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Statistical inference & Simulation. ..

Statistical Inference can be used in combination with simulation to
perform many kind of study:

® performance estimation;

(system) parameter estimation and optimisation;

B transient analysis;
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Statistical inference & Simulation. ..

Statistical Inference can be used in combination with simulation to
perform many kind of study:

® performance estimation;

(system) parameter estimation and optimisation;

B transient analysis;

Basic ingredients:

® A model M that describes our system as a random variable X(t)
associating each time t € R>g a vector of observations in RR;

® A simulator function simulate(t) that, given a time t € R>g sample
a path fragment/realisation/computation from M.
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Statistical inference & Simulation. ..

Example

The SEIR model is a compartmental models that can be used to study
infection diseases.

Prof. Michele Loreti Statistical transient analysis 410 / 450



Statistical inference & Simulation. ..

Example

The SEIR model is a compartmental models that can be used to study
infection diseases.

The model consists of four groups of agents:

Suscettible;
Exposed;
Infected;

Recovered.
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Statistical inference & Simulation. ..

Example

The SEIR model is a compartmental models that can be used to study
infection diseases.

The model consists of four groups of agents:

Suscettible;

Exposed;
Infected;

Recovered.

Events:
® One Suscettible becomes Exposed;
= One Exposed becomes Infected;

® One Infected becomes Recovered,
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Statistical inference & Simulation. .. ,
Example: SEIR Population Model

Vector Variables: (S,E,|,R)
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Statistical inference & Simulation. ..
Example: SEIR Population Model

Vector Variables: (S,E,|,R)
Counting Domain: [0, N] x [0, N] x [0, N] x [0, N]

Initial state: (N — N;,0, N, 0)
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Statistical inference & Simulation. ..
Example: SEIR Population Model

Vector Variables: (S,E,|,R)
Counting Domain: [0, N] x [0, N] x [0, N] x [0, N]
Initial state: (N — N;,0, N, 0)

Transitions:
u (S_E, 1s+ 1,1 + 15, Ae - % . X5>
u (E_|71E71E7>\i'xl)

= (IR, 11,1r, A, - X))
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Statistical inference & Simulation. ..
Example: SEIR Population Model

We can use a simulator to study the fraction of citizens that are infected
in a given time period:
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Statistical inference & Simulation. ..
Example: SEIR Population Model

We can use a simulator to study the fraction of citizens that are infected
in a given time period:

1. Chose a deadline T;
2. Chose a number of replications n;

3. Chose the sampling time (time points where we register data):

Dy, ... D;

k

where t; € [0, T].
4. For each i € [0, n]:
® g = simulate(T);
"Vt € {to, ..., tk} : Dy = Dy ® 28,
5. Return Dy, ..., Dy,

K-
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From theory to Practice. ..
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Example: Leader Election

We want to test a protocol that allow to us to elect a leader among a set
of agents.
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Example: Leader Election

We want to test a protocol that allow to us to elect a leader among a set
of agents.

Naive algorithm:

1. Each active agent randomly select a value in {0,1};
2. An agent survives and start another round if:

B it has selected 0 and it sees another 0;
B it has selected 1 and it sees either a 0 or a 1.

3. An agent that has selected 0 that sees a 1 becomes inactive.
4. If an agent does not see any other active agent it becomes the leader.

5. If a leader sees another active agent, it re-start its computation.
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Example: Leader Election

Question. . .

Question: How we can build a population model to describe this
algorithm?
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Example: Leader Election

Population: A, SO, S1, I, L.
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Example: Leader Election

Population: A, SO, S1, I, L.

Rules:

= A As-0.5 S0

A As-0.5 S1

S1,S0 2222 ¢ s

S1,S; 2% ¢ sy

S0, S0 22%% C,Sg
As-0.5

SO7 Sl —_— F7 Sl

C As-0.5 L

LA C
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Example: Leader Election

We can use simulation to estimate the number of actives, followers and
leaders in the system.
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leaders in the system.

We can also estimate the probability to elect a single leader within T time
units.
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Example: Leader Election

We can use simulation to estimate the number of actives, followers and
leaders in the system.

We can also estimate the probability to elect a single leader within T time
units.

This is equivalent to estimate the probability of a Bernulli's distribution
(like tossing a coin).
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Recall. . .

Let Xi,...,X, be independent random variables distributed according the
same Bernulli's distribution with parameter p, we have that:

Pr([Xn — p| > €) < 2¢720¢

Prof. Michele Loreti Statistical transient analysis 418 / 450



Recall. . .

Let Xi,...,X, be independent random variables distributed according the
same Bernulli's distribution with parameter p, we have that:

Pr(|[X, — p| > €) < 2e720¢

Given a threshold ¢, and a probability §, we can use this formula to
compute the required number of iterations n to guarantee the probability.
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Recall. . .

Let Xi,...,X, be independent random variables distributed according the
same Bernulli's distribution with parameter p, we have that:

Pr(|[X, — p| > €) < 2e720¢

Given a threshold ¢, and a probability §, we can use this formula to
compute the required number of iterations n to guarantee the probability.

Pr(|Xn —p| >¢€) <4
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Recall. . .

Let Xi,...,X, be independent random variables distributed according the
same Bernulli's distribution with parameter p, we have that:

Pr(|[X, — p| > €) < 2e720¢

Given a threshold ¢, and a probability §, we can use this formula to
compute the required number of iterations n to guarantee the probability.
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Recall. . .

Let Xi,...,X, be independent random variables distributed according the
same Bernulli's distribution with parameter p, we have that:

Pr(|[X, — p| > €) < 2e720¢

Given a threshold ¢, and a probability §, we can use this formula to
compute the required number of iterations n to guarantee the probability.

Pr(X,—p|>€) <8 = 22 <§
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Recall. . .

Let Xi,...,X, be independent random variables distributed according the
same Bernulli's distribution with parameter p, we have that:

Pr(|[X, — p| > €) < 2e720¢

Given a threshold ¢, and a probability §, we can use this formula to
compute the required number of iterations n to guarantee the probability.

Pr(X,—p|>€) <8 = 22 <§
& —2ne® < log (g)
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Recall. . .

Let Xi,...,X, be independent random variables distributed according the
same Bernulli's distribution with parameter p, we have that:

Pr(|[X, — p| > €) < 2e720¢

Given a threshold ¢, and a probability §, we can use this formula to
compute the required number of iterations n to guarantee the probability.

Pr(X,—p|>€) <8 = 22 <§
& —2ne® < log (g)

— g
o n> I;i(2)

o =[]
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Number of iterations. . .

o {Iog (%W

2¢2

| =01 §=0.01 §=0.001
e=01 | 149 265 381
e=001| 14979 26492 38005
e =0.01 | 1497867 2649159 3800452
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Transient analysis. . .
Reachability

A path (or realisation) 7 of a stochastic process is a sequence of the form:

SotoSit1-..Snth...

where each s; € RX.
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Transient analysis. . . ,
Reachability

A path (or realisation) 7 of a stochastic process is a sequence of the form:

SotoSit1-..Snth...
where each s; € RX.

Let ¢, 1) : Rk — {T,L} be two predicates and t € R>q, we let:

R(p, t,p) = {m|3t' < t:p(x[t]) = T AV <t': ¢(n[t"]) =T}
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Transient analysis. . .
Reachability

A path (or realisation) 7 of a stochastic process is a sequence of the form:

SotoSit1-..Snth...
where each s; € RX.

Let ¢, : R — {T, L} be two predicates and t € R>g, we let:

R(p, t,p) = {m|3t' < t:p(x[t]) = T AV <t': ¢(n[t"]) =T}

N.B. For any ¢, t and ¢, R(¢, t, 1) is measurable!
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Transient analysis. . .
Reachability

A path (or realisation) 7 of a stochastic process is a sequence of the form:

SotoSit1-..Snth...
where each s; € RX.

Let ¢, : R — {T, L} be two predicates and t € R>g, we let:

R(p, t,p) = {m|3t' < t:p(x[t]) = T AV <t': ¢(n[t"]) =T}

N.B. For any ¢, t and ¢, R(¢, t, 1) is measurable!

Pr(R(¢, t,1)) is the probability to reach within t time units a
configuration satisfying 1 while only configurations satisfying ¢ are
traversed.
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Transient analysis. . . ,
Reachability

A randomised algorithm can be used to estimate Pra(o, t,v). We are
guaranteed that the results differs from the correct one more than § with a

probability that is less or equal to &:
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Transient analysis. . . ,
Reachability

A randomised algorithm can be used to estimate Pra(o, t,v). We are
guaranteed that the results differs from the correct one more than § with a
probability that is less or equal to &:

2
1. n= [—rloggé)-‘
2. sum=0
3. for n times:
B 1 = simulate(M)
" if T € R(¢,t,1) then sum = sum+1

4. return ™
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From theory to practice. ..

Prof. Michele Loreti Statistical transient analysis 422 / 450



Transient analysis. . .
Reachability

We can be also interested in the approximation of the function:

Py (t) = Pr(R(¢, t, 1))
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Transient analysis. . . “
Reachability

We can be also interested in the approximation of the function:

Py (t) = Pr(R(¢, t, 1))

Function py, , describes how the probability to reach ¢ (it is the CDF of
the random variable Y < t):
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Transient analysis. . .
Reachability

We can be also interested in the approximation of the function:

Py (t) = Pr(R(¢, t, 1))

Function py, , describes how the probability to reach ¢ (it is the CDF of
the random variable Y < t):

2
1. n= [%‘})-‘
2. D=0
3. for n times:
B 7 = simulate(M, t)

B if mingm € R(p,t',1) # L then DU {t'}

[{t'<x|xeD[}
n

4. return Ax.
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Hypothesis testing and reachability. . .

Hypothesis testing can be used to check if Pr(R(¢,t,v)) = p > po. We
can consider two relevant claims:

" p>po
" p<po
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Hypothesis testing and reachability. . .

Hypothesis testing can be used to check if Pr(R(¢,t,v)) = p > po. We
can consider two relevant claims:

" p>po
" p<po

The null hypothesis is:
" Ho:p=po
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Hypothesis testing and reachability. . .

Hypothesis testing can be used to check if Pr(R(¢,t,v)) = p > po. We
can consider two relevant claims:

" p>po
" p<po

The null hypothesis is:
" Ho:p=po

We specify two alternative hypothesis:
® Hyi:p>po
" H_1:p<po

Prof. Michele Loreti Statistical transient analysis 424 / 450



Hypothesis testing and reachability. . .

Warning: Hy cannot be proved correct since we cannot prove statistically
that p # po.
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S e
Hypothesis testing and reachability. . . ,

Warning: Hy cannot be proved correct since we cannot prove statistically
that p # po.

However, we can show that Hg is incorrect. We can also define a
procedure to test which of the alternative hypothesis is true.
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Hypothesis testing and reachability. . .

Warning: Hy cannot be proved correct since we cannot prove statistically
that p # po.

However, we can show that Hg is incorrect. We can also define a
procedure to test which of the alternative hypothesis is true.

We sample N paths mq,...,7, from M.
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Hypothesis testing and reachability. . .

Warning: Hy cannot be proved correct since we cannot prove statistically
that p # po.

However, we can show that Hg is incorrect. We can also define a
procedure to test which of the alternative hypothesis is true.

We sample N paths mq,...,7, from M.

We consider random variables X = Xi, ..., Xy where:

Xi:{ 1 ﬂ;GR((ﬁ,t,’IJ))

0 otherwise
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Hypothesis testing and reachability. . .

Warning: Hy cannot be proved correct since we cannot prove statistically
that p # po.

However, we can show that Hg is incorrect. We can also define a
procedure to test which of the alternative hypothesis is true.

We sample N paths mq,...,7, from M.

We consider random variables X = Xi, ..., Xy where:

0 otherwise

Xi:{ 1 ﬂ;GR((ﬁ,t,’IJ))

Note that Pr[X = 1] = p!
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Hypothesis testing and reachability. . .

We let Sy(X) = ¥, X;. We can view the evolution of Sy as a DTMC
on the space N x N:
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Hypothesis testing and reachability. . . '

We let Sy(X) = ¥, X;. We can view the evolution of Sy as a DTMC
on the space N x N:

Sn

4 (i+1,j+1)
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Hypothesis testing and reachability. . .

We can consider the variable Zy = Sy — Npo:
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Hypothesis testing and reachability. . .

We can consider the variable Zy = Sy — Npo:

Sn
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Hypothesis testing and reachability. . .

We can observe that. ..
® when Zy >> 0, we have a strong evidence for H,q;
® when Zy << 0, we have a strong evidence for H_.
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Hypothesis testing and reachability. . .

We can observe that. ..
® when Zy >> 0, we have a strong evidence for H,q;
® when Zy << 0, we have a strong evidence for H_.
More in general we can identify in R x R:

ZN ZN
A
Uu
NC |
>N >N
£ c
Fixed sample size tests Sequential tests
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Hypothesis testing and reachability. . .

Two kind of tests can be considered:

B Fixed sample size tests: the decision is taken after an a-priori
determined number of samples;

® Sequential tests: sampling potentially continue until a decision is
reached.
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Hypothesis testing and reachability. . .

Two kind of tests can be considered:

B Fixed sample size tests: the decision is taken after an a-priori
determined number of samples;

® Sequential tests: sampling potentially continue until a decision is
reached.

For sequential tests the goal will be to identify two functions /(N) and
u(N) that denote the borders £ — N'C and U — NC.
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Hypothesis testing and reachability. . .

To provide a measure (in terms of probability) of the error, the following

events is considered:

A
A1

Ao
—A 4
A,

Prof. Michele Loreti

{reach U before L or 7}
{reach L before U or I}
{reach Z or stay in NC}
A_1UAg
At1UAg
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Hypothesis testing and reachability. . .

To provide a measure (in terms of probability) of the error, the following
events is considered:

Ay1 = {reach U before L or T}
A_1 = {reach L before U or I}
Ao = {reach Z or stay in NC}
—\A+1 = A_1UA
AL = ApUA
We can impose the following conditions on false positive:
" Pr(Ayi|=Hy1) <oq
L PF(A_l‘ﬂH_]_) < ap
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Hypothesis testing and reachability. . .

To provide a measure (in terms of probability) of the error, the following
events is considered:

Ay1 = {reach U before L or T}

A_1 = {reach L before U or I}
Ao = {reach Z or stay in NC}
—\A+1 = A_1UA

-A_1 = A1 UA
We can impose the following conditions on false positive:
" Pr(Ayi|=Hy1) <oq
" Pr(A_i|-H-1) < an
and false negative:
" Pr(=AnlHi) < B
® Pr(=A_1lH-1) < 2

Prof. Michele Loreti Statistical transient analysis 430 / 450



Hypothesis testing and reachability. . .

To provide a measure (in terms of probability) of the error, the following
events is considered:

Ay1 = {reach U before L or T}

A_1 = {reach L before U or I}
Ao = {reach Z or stay in NC}
—\A+1 = A_1UA

-A; = A1 UA
We can impose the following conditions on false positive:
" Pr(Asi|-Hu) <ar =«
m Pr(A_i|-H-1) <ax =«
and false negative:
= Pr(-Au|Hu) < B =8
B Pr(=A_1|H-1) < B2 =§
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Criteria. ..

We will consider three criteria to judge tests:

B the correctness: we call a test correct if its probability of not drawing
the correct conclusion is guaranteed to be smaller than a, where
1 — « is the confidence level;

Prof. Michele Loreti Statistical transient analysis 431 / 450



Criteria. ..

We will consider three criteria to judge tests:

B the correctness: we call a test correct if its probability of not drawing
the correct conclusion is guaranteed to be smaller than a, where
1 — « is the confidence level;

® the power: as the probability that the test will eventually draw a
conclusion, that is 1 — Pr(Ao);
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Criteria. ..

We will consider three criteria to judge tests:

B the correctness: we call a test correct if its probability of not drawing
the correct conclusion is guaranteed to be smaller than a, where
1 — « is the confidence level;

® the power: as the probability that the test will eventually draw a
conclusion, that is 1 — Pr(Ao);

m the efficiency: the number of samples needed (in expectation) before
a conclusion can be drawn.
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Test classification. . .
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Test classification. . .

| Tests whose probability of drawing a wrong conclusion exceeds a when
|p — pol is small
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Test classification. . .

| Tests whose probability of drawing a wrong conclusion exceeds a when
|p — pol is small

Il Tests whose probability of drawing no conclusion (or a wrong
conclusion) exceeds 3 when |p — pol is small.
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Test classification. . .

| Tests whose probability of drawing a wrong conclusion exceeds a when
|p — pol is small

Il Tests whose probability of drawing no conclusion (or a wrong
conclusion) exceeds 3 when |p — pol is small.

Il Tests that are always correct and always draw a conclusion, at the cost
of drawing an extremely large number of samples before reaching a
conclusion when |p — po| is small.
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Test classification

Class I Class IT Class III
Risk when Correctness: wrong conclusion, Power: no conclusion, Efficiency:
P = po i.e., error of first kind i.e., error of second kind large running time
(& efficiency) (& efficiency)
Parameter Correctness-indifference level § Power-indifference level ¢ Guess y
Fixed sample Gauss-SSP Gauss-CI
size tests Chernoff-CI
Mixed tests Chow-Robbins
Sequential SPRT Azuma
tests Darling

Prof. Michele Loreti
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Binomial and Gaussian confidence intervals

The idea behind this test is the confidence interval based on an a priori
fixed sample size N.
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Binomial and Gaussian confidence intervals

The idea behind this test is the confidence interval based on an a priori
fixed sample size N.

We estimate probability p with a confidence interval and check where py is
located with respect to this interval.
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Binomial and Gaussian confidence intervals

The idea behind this test is the confidence interval based on an a priori
fixed sample size N.

We estimate probability p with a confidence interval and check where py is
located with respect to this interval.

The Binomial and Gaussian confidence interval (/*, u*) is:
= 1" = & (a)y/N+ po(1— po)
Byt =01 —a)y/N#*py(l—po)=—1I*
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Binomial and Gaussian confidence intervals

binomialCaussianCI(M,a,3,po,¢,t,7):

1. N=f(p)

2. 1" = -1 (a) N+ pol1 — po)
3. ut=-—/*

4. s=0

5. for N times:

" 71 = simulate(M)
B ifreR(¢p,t,¢) thenz=2z+1

6. if s— N pg < [/* return L
7. ifs—Nxpy > u* return U
8. return 7
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Binomial and Gaussian confidence intervals
Choice of N

The choice of N = f(3) plays a crucial role in the efficiency of the test.
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Binomial and Gaussian confidence intervals
Choice of N

The choice of N = f(3) plays a crucial role in the efficiency of the test.

If pis very different from pg, a small value for N is suffices, and a large
value for N is source of inefficiency.
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Binomial and Gaussian confidence intervals
Choice of N

The choice of N = f(3) plays a crucial role in the efficiency of the test.

If pis very different from pg, a small value for N is suffices, and a large
value for N is source of inefficiency.

If pis close to pg large values for N are needed.
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Binomial and Gaussian confidence intervals
Choice of N

The choice of N = f(3) plays a crucial role in the efficiency of the test.

If pis very different from pg, a small value for N is suffices, and a large
value for N is source of inefficiency.

If pis close to pg large values for N are needed.

binomialCaussianCl is a Type |l test and we want to guarantee that:

" Pr(=AnlHu) <8
® Pr(=A_1lH-1) < B
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Binomial and Gaussian confidence intervals

Choice of parameters

Let us assume that p = po + ¢ (¢ > 0).
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Binomial and Gaussian confidence intervals

Choice of parameters

Let us assume that p = po + ¢ (¢ > 0).

The probability of not being able to reject Hy in favour of H,q after
drawing N samples is:

Prlpn < po + ®71(1 — a)]
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Binomial and Gaussian confidence intervals

Choice of parameters
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Binomial and Gaussian confidence intervals

Choice of parameters

For large values of N we can assume that py = Sy/N is well
approximated by a normal distributed random variable with:

® mean py + ¢
® and variance 02 = (pg + ¢)(1 — po — ¢)/N.
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Binomial and Gaussian confidence intervals

Choice of parameters

For large values of N we can assume that py = Sy/N is well
approximated by a normal distributed random variable with:

® mean py + ¢
® and variance 02 = (pg + ¢)(1 — po — ¢)/N.

Let ¢ = ®1(1 — ) and 02H0 = po(1 — po)/N:
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Binomial and Gaussian confidence intervals

Choice of parameters

For large values of N we can assume that py = Sy/N is well
approximated by a normal distributed random variable with:

® mean py + ¢
® and variance 02 = (pg + ¢)(1 — po — ¢)/N.

Let ¢ = ®1(1 — ) and 02H0 = po(1 — po)/N:

~ N —Po— Eory—C
Prlpn < po + &oHy] = Pf{pN 2o=( < %M }
q) gaHQ_C
o

_ (&x/po(l—po)—cm)
vV (Po+¢)(1=po—C)
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Binomial and Gaussian confidence intervals

Choice of parameters

To guarantee that Pr(—A;1|H+1) < 8 we have:

5= <§\/P01—Po —C\/_>
V(o +¢)(1 = po— )

NE - (5\/7/30 T—po) — 0~ (8)V/(po+ )1 — po— C ))2
¢

Analogously, we can compute N by assuming p = pp — ¢ and computing
the probability Pr(—A_1|H-1).
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Binomial and Gaussian confidence intervals ,

Choice of parameters

To guarantee that Pr(—A;1|H+1) < 8 we have:

B:q,(s Po(l—Po)—C\/N>
V(po+ Q)1 —po—()
N = (sﬁu o) = ®7(8) /(0 + T —po - <>>2

¢
Analogously, we can compute N by assuming p = pp — ¢ and computing

the probability Pr(—A_1|H-1).

Finally, we let N = max{N}, N;}.
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. . T
Cl using Chernoff-Hoeffding bound ,

In this test the Chernoff-Hoeffding bound is used to compute the
confidence interval:

PHIX — E[X]| > ¢] < 2¢72M¢°
chTest(M,a,€,po,0,t,1)
1. N= 2—; log (%)
2.5=0
3. for N times:

® 7 = simulate(M)
B ifreR(¢p,t,9) thenz=2z+1

4. if s — N pg < —e€ return L
5. ifs— Nxpy>ereturnd
6. return 7
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. . T
Cl using Chernoff-Hoeffding bound '

Error probability

Let p = po + ¢ (¢ > 0). We have that:

Prlpo — Z > —ep]
Prlpo — X + ¢ > ¢ —en]
e—2N(C—€)2

Pr[7— po < 8/\/]

IA
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. . T
Cl using Chernoff-Hoeffding bound w

Error probability

Let p = po + ¢ (¢ > 0). We have that:

PriX —po <en] = Prlpo— Z > —ep]
= Prlpo— X+ (> (—en]
S e—2N((—€)2

The worst-case number of samples outside the power-indifference region
can be computed as:

N 2+/log(3) log(ar) — log(af)
c=

202
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Chernoff-Hoeffding vs Gaussian Cl

a=p

o s po =035 po=0.2
Ne Ng Ne Ng

0.05 0.1 600 259 600 189

0.025 9,587 4,199 9,587 2,785

0.01 59915 26,265 59,915 17,056

0.025 0.1 738 372 738 273

0.025 11,805 6,035 11,805 4,012

0.01 73,778 37,752 73,778 24,540
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Sequential probability ratio test

The sequential probability radio test (SPRT) is based on the idea to
sequentially test which of the following two hypothesis is true:

" Hypip>pgr
" Hi1:p>pa

where p_1 < py1.
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Sequential probability ratio test

The sequential probability radio test (SPRT) is based on the idea to
sequentially test which of the following two hypothesis is true:

" Hypip>pgr
" Hi:p>pa

where p_1 < py1.
The hypotheses’ likelihood ratio Ty is:

N—Sy

S
. Pﬂ(l - Pi1)
- 5 _
P2y (1 — p_1)N-5w
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Sequential probability ratio test

The sequential probability radio test (SPRT) is based on the idea to
sequentially test which of the following two hypothesis is true:

B Hii:p2>pi
" Hi1:p>pa
where p_1 < py1.
The hypotheses’ likelihood ratio Ty is:
sN 1 _ N—SN
- P+1( ,D.|_1)
-5 _
P2y (1 — p_1)N-5w

Small values of Ty speak in favour of H_1, large values of Ty speak in
favour of H,yj.
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Sequential probability ratio test

The idea of the test is to found boundaries v’ and /" such that when Ty
crosses either of these boundaries we accept the corresponding hypothesis.
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Sequential probability ratio test

The idea of the test is to found boundaries v’ and /" such that when Ty
crosses either of these boundaries we accept the corresponding hypothesis.

If we consider:
" =a1/(1 - ap)
"y =(1-)/a2)
we have that:
" Pr[H-1|Hs1] < an
® Pr[Hii|H-1] <o
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Sequential probability ratio test

The idea of the test is to found boundaries v’ and /" such that when Ty
crosses either of these boundaries we accept the corresponding hypothesis.

If we consider:
" =a1/(1 - ap)
"y =(1-)/a2)
we have that:
" PrlH_1|Hs1) < a2
® Pr[Hii|H-1] <o
We identify an indifference level § and we set p;1 = pg + d and
p—1=po — ¢ and:
" Hii:p>po+6
" Hiy:p>pp—0
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Sequential probability ratio test

We can observe that instead of the test statistic T we could use:

log Ty = 15y + 2N

p+1(1—p1) ) (1—P+1>
R - pr)p e

where:

Prof. Michele Loreti Statistical transient analysis 445 / 450



Sequential probability ratio test

We can observe that instead of the test statistic T we could use:

log Ty = 15y + 2N

where: a1 ) )
p+1{l — p1 — P+1
() ()
« & (1—py1)p 7 E\1- p-1
Finally:
I(N) = & (log/' = gaN) — Npo
u(N) = ~(logu' = g2N) — Npo
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Sequential probability ratio test

sequential Test(M,a1,02,0,Nm,po, @, t,1)

L q1=
2. g = ...
3.5=0
4. N=0
5. logT =0
6. while N < N,, do:
® 7 = simulate(M)
B if r € R(p,t,¢) thens=s+1
BEN=N+1
" JogT =q1-s—qx- N
B if logT < I(N) return £
= if logT > u(N) return U
7. return Z
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To be continued. ..
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