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Example: Infection disease. . .

We want to study and predict the effect of an infection disease in a
city/area.

A classical model of this problem considers three kinds of individuals:
� Suscettible;
� Exposed;
� Infected;
� Recovered.

Dynamics in SEIR model can be described via a CTMC.
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Example: Infection disease. . .
SEIR via CTMC. . .

Each state of the CTMC has the following form:

(xS , xE , xI , xR)

where
� xS is the number of suscettibles;
� xE is the number of exposed;
� xI is the number of infected;
� xR is the number of recovered.

If we let N ∈ N be the number of citizens in the area, the state space of
our CTMC is a subset of [0,N]4.
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Example: Infection disease. . .
SEIR via CTMC. . .

In the SEIR system three kinds of events can occur:
� One Suscettible becomes Exposed;
� One Exposed becomes Infected;
� One Infected becomes Recovered,

Rates of the above events depends on the number/fraction of citizens of
the different kinds!
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Example: Infection disease. . .
SEIR via CTMC. . .

(xS , xE , xI , xR)

(xS − 1, xE + 1, xI , xR)

(xS , xE − 1, xI + 1, xR)

(xS , xE , xI − 1, xR + 1)

λ
(xS ,xE ,xI ,xR)
SE

λ
(xS ,xE ,xI ,xR)
EI

λ
(xS ,xE ,xI ,xR)
IR
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Population models. . .

A Population Continuous Time Markov Chain (PCTMC) model is a tuple
M = (X,D, T ,d0) where:

� X = (X1, . . . ,Xn) is a vector of variables;
� each Xi takes values in a finite or countable domain Di ⊂ R;
� D = D0 × · · · × Dn = ΠiDi ;
� d0 ∈ D is the initial state of the model;
� T = {τ1, . . . , τm} is the set of transitions τi = (`, s, t, r) where:

� ` is the label of the transition;
� s ∈ Rn

≥0, is the pre-vector;
� t ∈ Rn

≥0, is the post-vector;
� r : D → R≥0 is a rate function such that for any d ∈ D, if

d− s + t 6∈ D then r(d) = 0.
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Population models. . .

Let M = (X,D, T ,d0), d1,d2 ∈ D and τi = (`, s, t, r) ∈ D.

We let −→τi⊆ D × R>0 ×D denote the transition relation induced by
transition τi :

r(d1) = λ 6= 0 d2 = d1 − s + t

d1
λ−→τi d2

We say that τi is enabled in d1 if and only if r(d1) > 0.

Finally, function ρτi : D ×D → R≥0 is used to denote the rate of a
transition τi from d1 to d2:

ρτi (d1,d2) =
{

r(d1) d2 = d1 − s + t
0 otherwise
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Population models. . .

Let M = (X,D, T ,d0), d1,d2 ∈ D and τi = (`, s, t, r) ∈ D.
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Example: Infection disease. . .
SEIR via Population Model. . .

Vector Variables: (S,E, I,R)

Counting Domain: [0,N]× [0,N]× [0,N]× [0,N]

Initial state: (N − NI , 0,NI , 0)

Transitions:
�

(
S_E, 1S, 1E, λe · XS

N · XI
)

�

(
E_I, 1E, 1E, λi · XI

)
�

(
I_R, 1I, 1R, λr · XI

)
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Example: Infection disease. . .
Trajectories. . .

(
S_E, 1S, 1E, λe ·

XS
N · XI

) (
E_I, 1E, 1E, λi · XI

) (
I_R, 1I, 1R, λr · XI

)

(9, 0, 1, 0)

(8, 1, 1, 0)

(9, 0, 0, 1)

(7, 2, 1, 0)

(8, 0, 2, 0)

(8, 1, 0, 1)

(7, 1, 2, 0)

(8, 0, 1, 1)

λe · 9
10

λr

λe · 8
10

λi

λr

λe · 8
10 · 2

λr · 2
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From Population Models to CTMC. . .

Let M = (X,D, T ,d0), d1,d2 ∈ D be a population model, we can easily
define the associated CTMC.

This is obtained as (D,RM) where the rate transition matrix RM is defined
as follows:

RM(d1,d2) = ρT (d1,d2)
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To be continued. . .
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