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Abstract 

In this study, we propose a testing environment for cyber-physical systems (CPS). In system testing for CPS, many tests are 
difficult to design or implement because of these systems’ many product variations. The proposed environment executes the tests
and guarantees that these systems operate reliably using two methods. The first method provides easy management of test cases 
by managing functions to be tested and configurations to be tested separately. The second method involves automatic testing of 
real devices based on model checking technologies. The authors have developed a horizontal prototype of the proposed 
environment and confirmed its feasibility and applicability. 
© 2016 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of KES International. 
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1. Introduction 

Recently, global, rapid product development has become a requirement for businesses to remain competitive. 
Developers of cyber-physical systems (CPS)1,2 have also applied new techniques for improving operational 
efficiency such as OSS software and software product lines (SPLs)3. A mapping study2 suggests that SPLs are used 
in industry to archive more efficient software development; research exists that examines the testing side of SPLs. 

However, in system testing for CPS, improving the operational efficiency and ensuring the quality of the systems 
remain difficult for the following reasons: 

Many product variations exist because several types of devices coexist in the same system. Therefore, testers 
spend a great deal of time validating each variation to guarantee that all of the systems operate reliably. 
Testing conflicts among functions is extremely difficult, and thus, systems might not be adequately tested. 
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In this study, we propose a system testing environment to solve these problems and to improve the operational 
efficiency and quality of testing of CPS. The proposed environment has two concepts as follows: 

Easy management of test cases. The proposed environment makes easy to manage test cases for many product 
variations using a repository for managing functions to be tested and configurations to be tested separately. 
Automatic testing. The proposed environment enables tests that are difficult to design or execute using model 
checking technologies. 

The remainder of this paper is organized as follows. A brief description of the problems in the testing of CPS is 
presented in Section 2. Section 3 presents overviews of model checking technologies as a background. Section 4 
details the architecture and implementation methods of the proposed environment; its feasibility and applicability are 
confirmed via an evaluation using a prototype for an air conditioning system in Section 5. Related work is discussed 
in Section 6. Conclusions and future studies are presented in Section 7. 

2. Research problems 

2.1. The problem of operational efficiency  

In CPS, problems related to operational efficiency seem to result from the extensive large number of test cases 
involved in system testing. (For the purposes of this study, system testing is defined as the testing of a function’s 
capability, and where the function needs more than two devices.) CPS may have many product variations so as to 
meet customer requirements; testers should validate all variations. 

The calculation of the number of product variations is shown in the equations that follow. When the target system 
consists of n kinds of devices and from one 1 to as many as m of each device may exist, the number of product 
variations is: 

n

k
km

1

   (1)

Thus, the number of test cases may be several times greater than the result of Eq. (1). 

2.2. The problem of quality assurance 

Assuring the quality of CPS is critical, because many devices in these systems are responsible for the essentials of 
life and must, therefore, be highly reliable.  

However, in CPS, we estimate that problems remain concerning quality assurance because of the large number of 
functions and their asynchrony. Functions are activated or deactivated by many events that occur asynchronously 
such as communication, operation, and noise. These factors might cause conflicts between functions; testing these 
conflicts is extremely difficult. Therefore, the systems might not be adequately tested, and thus, be at risk of failure. 

We assume that two functions, both of which are activated for 10 ms by external asynchronous events. The 
functions may conflict with each other if both events occur in a given 10 ms window, as shown in Figure 1. 

Function A

Conflict
Time

10ms

10msEvent
Event

Function B

Fig. 1. Example of function conflict. 
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3. Background 

This paper presents a system testing environment using model checking technologies. This section provides brief 
overviews of these technologies. 

3.1. Model checking 

Model checking4 is a technique for verifying the finite state of concurrent systems. Because model checking can 
be performed automatically, it is preferable to deductive verification. Model checking has been a topic of extensive 
theoretical research for the past thirty years5.

In model checking, the specifications of the system are expressed as temporal logic formulas. Efficient symbolic 
algorithms are used to traverse the model defined by the system and check if the specification holds. Formally, the 
problem can be stated as follows: given a desired property, expressed as a temporal logic formula p and a model M 
with initial state s, decide if 

M, s p   (2)

3.2. SPIN model checker 

The SPIN (Simple PROMELA INterpreter) model checker6 is an open-source software verification tool. The tool 
can be used for formal verification of multi-threaded software applications. 

The procedure for verification using SPIN is shown in Figure 2. In SPIN, the models are written in PROMELA 
(PROcess MEta LAnguage) and the properties to be verified are expressed in LTL (linear temporal logic)7. SPIN 
generates a model checker code written in C from the models and the properties, which is then compiled into a 
model checker program. Testers obtain the results of exhaustive verification in a short time by executing the 
compiled program. 

SPIN
Model Checker

(Executable)

Model
(PROMELA)

Properties
(LTL)

Model Checker
(C Source) C Compiler Results

Execute

Fig. 2. Procedure for verification using SPIN. 

PROMELA describes non-deterministic sequences and the model checker program performs fast (but exhaustive) 
verification of the model by iteratively performing all of the possible sequences. The models written in PROMELA 
have processes called “Proctypes” that are executed in parallel. Message channels are used to model the transfer of 
data from one process to another. The non-deterministic order or timing of messages is written as a PROMELA 
control flow. 

4. Methodology 

4.1. Overview

We propose two concepts to solve the previously mentioned problems of CPS, i.e., 1) easy management of test 
cases, and 2) automatic testing. In addition, we propose a testing environment that incorporates these concepts. 

Figure 3 shows the architecture of the proposed testing environment. This architecture contains a repository to 
manage system functions to be tested and system configurations to be tested separately. The repository greatly 
declines the number of data to be managed from the product of the number of the system functions by the number of 
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the system configurations to the sum of them. Next, the environment automatically generates test cases from certain 
system functions and system configurations for the device under test, and then, carries out testing. Testers obtain the 
results of system testing for the device with few operations and validate product variation for the configuration. 
Moreover, the architecture aids in improving efficiency to build the environment because it requires only the device 
under test, and testers do not have to prepare as many devices as the maximum configuration of the system. 
Implementation methods for each concept are presented in the following sections. 

Device Under Test

Automatic Generation
of Test Cases 

Functions Configurations

Test Cases

2) Automatic Testing

Repository

Test Results

1) Easy management of test cases

Fig. 3. Architecture of proposed testing environment. 

4.2. Easy management of test cases 

4.2.1. Architecture 
Figure 4 (a) shows the software architecture related to easy management of test cases in the proposed 

environment. In this environment, test cases are generated by a template engine because each system function is 
written in PROMELA (mentioned in Section 3) as a source template and each system configuration is written in 
XML, which is the data model for the template engine. 

4.2.2. Notation of system functions 
In this study, the source templates of system functions contain descriptions of the communication specifications 

of the system. PROMELA is suitable language because order or timing for sending communication commands is 
non-deterministic in many CPS. 

Figure 4 (b) shows the notation of the source templates. The template describes the non-deterministic order of 
device activation using Proctypes in PROMELA. Each Proctype corresponds to a device and contains data indicating 
the device type. By contrast, each instance of communication between devices is in the form of a message between 
Proctypes; the non-deterministic order or timing of commands is written in a PROMELA control flow. 

System Function
(PROMELA)

System Configuration
(XML)

Test Cases (PROMELA)

Template Engine

Source Template Data Model

             

PROMELA

Proctype

- Deveice Type
- Type A

- Test Steps Written 
in Repetition
- Send(A->B)
- Recieve(B->A)

Proctype

Commands’
non-deterministic 

order or timing

Devices’ 
non-deterministic 
order to activate

- Deveice Type
- Type B

- Test Steps Written 
in Repetition
- Send(B->A)
- Recieve(A->B)

Fig. 4. (a) Software architecture related to easy management of test cases; (b) Notation of source templates to describe system functions. 

(a) (b) 
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4.2.3. Procedure for generating test cases 
In this section, we describe the procedure of generating test cases from both the system functions and the system 

configurations. 
The template engine shown in Figure 4 (a) instantiates the source template that corresponds to the function to be 

tested using one of the system configurations and generates the executable test case written in PROMELA. 
Specifically, the template engine duplicates each Proctype for all devices written in the system configuration. In 
addition, the template engine determines both the source address and the destination address of each command.  

Figure 5 presents a conceptual diagram of the executable test case of one device of type A and three devices of 
type B generated by the proposed environment. 

PROMELA

Proctype

- Deveice Type
- Type A
- Address = 10

- Test Steps Written 
in Repetition
- Send(10->1)
- Send(10->2)
- Send(10->3)
- Recieve(1->10)
- Recieve(2->10)
- Recieve(3->10)

Duplicate ProctypeDetermine source address 
and destination address

Proctype
- Deveice Type

- Type B
- Address = 1

- Test Steps Written 
in Repetition
- Send(1->10)
- Recieve(10->1)

Proctype
- Deveice Type

- Type B
- Address = 2

- Test Steps Written 
in Repetition
- Send(2->10)
- Recieve(10->2)

Proctype
- Deveice Type

- Type B
- Address = 3

- Test Steps Written 
in Repetition
- Send(3->10)
- Recieve(10->3)

Fig. 5. Executable test case generated by the template engine of the proposed environment. 

4.3. Automatic testing 

4.3.1. Architecture 
Figure 6 (a) shows the software architecture related to automatic testing in the proposed environment. This 

architecture includes a modified version of SPIN, a GUI to allow testers to easily analyze test results, and a driver of 
network interface devices used to communicate with the real devices under test. 

A modified version of SPIN generates a model checker program to iteratively perform all possible 
communication sequences described in the system testing cases, some of which are difficult for testers to design or 
execute. The model checker program automatically runs and generates the test results. 

4.3.2. Procedure for automatic testing 
The procedure for automatic testing within the proposed testing environment (Figure 6 (b)) is described as 

follows: 

Testers select a test case and a device to be tested from the devices written as Proctypes in the test case. 
The model checker program executes the test case and sends the communication commands, written as Proctypes 
(except that corresponding to the device under test), via the network interface device. 
The model checker program receives the communication commands from the device under test. The program 
then determines the results of the test case by comparing the communication commands received from the device 
under test to those written in Proctype which correspond to the same device. 
Testers analyze the test results and communication log using the analysis support GUI if the test results are 
considered unacceptable. 



1346   Takeru Kuroiwa et al.  /  Procedia Computer Science   96  ( 2016 )  1341 – 1350 

Automatic
Testing 

Test Cases
(PROMELA)

Test Results

Analysis 

Support 

GUI

Driver

Network Interface Device

Modified 

SPIN

Device Under Test

Model Checker
(Executable)

                

Get a communication log 
received from the device 

under test

Test Cases

Proctype
- Deveice Type

- Type A

Proctype
- Deveice Type

- Type B

Select a test case and
a device under test

Device
Under Test

Log
Proctype

- Deveice Type
- Type B

Compare the log with 
Proctype of the device 

under test

Execute Proctypes
except the one of the 

device under test

Device
Under Test

Proctype
- Deveice Type

- Type A

Model 
Checker

Model 
Checker

Fig. 6. (a) Software architecture for automatic testing; (b) Procedure for automatic testing. 

4.3.3. Cooperating model checking with execution testing 
We determined that SPIN should be modified to perform communication with a real device in the proposed 

environment, because the model checker program generated by the original (unmodified) SPIN performs 
communication between only those processes running in the program and iteration of only non-deterministic 
sequences. In system testing, each time, the initial settings for the device under test are required. However, these 
initial settings are deterministic and the original SPIN does not iteratively change the initial settings. Therefore, the 
following modifications have been made: 

Communicate with real devices using a dedicated message channel 
Iteratively evaluate not only non-deterministic sequences but deterministic sequences (see Figure 7) 

Deterministic

Non-
determini

stic

Deterministic

Non-
determini

stic

Non-
determini

stic

Non-
determini

stic

: Non-iteratively

: Iteratively

Fig. 7. Modification of SPIN. 

5. Empirical Study 

We have confirmed the proposed environment’s feasibility and applicability in an evaluation using a prototype 
for an air conditioning system. This section presents overviews of both the target system and the prototype, and 
shows the results of the evaluation.  

5.1. Target system 

An air conditioning system has some part of control systems’ features of CPS shown in a survey8 as follows, and 
thus, the system is adequate for the evaluation of the proposed environment. 

The system consists of several kinds of physical devices with limited resources connected to each other via a 
dedicated network for the system. (see Figure 8 (a)) 
The new functions of the system are implemented during the software upgrade of each device. (see Figure 8 (b)) 

(a) (b) 
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Fig. 8. (a) Configuration of the target air conditioning system; (b) Software architecture of the air conditioning devices. 

5.2. Prototyping of  proposed environment 

Figure 9 (a) shows the hardware architecture of the prototype. The air conditioning device under test is connected 
to the prototype on a PC via a network interface device for interconversion between the communication protocol of 
the air conditioning system and the USB protocol.  

The software architecture of the prototype is shown in Figure 9 (b). The prototype includes the template engine, 
the modified SPIN, the model checker program, and the driver mentioned in Section 4. The architecture also 
includes a graphical user interface (GUI) to accept inputs for the template engine and to analyze the results which the 
model checker program outputs. 

Device 
Under TestPC

Network
Interface
Device

Network of 
the Air 

Conditioning 
SystemPrototype of

Proposed
Environment

             

Fig. 9. (a) Hardware architecture of the prototype; (b) Software architecture of the prototype. 

Figure 10 (a) shows the prototype’s GUI used to make system configurations. Testers can configure the system by 
means of mouse operations to place blocks which represent each device. Testers can also use the keyboard to input 
the parameters of each unit, such as device type and address. Figure 10 (b) shows the GUI used in executing the tests. 
Testers easily select the device under test by checking boxes in the “isVirtual” column. Testers can also obtain test 
results easily by simply checking the field showing “Success” or “Failure”.   

                    

Fig. 10. (a) GUI used to make system configurations; (b) GUI used to execute the test. 

(a) (b) 

(a) (b) 

(a) (b) 
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5.3. Evaluation 

We evaluated the feasibility and applicability of two concepts of the proposed environment (mentioned in Section 
1) through some test cases of an air conditioning system. 

5.3.1. Test cases for evaluation 
We attempted to test two cases shown in Table 1 using the prototype. The test cases took much time to design 

and implement in developing the air conditioning system. 

     Table 1. Test cases for the evaluation of the proposed environment. 

No. Test item name Point of test Difficulty to test 

(i) Change Mode of 
Ventilation Unit 

The mode of the ventilation unit is changed 
regardless of the order of the communication 

To test various orders of the communication and 
various types of the ventilation unit 

(ii) Conflict Scheduled 
Operations

The one scheduled operation is NOT 
activated if the other schedule is activated 

To induce conflict deliberately 

5.3.2. Results and discussion 
Table 2 shows the results of the evaluation about easy management of test cases and automatic testing.  

     Table 2. Results of the evaluation. 

No. Easy management of test cases Automatic testing 

(i) Good 

We could describe the communication for changing the 
mode in a source template and the various configurations in 
XML. Additionally, the template engine output test cases of 
every order of the communication. 

Good 

The model checker program generated by the modified SPIN 
automatically executed every order of the communication to 
the ventilation unit. 

(ii) Improvement is required 

It remained difficult to make a source template 
corresponding to each scheduled operation. We had to 
describe the communication of two scheduled operations in 
one source template in order to induce conflict.  

Good 

Same as above. 

Figure 11 (a) and Figure 11 (b) are the sequence diagrams which display the communication log during the test (i) 
generated by the prototype. These diagrams show that the communication commands that send to or receive from the 
real ventilation unit under test in different order controlled by the model checker program. Moreover, via the GUI, 
testers could analyze a test failure in a short time, and thereby, improve operational efficiency.  

                                

Fig. 11. (a) One order of the communication during the test (i); (b) Another order of the communication during the test (i). 

(a) (b) 
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Therefore, we determined that the concept of the proposed testing environment is feasible and beneficial. 
However, tests of function conflicts remain difficult in consideration of the result of test (ii). We would improve 

the template engine to combine two or more source templates which describe each function, and to alternate between 
deterministic and non-deterministic sequences for each communication sequence for testers to set sequences which 
may be a factor in these conflicts to non-deterministic, while setting other sequences to deterministic. Figure 12 
shows the conceptual diagram of GUI used to alternate between deterministic and non-deterministic sequences. 

Fig. 12. GUI used to alternate between deterministic and non-deterministic sequences. 

6. Related works 

Algorithms of conformance testing between models and their implementations of CPS9,10 were suggested. For 
formal modeling and verification of CPS, a framework to support testing and analysis11 was developed.  

On the other hand, model checking methodologies for web applications12 and for embedded systems13 have been 
proposed. An automation method of generating models for model checking14 was also suggested. A case study15

shows that an experimental fault analysis process using model extraction and model checking can detect the cause of 
failures that are hard to reproduce. Our proposed testing environment leads to enable testers to detect such failures 
on real devices.  

Moreover, a framework combining model checking and conformance tests16 enabled fully-automatic verification 
of embedded real-time systems and improved operational efficiency. Our study aims to achieve this goal in system 
testing for real embedded devices in CPS. 

7. Conclusion 

In this study, we described the concepts and problems related to system testing of CPS. One major problem 
concerns the operational efficiency of system testing; a second problem concerns methods of ensuring the quality of 
the systems being tested. 

We proposed a system testing environment to solve these problems. We developed and evaluated prototypes that 
utilize the following methods: easy management of test cases and automatic testing. These prototypes were shown to 
improve the operational efficiency. In addition, we confirmed through testing and evaluation that our prototype using 
modified SPIN would enable the tests for the real devices in various orders of the communication that was difficult 
to execute. 

The following tasks remain to be addressed in future studies: 

Architecture and management method of the repository. We proposed a repository to manage system functions 
and system configurations for testing. We will examine the architecture and management methods used to further 
improve operational efficiency. 

Testers select sequences to 
set non-deterministic. 

Combine two or more source 
templates.
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Application to product development. Our objective is to apply the proposed testing environment to product 
development. We hope to evaluate the testing environment when implemented in development sites and then 
refine its scope and performance. 
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