

Advanced Topics in Software Engineering: Population Models

Prof. Michele Loreti

Advanced Topics in Software Engineering *Corso di Laurea in Informatica (L31) Scuola di Scienze e Tecnologie*

We want to study and predict the effect of an $\ensuremath{\text{infection disease}}$ in a city/area.

We want to study and predict the effect of an **infection disease** in a city/area.

A classical model of this problem considers three kinds of individuals:

- Suscettible;
- Exposed;
- Infected;
- Recovered.

We want to study and predict the effect of an **infection disease** in a city/area.

A classical model of this problem considers three kinds of individuals:

- Suscettible;
- Exposed;
- Infected;
- Recovered.

Dynamics in *SEIR* model can be described via a CTMC.

Each state of the CTMC has the following form:

$$(x_S, x_E, x_I, x_R)$$

where

- *x_S* is the number of *suscettibles*;
- *x_E* is the number of *exposed*;
- *x_I* is the number of *infected*;
- *x_R* is the number of *recovered*.

Each state of the CTMC has the following form:

$$(x_S, x_E, x_I, x_R)$$

where

- *x_S* is the number of *suscettibles*;
- *x_E* is the number of *exposed*;
- *x_I* is the number of *infected*;
- *x_R* is the number of *recovered*.

If we let $N \in \mathbb{N}$ be the number of citizens in the area, the state space of our CTMC is a subset of $[0, N]^4$.

UNICAM UNICAM UNIVERSIT & Canada 336

In the SEIR system three kinds of events can occur:

- One Suscettible becomes Exposed;
- One Exposed becomes Infected;
- One Infected becomes Recovered,

In the SEIR system three kinds of events can occur:

- One Suscettible becomes Exposed;
- One Exposed becomes Infected;
- One Infected becomes Recovered,

Rates of the above events depends on the number/fraction of citizens of the different kinds!

Population Models

A Population Continuous Time Markov Chain (PCTMC) model is a tuple $M = (\mathbf{X}, \mathcal{D}, \mathcal{T}, \mathbf{d}_0)$ where:

- $\mathbf{X} = (X_1, \dots, X_n)$ is a vector of variables;
- each X_i takes values in a *finite* or *countable* domain $\mathcal{D}_i \subset \mathbb{R}$;

$$D = \mathcal{D}_0 \times \cdots \times \mathcal{D}_n = \prod_i \mathcal{D}_i;$$

• $\mathbf{d}_0 \in \mathcal{D}$ is the *initial state* of the model;

•
$$\mathcal{T} = \{\tau_1, \ldots, \tau_m\}$$
 is the set of *transitions* $\tau_i = (\ell, \mathbf{s}, \mathbf{t}, r)$ where:

- *ℓ* is the *label* of the transition;
- **s** $\in \mathbb{R}^n_{>0}$, is the *pre-vector*;
- $\mathbf{t} \in \mathbb{R}^{\overline{n}}_{\geq 0}$, is the *post-vector*,
- $r : \mathcal{D} \to \mathbb{R}_{\geq 0}$ is a *rate function* such that for any $\mathbf{d} \in \mathcal{D}$, if $\mathbf{d} \mathbf{s} + \mathbf{t} \notin \mathcal{D}$ then $r(\mathbf{d}) = \mathbf{0}$.

Let $M = (\mathbf{X}, \mathcal{D}, \mathcal{T}, \mathbf{d}_0)$, $\mathbf{d}_1, \mathbf{d}_2 \in \mathcal{D}$ and $\tau_i = (\ell, \mathbf{s}, \mathbf{t}, r) \in \mathcal{D}$.

Let $M = (\mathbf{X}, \mathcal{D}, \mathcal{T}, \mathbf{d}_0)$, $\mathbf{d}_1, \mathbf{d}_2 \in \mathcal{D}$ and $\tau_i = (\ell, \mathbf{s}, \mathbf{t}, r) \in \mathcal{D}$.

We let $\rightarrow_{\tau_i} \subseteq \mathcal{D} \times \mathbb{R}_{>0} \times \mathcal{D}$ denote the transition relation induced by transition τ_i :

$$\frac{r(\mathbf{d}_1) = \lambda \neq 0 \quad \mathbf{d}_2 = \mathbf{d}_1 - \mathbf{s} + \mathbf{t}}{\mathbf{d}_1 \xrightarrow{\lambda}_{\tau_i} \mathbf{d}_2}$$

Let $M = (\mathbf{X}, \mathcal{D}, \mathcal{T}, \mathbf{d}_0)$, $\mathbf{d}_1, \mathbf{d}_2 \in \mathcal{D}$ and $\tau_i = (\ell, \mathbf{s}, \mathbf{t}, r) \in \mathcal{D}$.

We let $\rightarrow_{\tau_i} \subseteq \mathcal{D} \times \mathbb{R}_{>0} \times \mathcal{D}$ denote the transition relation induced by transition τ_i :

$$\frac{r(\mathbf{d}_1) = \lambda \neq 0 \quad \mathbf{d}_2 = \mathbf{d}_1 - \mathbf{s} + \mathbf{t}}{\mathbf{d}_1 \xrightarrow{\lambda}_{\tau_i} \mathbf{d}_2}$$

We say that τ_i is *enabled* in **d**₁ if and only if $r(\mathbf{d}_1) > 0$.

Let $M = (\mathbf{X}, \mathcal{D}, \mathcal{T}, \mathbf{d}_0)$, $\mathbf{d}_1, \mathbf{d}_2 \in \mathcal{D}$ and $\tau_i = (\ell, \mathbf{s}, \mathbf{t}, r) \in \mathcal{D}$.

We let $\rightarrow_{\tau_i} \subseteq \mathcal{D} \times \mathbb{R}_{>0} \times \mathcal{D}$ denote the transition relation induced by transition τ_i :

$$\frac{r(\mathbf{d}_1) = \lambda \neq 0 \quad \mathbf{d}_2 = \mathbf{d}_1 - \mathbf{s} + \mathbf{t}}{\mathbf{d}_1 \xrightarrow{\lambda}_{\tau_i} \mathbf{d}_2}$$

We say that τ_i is *enabled* in \mathbf{d}_1 if and only if $r(\mathbf{d}_1) > 0$.

Finally, function $\rho_{\tau_i} : \mathcal{D} \times \mathcal{D} \to \mathbb{R}_{\geq 0}$ is used to denote the rate of a transition τ_i from \mathbf{d}_1 to \mathbf{d}_2 :

$$\rho_{\tau_i}(\mathbf{d}_1, \mathbf{d}_2) = \begin{cases} r(\mathbf{d}_1) & \mathbf{d}_2 = \mathbf{d}_1 - \mathbf{s} + \mathbf{t} \\ 0 & \text{otherwise} \end{cases}$$

Prof. Michele Loreti

Let $M = (\mathbf{X}, \mathcal{D}, \mathcal{T}, \mathbf{d}_0)$, $\mathbf{d}_1, \mathbf{d}_2 \in \mathcal{D}$ and $\tau_i = (\ell, \mathbf{s}, \mathbf{t}, r) \in \mathcal{D}$.

Prof. Michele Loreti

Population Models

146 / 275

Let $M = (\mathbf{X}, \mathcal{D}, \mathcal{T}, \mathbf{d}_0)$, $\mathbf{d}_1, \mathbf{d}_2 \in \mathcal{D}$ and $\tau_i = (\ell, \mathbf{s}, \mathbf{t}, r) \in \mathcal{D}$.

Function $\rho_{\mathcal{T}} : \mathcal{D} \times \mathcal{D} \to \mathbb{R}_{\geq 0}$ is used to denote the rate of a transition in M from \mathbf{d}_1 to \mathbf{d}_2 :

$$ho_{\mathcal{T}}(\mathsf{d}_1,\mathsf{d}_2) = \sum_{ au_i \in \mathcal{T}}
ho_{ au_i}(\mathsf{d}_1,\mathsf{d}_2)$$

Let $M = (\mathbf{X}, \mathcal{D}, \mathcal{T}, \mathbf{d}_0)$, $\mathbf{d}_1, \mathbf{d}_2 \in \mathcal{D}$ and $\tau_i = (\ell, \mathbf{s}, \mathbf{t}, r) \in \mathcal{D}$.

Function $\rho_{\mathcal{T}} : \mathcal{D} \times \mathcal{D} \to \mathbb{R}_{\geq 0}$ is used to denote the rate of a transition in M from \mathbf{d}_1 to \mathbf{d}_2 :

$$\rho_{\mathcal{T}}(\mathbf{d}_1, \mathbf{d}_2) = \sum_{\tau_i \in \mathcal{T}} \rho_{\tau_i}(\mathbf{d}_1, \mathbf{d}_2)$$

We let $\rightarrow_{\mathcal{T}} \subseteq \mathcal{D} \times \mathbb{R}_{>0} \times \mathcal{D}$ denote the transition relation induced by transitions \mathcal{T} :

$$\frac{\rho_{\mathcal{T}}(\mathbf{d}_1, \mathbf{d}_2) = \lambda \neq 0}{\mathbf{d}_1 \xrightarrow{\lambda}_{\tau_i} \mathbf{d}_2}$$

Prof. Michele Loreti

UNICAM Unicam Unicam Université d'Caraction 336

Vector Variables: (S, E, I, R)

Vector Variables: (S, E, I, R)

Counting Domain: $[0, N] \times [0, N] \times [0, N] \times [0, N]$

Vector Variables: (S, E, I, R)

Counting Domain: $[0, N] \times [0, N] \times [0, N] \times [0, N]$

Initial state: $(N - N_I, 0, N_I, 0)$

Vector Variables: (S, E, I, R)

Counting Domain: $[0, N] \times [0, N] \times [0, N] \times [0, N]$

Initial state: $(N - N_I, 0, N_I, 0)$

Transitions:

•
$$\left(\mathbf{S}_{E}, \mathbf{1}_{S}, \mathbf{1}_{E}, \lambda_{e} \cdot \frac{\mathbf{X}_{S}}{N} \cdot \mathbf{X}_{I} \right)$$

• $\left(\mathbf{E}_{I}, \mathbf{1}_{E}, \mathbf{1}_{E}, \lambda_{i} \cdot \mathbf{X}_{I} \right)$
• $\left(\mathbf{I}_{R}, \mathbf{1}_{I}, \mathbf{1}_{R}, \lambda_{r} \cdot \mathbf{X}_{I} \right)$

UNICAM Unicam Universitä e Canadian 1336

$$\left(\mathsf{S_E}, \mathbf{1}_{\mathsf{S}}, \mathbf{1}_{\mathsf{E}}, \lambda_{e} \cdot \frac{\mathsf{X}_{\mathsf{S}}}{N} \cdot \mathsf{X}_{\mathsf{I}}\right) \quad \left(\mathsf{E_I}, \mathbf{1}_{\mathsf{E}}, \mathbf{1}_{\mathsf{E}}, \lambda_{\mathsf{I}} \cdot \mathsf{X}_{\mathsf{I}}\right) \quad \left(\mathsf{I_R}, \mathbf{1}_{\mathsf{I}}, \mathbf{1}_{\mathsf{R}}, \lambda_{\mathsf{r}} \cdot \mathsf{X}_{\mathsf{I}}\right)$$

Let $M = (\mathbf{X}, \mathcal{D}, \mathcal{T}, \mathbf{d}_0)$, $\mathbf{d}_1, \mathbf{d}_2 \in \mathcal{D}$ be a population model, we can easily define the associated CTMC.

Let $M = (\mathbf{X}, \mathcal{D}, \mathcal{T}, \mathbf{d}_0)$, $\mathbf{d}_1, \mathbf{d}_2 \in \mathcal{D}$ be a population model, we can easily define the associated CTMC.

This is obtained as $(\mathcal{D}, \mathbf{R}_M)$ where the rate transition matrix \mathbf{R}_M is defined as follows:

$$\mathsf{R}_{M}(\mathsf{d}_{1},\mathsf{d}_{2}) = \rho_{\mathcal{T}}(\mathsf{d}_{1},\mathsf{d}_{2})$$

To be continued...

Prof. Michele Loreti

Population Models

150 / 275