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Probability. . . ,
Recall. ..

A sample space € is the set of possible outcomes of an experiment.

A o-algebra X on € is a family of subsets of €2 such that:
mQcy;
BifAcYthenA=Q—-Acy:
® for any Ai,..., A € X
JAiex

An element w € Q is named a sample outcomes or realisation while A € &
is an event.
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Probability. . . '

Recall. . .

Example: Tossing a coin twice
Q={TT,TH,HT, HH}
The event “the first is head” is

A={HT,HH}
Example: Measurement of a physical experiment

Q=R =[-00,+x]

The event “measure is larger than 10 but less or equale to 23" is

A = (10,23
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Probability. . .

Recall. . .

A probability space is a tuple (2, X, Pr) where

® Q) is a sample space;

® 3 is a o-algebra on Q;

® Pr:¥ — [0,1] such that:
= Pr(Q)=1
® for any Ai,..., A, (AiNA; =0 for any i # j):

Pr (U A,~> = Pr(A)

Remark: If Q is finite, and if each outcome is equally likely, then

Pr(A) = %
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Probability. . .

Recall. . .

Let (22, X, Pr) be a probability space. ..

For any A,B € X, Pr(AU B) = Pr(A) U Pr(B) — Pr(An B).

Two events A, B € ¥ are independent if and only if

Pr(AN B) = Pr(A) - Pr(B).
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Probability. . .

Recall. . .

Let A, B € ¥, if Pr(B) > 0 then the conditional probability of A given B is:

Pr(AN B)

Pr(AIB) = =5 s

Remark: Pr(A|B) is the fraction of times A occurs among those in which
B occurs!
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Probability. . .

Recall. . .

Let A, B € ¥, if Pr(B) > 0 then the conditional probability of A given B is:

Pr(AlB) = —Prl(;‘(g)B )

Remark: Pr(A|B) is the fraction of times A occurs among those in which
B occurs!

If A and B are independent. ..

Pr(AIB) = © rl(pf‘(g)B) = Pr(%/‘o)rk g)’ B) _ pr(a)

Prof. Michele Loreti Data Analysis 329 / 365



Random Variables. . .

A random variable is a mapping X : Q2 — R.

Prof. Michele Loreti Data Analysis 330 / 365



Random Variables. . .

A random variable is a mapping X : Q2 — R.

Let (2, X, Pr) be a probability space, a random variable X : Q@ — R is a
measurable function from Q to R.

Prof. Michele Loreti Data Analysis 330 / 365



Random Variables. . .

A random variable is a mapping X : Q2 — R.

Let (2, X, Pr) be a probability space, a random variable X : Q@ — R is a
measurable function from Q to R.

The probability that X takes value in a measurable set S C R is written as:

Pr(X € S) = Pr({w € Q| X(w) € S})
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Example. ..

The sample space of 3 coin flips is:

Q={TTT,TTH, THT, THH,HTT,HTH, HHT , HHH}
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Random Variables. . .

Example. ..

The sample space of 3 coin flips is:
Q={TTT,TTH, THT, THH,HTT,HTH, HHT , HHH}

If the coin is fair, for each w € Q Pr(w) = 3.
Let X(w) be the number of heads in the sequence w.

Let k € {0,1,2,3}:

3\1 3! 1
Prix =k = <k>§:m§
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Distribution function

Let X a random variable on the probability space (2, %, Pr), we define the
distribution function Fx for each real x € R by

Fx(x) = Pr[X < x] = Pr({w|X(w) < x})
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Distribution function

Let X a random variable on the probability space (2, %, Pr), we define the
distribution function Fx for each real x € R by

Fx(x) = Pr[X < x] = Pr({w|X(w) < x})

We associate another function px(+), called the probability mass function,
with X (pmf), for each x € R:

p(x) = Pr[X = x] = Pr({w|X(w) < x})

A random variable X is continuous if p(x) = 0 for all real x.

NB: If X is a continuous random variable, then X can assume infinitely
many values, and so it is reasonable that the probability of its assuming
any specific value we choose beforehand is zero.
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Example: Dice Roll

A random variable can be used to describe the process of rolling two (fair)
dice and the possible outcomes.
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Example: Dice Roll

A random variable can be used to describe the process of rolling two (fair)
dice and the possible outcomes.

We can consider the probability space (Q22p, X2p, Prap) such that:

_ Al

Q2D = {(nl, n2)]1 S ni, Ny S 6} ZQD = 292D PF(A) 36

The total number rolled is then a random variable X given by the function
that maps the pair to the sum: X((n1, n2)) = n1 + 2

The pms function px and the df Fx function can be defined as:

Fx(x) = px(y)

y<x

min(x—1,13—x)
| 20 2n e

0 otherwise
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Mean, or expected value

If X is a discrete random variable with probability mass function p(-), we
define the mean or expected value of X € S, u = E[X] by

E(X) = 3 x- p(x)

x€ES
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Mean, or expected value

If X is a discrete random variable with probability mass function p(-), we
define the mean or expected value of X € S, u = E[X] by

E(X) = 3 x- p(x)

x€ES

If X is a continuous random variable with density function f(-) = dz)(('), we

define the mean or expected value of X, u = E[X] by

o0

u:E[X]:/ x - f(x)dx

—0o0
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Variance

The expectation only gives us an idea of the average value assumed by a
random variable, not how much individual values may differ from this
average.
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The expectation only gives us an idea of the average value assumed by a
random variable, not how much individual values may differ from this
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The variance, Var(X), gives us an indication of the “spread” of values:

Var(X) = E [(X - E[X])?] = E [X?] - E[X]?
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Variance

The expectation only gives us an idea of the average value assumed by a
random variable, not how much individual values may differ from this
average.

The variance, Var(X), gives us an indication of the “spread” of values:

Var(X) = E [(X - E[X])?] = E [X?] - E[X]?
The standard deviation of X, sd(X) = +/Var(X).
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Covariance. ..

Let X and Y be two random variables with means px and py and
standard deviations ox and oy. The covariance between X and Y is
defined as:

Cov(X,Y) = E[(X — ux)(Y — py)]
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Covariance. ..

Let X and Y be two random variables with means px and py and
standard deviations ox and oy. The covariance between X and Y is

defined as:

Cov(X,Y) = E[(X — ux)(Y — py)]

The correlation is defined as:
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Normal Distribution

A random variable X has a Normal (or Gaussian) distribution with
parameters ;. and o if and only if it has probability density function:

1
d)p,,o'z(x) = U\/ﬂ

1 ()2
e;z(xﬂ)
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Normal Distribution

A random variable X has a Normal (or Gaussian) distribution with
parameters ;. and o if and only if it has probability density function:

d)u,cfz(x) = U\/ﬂ
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Normal Distribution

We say that X has a standard Normal distribution if 4 =0 and o = 1.
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Normal Distribution

We say that X has a standard Normal distribution if 4 =0 and o = 1.
Random variables with standard Normal distribution are denoted by Z.

Some facts about Normal Distribution:

= If X has distribution N(u, 02 then Z = X=#) has distribution N(0,1)

® |If Z has distribution N(0,1) then X =+ 0 Z has distribution
N(p, ).
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Normal Distribution

We say that X has a standard Normal distribution if 4 =0 and o = 1.
Random variables with standard Normal distribution are denoted by Z.

Some facts about Normal Distribution:

= If X has distribution N(u, 02 then Z = X=#) has distribution N(0,1)

® |If Z has distribution N(0,1) then X =+ 0 Z has distribution
N(p, ).

® Xi,...,X, are independent and distributed with N(u;, 0?) then 3°; X;

has distribution
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Normal Distribution

Let X be a random variable distributed as N(u, o?):

Pr(a<X<b):Pr<a_“<Z<b_M):CI)(b_—M)—d)(a_—M)

(o g

where ® is the distribution function of Z.
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Normal Distribution

Let X be a random variable distributed as N(u, o?):

Pr(a<X<b):Pr<a_u<Z<b_M):CI)(b_—M)—d)(a_—M)

(o g

where ® is the distribution function of Z.

Unfortunately, there is not any closed form for ®!
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Normal Distribution

Let X be a random variable distributed as N(u, o?):

Pr(a<X<b):Pr<a_“<Z<b_M):CI)(b_—M)—d)(a_—M)

(o g

where ® is the distribution function of Z.

Unfortunately, there is not any closed form for ®!

Tables are available!
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Normal Distribution

Let X be distributed as N(3,5)...
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Normal Distribution

Let X be distributed as N(3,5)...
Compute Pr(X > 1).

1-3
PrX > 1) = 1-Pr(X < 1) = 1—Pr (z <

W> = 1—®(—.8944) = 0.81

Find g such that Pr(X < q) = .2.
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Normal Distribution

Let X be distributed as N(3,5)...
Compute Pr(X > 1).

1-3
PrX > 1) = 1-Pr(X < 1) = 1—Pr (z <

W> = 1—®(—.8944) = 0.81

Find g such that Pr(X < q) = .2.

0.2 = Pr(X <q)
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Normal Distribution

Let X be distributed as N(3,5)...
Compute Pr(X > 1).

1-3
PrX > 1) = 1-Pr(X < 1) = 1—Pr (z <

W> = 1—®(—.8944) = 0.81

Find g such that Pr(X < q) = .2.

0.2:Pr(X<q):Pr<Z<q—\;§3) :<D(q—_3>
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Normal Distribution

Let X be distributed as N(3,5)...
Compute Pr(X > 1).

1_
PrX > 1) = 1-Pr(X < 1) = 1—Pr (z <123

f7§> = 1—®(—.8944) = 0.81

Find g such that Pr(X < q) = .2.

q-3 q-3
0.2=Pr(X < :Pr<Z<—):¢(—>
(X <q) 7 =
From the Normal table, (—.8416) = .2. Hence:
qg—3
—.8416 = —— = ¢ =1.1181
N
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Inequialities: Markov and Chebyshev Inequialities

Markov’s Inequiality: Let X be a non-negative random variable and
suppose that E[X] exists. For any t > 0:

Pr(X >t) < EX]
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Inequialities: Markov and Chebyshev Inequialities

Markov’s Inequiality: Let X be a non-negative random variable and
suppose that E[X] exists. For any t > 0:

Pr(X >t) < EX]

Chebyshev Inequiality: Let u = E[X] and 02 = Var[X]. The,

2
1
= P(ZIz K<

Pr(|X —pul >1t) < . 2

where Z = X=£.

ez
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Statistics. . .

Probability provides a priori information about a random phenomena.
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Statistics. . .

Probability provides a priori information about a random phenomena.

Unfortunately, often we don’t know the exact probability distribution of a
random variable X.

In this case we can try to reconstruct the properties of X by using a
number of observation.

We can consider two approaches:
® Descriptive Statistics, that is used to say something about a set of
information that has been collected only.
® |nferential Statistics, that is used to make prediction or comparisons
about a larger group (a population) using information gathered about
a small part of that population.
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Independent and Identically Distributed Random
Variables. ..

Let us consider a set of data X collected by observing a random
phenomenon:
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Independent and Identically Distributed Random
Variables. ..

Let us consider a set of data X collected by observing a random
phenomenon:

We can say that X = (Xi,...,X,) is a random vector and that Xi,..., X,
are Independent and Identically Distributed Random Variables with a
Cumulative Distribution Function F.
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Independent and Identically Distributed Random
Variables. ..

Let us consider a set of data X collected by observing a random
phenomenon:

We can say that X = (Xi,...,X,) is a random vector and that Xi,..., X,
are Independent and Identically Distributed Random Variables with a
Cumulative Distribution Function F.

We call (v1,...,v,) a random sample from F.
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Let X = (vi,...,vn) be a sequence of data.
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Medians. . .

Let X = (vi,...,vn) be a sequence of data.

The median of X is the middle number of a set of numbers arranged in
numerical order. If the number of values in a set is even, then the median
is the sum of the two middle values, divided by 2.
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The median of X is the middle number of a set of numbers arranged in
numerical order. If the number of values in a set is even, then the median
is the sum of the two middle values, divided by 2.
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Let X = (vi,...,vn) be a sequence of data.

The median of X is the middle number of a set of numbers arranged in
numerical order. If the number of values in a set is even, then the median
is the sum of the two middle values, divided by 2.

Example:

1,3,3,6,7,8,9
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S
Medians. . . w

Let X = (vi,...,vn) be a sequence of data.

The median of X is the middle number of a set of numbers arranged in
numerical order. If the number of values in a set is even, then the median
is the sum of the two middle values, divided by 2.

Example:

1,3,3,6,7,8,9 =  Median =6
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S
Medians. . . ,

Let X = (vi,...,vn) be a sequence of data.

The median of X is the middle number of a set of numbers arranged in
numerical order. If the number of values in a set is even, then the median
is the sum of the two middle values, divided by 2.

Example:

1,3,3,6,7,8,9 =  Median =6

1,2,3,4,5,6,8,9
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S
Medians. . . ,

Let X = (vi,...,vn) be a sequence of data.

The median of X is the middle number of a set of numbers arranged in
numerical order. If the number of values in a set is even, then the median
is the sum of the two middle values, divided by 2.

Example:

1,3,3,6,7,8,9 =  Median =6

1,2,3,4,5,6,8,9
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S
Medians. . . ,

Let X = (vi,...,vn) be a sequence of data.

The median of X is the middle number of a set of numbers arranged in
numerical order. If the number of values in a set is even, then the median
is the sum of the two middle values, divided by 2.

Example:

1,3,3,6,7,8,9 = Median = 6

1,2,3,4,5,6,8,9 = Median = 42L5 =45
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Let X = (v1,..., V) be a sequence of data.
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Mode. ..

Let X = (v1,..., V) be a sequence of data.

The mode is the most frequent value in the set. A set can have more than
one mode; if it has two, it is said to be bimodal, or in general multimodal.
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Mode. ..

Let X = (v1,..., V) be a sequence of data.

The mode is the most frequent value in the set. A set can have more than
one mode; if it has two, it is said to be bimodal, or in general multimodal.

Example:

1,1,2,3,5,8
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Mode. ..

Let X = (v1,..., V) be a sequence of data.

The mode is the most frequent value in the set. A set can have more than
one mode; if it has two, it is said to be bimodal, or in general multimodal.

Example:

1,1,2,3,5,8 = mode is =1
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Mode. ..

Let X = (v1,..., V) be a sequence of data.

The mode is the most frequent value in the set. A set can have more than
one mode; if it has two, it is said to be bimodal, or in general multimodal.

Example:

1,1,2,3,5,8 = mode is =1

1,3,5,7,9,9,21,25,25,31
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Mode. ..

Let X = (v1,..., V) be a sequence of data.

The mode is the most frequent value in the set. A set can have more than
one mode; if it has two, it is said to be bimodal, or in general multimodal.

Example:

1,1,2,3,5,8 = mode is =1

1,3,5,7,9,9,21,25,25,31 = modes are = 9 and 25
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Mean. ..

Let X = (vi,..., V) be a sequence of data.
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Mean. ..

Let X = (vi,..., V) be a sequence of data.

The mean is the sum of all the values in a set, divided by the number of
values. The mean of a sample X is usually denoted by X
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Mean. ..

Let X = (vi,..., V) be a sequence of data.

The mean is the sum of all the values in a set, divided by the number of
values. The mean of a sample X is usually denoted by X

The mean is sensitive to any change in value, unlike the median and mode,
where a change to an extreme or uncommon value usually has no effect.
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Mean. ..

Let X = (vi,..., V) be a sequence of data.

The mean is the sum of all the values in a set, divided by the number of
values. The mean of a sample X is usually denoted by X

The mean is sensitive to any change in value, unlike the median and mode,
where a change to an extreme or uncommon value usually has no effect.

One disadvantage of the mean is that a small number of extreme values
can distort its value:

1,1,1,2,2,3,3,3,200
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Mean. ..

Let X = (vi,..., V) be a sequence of data.

The mean is the sum of all the values in a set, divided by the number of
values. The mean of a sample X is usually denoted by X'

The mean is sensitive to any change in value, unlike the median and mode,
where a change to an extreme or uncommon value usually has no effect.

One disadvantage of the mean is that a small number of extreme values
can distort its value:

1,1,1,2,2,3,3,3,200

The trimmed mean, where the smallest and largest quarters of the values
are removed before the mean is taken, can solve this problem.
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Variability

Let X = (vi,...,vn) be a sequence of data.
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Variability

Let X = (vi,...,vn) be a sequence of data.

The range of X is the difference between the largest and smallest values of
X.

The range of a set is simple to calculate, but is not very useful because it
depends on the extreme values, which may be distorted.
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S e
Variability ,

Let X = (vi,...,vn) be a sequence of data.

The range of X is the difference between the largest and smallest values of
X.

The range of a set is simple to calculate, but is not very useful because it
depends on the extreme values, which may be distorted.

Example:

1,1,1,2,2,3,3,3,200
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Interquartile range

The Interquartile Range (IRQ) is computed as the range of the set with
smallest and largest quarters removed.
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Interquartile range

The Interquartile Range (IRQ) is computed as the range of the set with
smallest and largest quarters removed.

Algorithm:
1. Quartiles are calculated recursively, by using median;
2. If the number of entries is an even number 2n:
® first quartile Q1 is defined as median of the n smallest entries;
B the third quartile @3 is the median of the n largest entries.
3. If the number of entries is an odd number 2n + 1:
B first quartile Q1 is defined as median of the n smallest entries;

B the third quartile @3 is the median of the n largest entries;
B the second quartile Q2 is the the same as the ordinary median.
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Interquartile range

Example. ..

i x[i] Median Quartile

31 Q=31
31 (median of upper half, from row 1 to 6)

47

75

Q=87
(median of whole table)

87

115
116

© o N oo & O N

=
o

119 Qz=119
119 (median of lower half, from row 8 to 13)

=
jury

=
N

155

=
W

177
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Outliers. . .

The IQR is useful for determining outliers, or extreme values such as the
element 200 in the following dataset:

1,1,1,2,2,3,3,3,200
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Outliers. . .

The IQR is useful for determining outliers, or extreme values such as the
element 200 in the following dataset:

1,1,1,2,2,3,3,3,200

If Q1 and Q3 are the lower and the upper quartiles respectively, then one
could define an outlier to be any observation outside the range:

[Q1 — k(Q3 — Q1), Q3 + k(Q3 — Q1)]

where k is a nonnegative constant.
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Outliers. . .

The IQR is useful for determining outliers, or extreme values such as the
element 200 in the following dataset:

1,1,1,2,2,3,3,3,200

If Q1 and Q3 are the lower and the upper quartiles respectively, then one
could define an outlier to be any observation outside the range:

[Q1 — k(Q3 — Q1), Q3 + k(Q3 — Q1)]

where k is a nonnegative constant.

This method has been proposed by John Tukey and suggested k = 1.5 to
indicate an outlier and k = 3 for far out.
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Variance and standard deviation

Let X = (v1,...,V,) be a sequence of data.
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Variance and standard deviation

Let X = (v1,...,V,) be a sequence of data.

The variance s% of X' is a measure of how items are dispersed about their
mean. |t can be calculated as:

2 2(vi—X)
n—1
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Variance and standard deviation

Let X = (v1,...,V,) be a sequence of data.

The variance s% of X' is a measure of how items are dispersed about their
mean. |t can be calculated as:

2 2(vi—X)
n—1

The standard deviation s of X is the square root of the variance.

The relative variability of X is the standard deviation of X" divided by its
mean.
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Position

Let X = (vi,..., V) be a set of data we are interested study how each v;
is positioned (or ranked) in X.
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Position

Let X = (vi,..., V) be a set of data we are interested study how each v;
is positioned (or ranked) in X.

A simple ranking is used when an element is ranked as its position in the
order.
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Position

Let X = (vi,..., V) be a set of data we are interested study how each v;
is positioned (or ranked) in X.

A simple ranking is used when an element is ranked as its position in the
order.

The percentile ranking of a value v; is the percent of values that are below
it.
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Position

Let X = (vi,..., V) be a set of data we are interested study how each v;
is positioned (or ranked) in X.

A simple ranking is used when an element is ranked as its position in the
order.

The percentile ranking of a value v; is the percent of values that are below
it.

The z-score of a value v; is the number of standard deviations it is from
the mean:
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Position '

Example

Let X = {1.1,2.34,2.9,3.14,3.29,3.57, 4.0}, we have that:
= ¥ =291
= s=0.88
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Position

Example

Let X = {1.1,2.34,2.9,3.14,3.29,3.57, 4.0}, we have that:
= ¥ =291
= s=0.88

Let us consider value 3.57:
B |ts simple ranking is 2 out of 7;

® Its percentile ranking is 2 = 71, 43%;

3.57-291 _ 0.75.

B |ts z-score is 086
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Five-number summary

The five-number summary is a set of descriptive statistics that provide
information about a dataset.
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Five-number summary

The five-number summary is a set of descriptive statistics that provide
information about a dataset.

It consists of the five most important sample percentiles:

the sample minimum (smallest observation);

the lower quartile or first quartile;

the median (the middle value);

B the upper quartile or third quartile;

the sample maximum (largest observation).
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Box plot. ..

— — p— @XM UM
Whisker —»—
— 4= Third Quartile
— Medi
Box = —
™ <+— First Quartile
Whisker =——+—
— —_—l = Minimum

=]
° }—1— Outliers
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Convergence of Random Variables. . .

Let X3, Xo,...be a sequence of random variables, and let X be another
random variable. Let F, denote the CDF of X,, and let F denote the CDF
of X.
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Convergence of Random Variables. . .

Let X3, Xo,...be a sequence of random variables, and let X be another
random variable. Let F, denote the CDF of X,, and let F denote the CDF

of X.
Xp converges to X in probability, written X, L X, if for every € > 0,
Pr(|X, — X| >0) — 0

as n — O0.
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Convergence of Random Variables. . .

Let X3, Xo,...be a sequence of random variables, and let X be another
random variable. Let F, denote the CDF of X,, and let F denote the CDF

of X.

Xp converges to X in probability, written X, L X, if for every € > 0,
Pr(|X, — X| >0) — 0

as n — 0.

X, converges to X in distribution, written X, ~» X, if for every ¢ > 0,

lim Fp(t) = F(t)

n—oo

at all t for which F is continuous.
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. .
The Weak Law of Large Numbers. . . '

Let X1, Xa,...be an IID sample and let u = E[X1] and 0 = Var[Xi] then:

Xo 2o 1

where X, = 1 3~ X, and Var[X,] = "—n"
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The Weak Law of Large Numbers. . .

Let X1, Xa,...be an IID sample and let u = E[X1] and 0 = Var[Xi] then:

Xo >

where X, = 1 3~ X, and Var[X,] = "—n"

The Weak Law of Large Numbers guarantee that the distribution of X,
becomes more concentrated around p as n gets large!
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The Weak Law of Large Numbers. . .

Let X1, Xa,...be an IID sample and let u = E[X1] and 0 = Var[Xi] then:

Xo >

where X, = 1 3~ X, and Var[X,] = "—n"

The Weak Law of Large Numbers guarantee that the distribution of X,
becomes more concentrated around p as n gets large!

X1, X2,...must be IID!
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. .
The Weak Law of Large Numbers. . . ,

Example

Consider flipping a coin for which the probability of heads is p. Let X;
denote the outcome of a single toss (0 or 1). Hence,
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. .
The Weak Law of Large Numbers. . . ,

Example

Consider flipping a coin for which the probability of heads is p. Let X;
denote the outcome of a single toss (0 or 1). Hence,

The fraction of heads after n tosses is X,,. According to the WLLN X,
converges to p in probability.
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The Weak Law of Large Numbers. . .

Example

Consider flipping a coin for which the probability of heads is p. Let X;
denote the outcome of a single toss (0 or 1). Hence,
The fraction of heads after n tosses is X,,. According to the WLLN X,

converges to p in probability.

This does not mean that X, will numerically equal p!
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. .
The Weak Law of Large Numbers. . . u

Example

Consider flipping a coin for which the probability of heads is p. Let X;
denote the outcome of a single toss (0 or 1). Hence,

The fraction of heads after n tosses is X,,. According to the WLLN X,
converges to p in probability.

This does not mean that X, will numerically equal p!

We only know that when n is large, X, is tightly concentrated around p.
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. .
The Weak Law of Large Numbers. . . u

Example

Consider flipping a coin for which the probability of heads is p. Let X;
denote the outcome of a single toss (0 or 1). Hence,

The fraction of heads after n tosses is X,,. According to the WLLN X,
converges to p in probability.

This does not mean that X, will numerically equal p!

We only know that when n is large, X, is tightly concentrated around p.

Question: How large should be n so that

Pr(|X, — p| < 0.1) > p?
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The Weak Law of Large Numbers. . .

Example

Answer: From Chebyshev's inequality we know that:

o2

X — HN< ——
Pr(X —p|>01) £ s
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The Weak Law of Large Numbers. . .

Example

Answer: From Chebyshev's inequality we know that:

Pr(|X — N ——
Hence:
N — 0'2
Pr(|X,—p| <01)=1- Pr(|X — A)>1— ———
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. .
The Weak Law of Large Numbers. . . ,

Example

Answer: From Chebyshev's inequality we know that:

— 0'2
Pr(|X — N<—
Hence:
N — 0'2
Pr(| X, —p| <0.1)=1-Pr(|X — A)>1—-—
Warning: In the general case o2 is unknown!
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. .
The Weak Law of Large Numbers. . . ,

Example

Answer: From Chebyshev's inequality we know that:

— 0'2
Pr(|X — N<—
Hence:
N — 0'2
Pr(| X, —p| <0.1)=1-Pr(|X — A)>1—-—
Warning: In the general case o2 is unknown!

Solution: We can use s2!
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Central Limit Theorem

Let X1, Xa,...be an IID sample and let u = E[Xi] and 02 = Var[X;] then:
\/_(X M 7

where Z is distributed as N(0,1).
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Central Limit Theorem

Let X1, Xa,...be an IID sample and let u = E[Xi] and 02 = Var[X;] then:
\/_(X M 7
where Z is distributed as N(0,1).

Probability statements about X, can be approximated using a Normal
distribution. It's the probability statements that we are approximating, not
the random variable itself.

After a reasonable number of observations we can estimate how
good is the average value we have computed!
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Central Limit Theorem

Let X1, Xo,...be an IID sample and let ;= E[X1] and 0? = Var[Xi] then
following notations are all equivalent:

u

3

2
=
F
3

[
3
=
|
E
Il
=
o
q
N>
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Central Limit Theorem

Let X1, Xo,...be an IID sample and let ;= E[X1] and 0? = Var[Xi] then
following notations are all equivalent:

= X~ N, %)
= Xp—p=N0O,%)
= /n(X, — ) = N(0,0?)
w ) — (o, 1)
Remark: When y and o2 are unknown we can use their estimations!
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To be continued. ..
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