
cluded)

Then

W = WCPUVCPU + WdiskAVdiskA + WdiskBVdiskB

= 30× 126 +
5000

15
× 75 +

4000

10
× 50

= 3780 + 25000 + 20000

= 48780milliseconds
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Interactive Response Time Law

� Back when most processing was done on shared mainframes, think
time, Z , was quite literally the length of time that a programmer
spent thinking before submitting another job.

� More generally in interactive systems, jobs spend time in the system
not engaged in processing, or waiting for processing: this may be
because of interaction with a human user, or may be for some other
reason.

� The key feature of such a system is that the residence time can no
longer be taken as a true reflection of the response time of the system.
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Example

� For example, if we are studying a cluster of workstations with a
central file server to investigate the load on the file server, the think
time might represent the average time that each workstation spends
processing locally without access to the file server.

� At the end of this non-processing period the job generates a fresh
request.
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Think time, residence time, response time

� The think time represents the time between processing being
completed and the job becoming available as a request again.

� Thus the residence time of the job, as calculated by Little’s Law as
the time from arrival to completion, is greater than the system’s
response time.
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Interactive Response Time Law

The interactive response time law reflects this: it calculates the response
time, R as follows:

R = N/X − Z
Interactive Response Time Law

The response time in an interactive system is the residence time minus the
think time.

Note that if the think time is zero, Z = 0 and R = W , then the
interactive response time law simply becomes Little’s Law.
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Interactive Response Time Law: Example

� Suppose that the library catalogue system has 64 interactive users
connected via Browsers, that the average think time is 30 seconds,
and that system throughput is 2 interactions/second.

� Then the interactive response time law tells us that the response time
must be 64/2− 30 = 2 seconds.
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Bottleneck analysis

� The resource within a system which has the greatest service demand
is known as the bottleneck resource or bottleneck device, and its
service demand is maxi{Di}, denoted Dmax .

� The bottleneck resource is important because it limits the possible
performance of the system.

� This will be the resource which has the highest utilisation in the
system.
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Residence time, service demand, contention

� The residence time of a job within a system will always be at least as
large as the total amount of processing that each job requires.

� The total amount of processing that a job requires is D, the total
service demand,

D =
M∑
i=1

Di

� In general, there will be some contention in the system meaning that
jobs have to wait for processing so the residence time will be larger
than this, i.e. W ≥ D
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Throughput, utilisation and overall performance

� The throughput of a system will always be limited by the throughput
at the slowest resource (think of the Forced Flow Law); this is the
bottleneck device.

� By the utilisation law, at this resource, let’s call it b, Ub = XDmax .

� Therefore, since Ub ≤ 1
X ≤ 1/Dmax

� It follows that if we wish to improve throughput we should first
concentrate on this resource—improving throughput at other
resources in the system might have little effect on the overall
performance.
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Obtaining a tighter bound

� Using Little’s Law or the Interactive Response Time Law, we can
derive a tighter bound on the response time which applies when the
system is heavily loaded (i.e. the mean number of jobs, N, is high).

� Applying the Interactive Response Time Law to the throughput
bound, X ≤ 1/Dmax we obtain:

R = N/X − Z ≥ NDmax − Z

� Applying Little’s Law we obtain W ≥ NDmax .
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Asymptotic bound

Thus the asymptotic bound for residence time or response time is:

W ≥ max{D,NDmax}
Residence Time Bound

R ≥ max{D,NDmax − Z}
Response Time Bound
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Bound on a lightly loaded system

� The bound on the throughput of an interactive system may be made
tighter when the system is lightly loaded (i.e. the mean number of
jobs, N, is small).

� From the interactive response time law:

X = N/(R + Z ) ≤ N/(D + Z )

� Applying Little’s Law (when Z = 0) we obtain X ≤ N/D.

X ≤ min{1/Dmax ,N/(D + Z )}
Throughput Bound (lightly loaded system)
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� Notice that the bottleneck depends on both resource parameters (Xi

or Si ) and the workload parameters (Vi ).

� If we change the number of visits that each job makes to a resource
we might move the bottleneck.
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Assumptions

� As mentioned in the introduction, the operational laws do not rely on many
assumptions.

� The only explicit assumption we have made is that the system is job flow
balanced—the same number of requests are completed by the system as
arrive at the system.

� We are also implicitly assuming that this holds at each of the resources or
devices within a system. A consequence of this is that jobs are not created
or destroyed anywhere in the system. This is sometimes called conservation
of work.

� We have also assumed that the system is homogeneous, that is, that the
behaviour of jobs or resources within a system does not depend on the
global state of the system.
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To be continued. . .
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