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Statistical inference & Simulation. . .

Statistical Inference can be used in combination with simulation to
perform many kind of study:

� performance estimation;
� (system) parameter estimation and optimisation;
� transient analysis;
� . . .

Basic ingredients:
� A modelM that describes our system as a random variable X (t)
associating each time t ∈ R≥0 a vector of observations in R;

� A simulator function simulateM(t) that, given a time t ∈ R≥0 sample
a path fragment/realisation/computation fromM.
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Statistical inference & Simulation. . .
Example

The SEIR model is a compartmental models that can be used to study
infection diseases.

The model consists of four groups of agents:
� Suscettible;
� Exposed;
� Infected;
� Recovered.

Events:
� One Suscettible becomes Exposed;
� One Exposed becomes Infected;
� One Infected becomes Recovered,
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Statistical inference & Simulation. . .
Example: SEIR Population Model

Vector Variables: (S,E, I,R)

Counting Domain: [0,N]× [0,N]× [0,N]× [0,N]

Initial state: (N − NI , 0,NI , 0)

Transitions:
�

(
S_E, 1S + 1I, 1E + 1S, λe · XI

N · XS
)

�

(
E_I, 1E, 1E, λi · XI

)
�

(
I_R, 1I, 1R, λr · XI

)

Prof. Michele Loreti Statistical transient analysis 411 / 450



Statistical inference & Simulation. . .
Example: SEIR Population Model

Vector Variables: (S,E, I,R)

Counting Domain: [0,N]× [0,N]× [0,N]× [0,N]

Initial state: (N − NI , 0,NI , 0)

Transitions:
�

(
S_E, 1S + 1I, 1E + 1S, λe · XI

N · XS
)

�

(
E_I, 1E, 1E, λi · XI

)
�

(
I_R, 1I, 1R, λr · XI

)

Prof. Michele Loreti Statistical transient analysis 411 / 450



Statistical inference & Simulation. . .
Example: SEIR Population Model

Vector Variables: (S,E, I,R)

Counting Domain: [0,N]× [0,N]× [0,N]× [0,N]

Initial state: (N − NI , 0,NI , 0)

Transitions:
�

(
S_E, 1S + 1I, 1E + 1S, λe · XI

N · XS
)

�

(
E_I, 1E, 1E, λi · XI

)
�

(
I_R, 1I, 1R, λr · XI

)

Prof. Michele Loreti Statistical transient analysis 411 / 450



Statistical inference & Simulation. . .
Example: SEIR Population Model

Vector Variables: (S,E, I,R)

Counting Domain: [0,N]× [0,N]× [0,N]× [0,N]

Initial state: (N − NI , 0,NI , 0)

Transitions:
�

(
S_E, 1S + 1I, 1E + 1S, λe · XI

N · XS
)

�

(
E_I, 1E, 1E, λi · XI

)
�

(
I_R, 1I, 1R, λr · XI

)

Prof. Michele Loreti Statistical transient analysis 411 / 450



Statistical inference & Simulation. . .
Example: SEIR Population Model

We can use a simulator to study the fraction of citizens that are infected
in a given time period:

1. Chose a deadline T ;
2. Chose a number of replications n;
3. Chose the sampling time (time points where we register data):

Dt0 , . . . ,Dtk

where ti ∈ [0,T ].
4. For each i ∈ [0, n]:

� σ = simulate(T );
� ∀ti ∈ {t0, . . . , tk} : Dti = Dti ⊕

σS(ti )
N .

5. Return Dt0 , . . . ,Dtk .
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From theory to Practice. . .

Prof. Michele Loreti Statistical transient analysis 413 / 450



Example: Leader Election

We want to test a protocol that allow to us to elect a leader among a set
of agents.

Naive algorithm:
1. Each active agent randomly select a value in {0, 1};
2. An agent survives and start another round if:

� it has selected 0 and it sees another 0;
� it has selected 1 and it sees either a 0 or a 1.

3. An agent that has selected 0 that sees a 1 becomes inactive.
4. If an agent does not see any other active agent it becomes the leader.
5. If a leader sees another active agent, it re-start its computation.

Prof. Michele Loreti Statistical transient analysis 414 / 450



Example: Leader Election

We want to test a protocol that allow to us to elect a leader among a set
of agents.

Naive algorithm:
1. Each active agent randomly select a value in {0, 1};
2. An agent survives and start another round if:

� it has selected 0 and it sees another 0;
� it has selected 1 and it sees either a 0 or a 1.

3. An agent that has selected 0 that sees a 1 becomes inactive.
4. If an agent does not see any other active agent it becomes the leader.
5. If a leader sees another active agent, it re-start its computation.

Prof. Michele Loreti Statistical transient analysis 414 / 450



Example: Leader Election
Question. . .

Question: How we can build a population model to describe this
algorithm?
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Example: Leader Election

Population: A, S0, S1, I, L.

Rules:
� A λs ·0.5−−−→ S0
� A λs ·0.5−−−→ S1
� S1, S0

λs ·0.5−−−→ C,S0

� S1, S1
λs ·0.5−−−→ C,S1

� S0, S0
λs ·0.5−−−→ C,S0

� S0, S1
λs ·0.5−−−→ F, S1

� C λs ·0.5−−−→ L
� L λ−→ C
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Example: Leader Election

We can use simulation to estimate the number of actives, followers and
leaders in the system.

We can also estimate the probability to elect a single leader within T time
units.

This is equivalent to estimate the probability of a Bernulli’s distribution
(like tossing a coin).

Prof. Michele Loreti Statistical transient analysis 417 / 450



Example: Leader Election

We can use simulation to estimate the number of actives, followers and
leaders in the system.

We can also estimate the probability to elect a single leader within T time
units.

This is equivalent to estimate the probability of a Bernulli’s distribution
(like tossing a coin).

Prof. Michele Loreti Statistical transient analysis 417 / 450



Example: Leader Election

We can use simulation to estimate the number of actives, followers and
leaders in the system.

We can also estimate the probability to elect a single leader within T time
units.

This is equivalent to estimate the probability of a Bernulli’s distribution
(like tossing a coin).

Prof. Michele Loreti Statistical transient analysis 417 / 450



Recall. . .

Let X1,. . . ,Xn be independent random variables distributed according the
same Bernulli’s distribution with parameter p, we have that:

Pr(|Xn − p| > ε) ≤ 2e−2nε2

Given a threshold ε, and a probability δ, we can use this formula to
compute the required number of iterations n to guarantee the probability.

Pr(|Xn − p| > ε) ≤ δ ⇒ 2e−2nε2 ≤ δ

⇔ −2nε2 ≤ log
(
δ
2

)
⇔ n ≥ − log( δ

2 )
2ε2

⇔ n =
⌈

log( 2
δ )

2ε2

⌉
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Number of iterations. . .

n =


log
(

2
δ

)
2ε2



δ = 0.1 δ = 0.01 δ = 0.001
ε = 0.1 149 265 381
ε = 0.01 14979 26492 38005
ε = 0.01 1497867 2649159 3800452
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Transient analysis. . .
Reachability

A path (or realisation) π of a stochastic process is a sequence of the form:

s0t0s1t1 . . . sntn . . .

where each si ∈ Rk .

Let φ, ψ : Rk → {>,⊥} be two predicates and t ∈ R≥0, we let:

R(φ, t, ψ) =
{
π
∣∣∃t ′ ≤ t : ψ(π[t ′]) = > ∧ ∀t ′′ < t ′ : φ(π[t ′′]) = >

}
N.B. For any φ, t and ψ, R(φ, t, ψ) is measurable!

Pr(R(φ, t, ψ)) is the probability to reach within t time units a
configuration satisfying ψ while only configurations satisfying φ are
traversed.
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Transient analysis. . .
Reachability

A randomised algorithm can be used to estimate PrM(φ, t, ψ). We are
guaranteed that the results differs from the correct one more than δ with a
probability that is less or equal to ε:

1. n =
⌈

log( 2
δ )

2ε2

⌉
2. sum = 0
3. for n times:

� π = simulate(M)
� if π ∈ R(φ, t, ψ) then sum = sum + 1

4. return sum
n
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From theory to practice. . .
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Transient analysis. . .
Reachability

We can be also interested in the approximation of the function:

ρψ,ψ(t) = Pr(R(φ, t, ψ))

Function ρψ,ψ describes how the probability to reach ψ (it is the CDF of
the random variable Y ≤ t):

1. n =
⌈

log( 2
δ )

2ε2

⌉
2. D = ∅
3. for n times:

� π = simulate(M, t)
� if mint′π ∈ R(φ, t ′, ψ) 6= ⊥ then D ] {t ′}

4. return λx . |{t
′≤x |x∈D|}

n
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Hypothesis testing and reachability. . .

Hypothesis testing can be used to check if Pr(R(φ, t, ψ)) = p > p0. We
can consider two relevant claims:

� p > p0
� p ≤ p0

The null hypothesis is:
� H0 : p = p0

We specify two alternative hypothesis:
� H+1 : p > p0
� H−1 : p < p0
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Hypothesis testing and reachability. . .

Warning: H0 cannot be proved correct since we cannot prove statistically
that p 6= p0.

However, we can show that H0 is incorrect. We can also define a
procedure to test which of the alternative hypothesis is true.

We sample N paths π1,. . . ,πn fromM.

We consider random variables X = X1, . . . ,XN where:

Xi =
{

1 πi ∈ R(φ, t, ψ)
0 otherwise

Note that Pr [X = 1] = p!
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Hypothesis testing and reachability. . .

We let SN(X) =
∑N

i=1 Xi . We can view the evolution of SN as a DTMC
on the space N× N:

N

SN

0 1 2 3 4
0

1

2

3

4

(i , j) (i + 1, j)

(i + 1, j + 1)

1− p

p
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Hypothesis testing and reachability. . .

We can consider the variable ZN = SN − Np0:

N

SN
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Hypothesis testing and reachability. . .

We can observe that. . .
� when ZN >> 0, we have a strong evidence for H+1;
� when ZN << 0, we have a strong evidence for H−1.

More in general we can identify in R× R:

Fixed sample size tests Sequential tests
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Hypothesis testing and reachability. . .

Two kind of tests can be considered:
� Fixed sample size tests: the decision is taken after an a-priori
determined number of samples;

� Sequential tests: sampling potentially continue until a decision is
reached.

For sequential tests the goal will be to identify two functions l(N) and
u(N) that denote the borders L −NC and U −NC.
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Hypothesis testing and reachability. . .

To provide a measure (in terms of probability) of the error, the following
events is considered:

A+1 = {reach U before L or I}
A−1 = {reach L before U or I}

A0 = {reach I or stay in NC}
¬A+1 = A−1 ∪ A0
¬A−1 = A+1 ∪ A0

We can impose the following conditions on false positive:
� Pr(A+1|¬H+1) ≤ α1

= α

� Pr(A−1|¬H−1) ≤ α2

= α

and false negative:
� Pr(¬A+1|H+1) ≤ β1

= β

� Pr(¬A−1|H−1) ≤ β2

= β
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Criteria. . .

We will consider three criteria to judge tests:
� the correctness: we call a test correct if its probability of not drawing
the correct conclusion is guaranteed to be smaller than α, where
1− α is the confidence level;

� the power: as the probability that the test will eventually draw a
conclusion, that is 1− Pr(A0);

� the efficiency: the number of samples needed (in expectation) before
a conclusion can be drawn.
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Test classification. . .

I Tests whose probability of drawing a wrong conclusion exceeds α when
|p − p0| is small

II Tests whose probability of drawing no conclusion (or a wrong
conclusion) exceeds β when |p − p0| is small.

III Tests that are always correct and always draw a conclusion, at the cost
of drawing an extremely large number of samples before reaching a
conclusion when |p − p0| is small.
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Test classification
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Binomial and Gaussian confidence intervals

The idea behind this test is the confidence interval based on an a priori
fixed sample size N.

We estimate probability p with a confidence interval and check where p0 is
located with respect to this interval.

The Binomial and Gaussian confidence interval (l∗, u∗) is:
� l∗ = Φ−1(α)

√
N ∗ p0(1− p0)

� u∗ = Φ−1(1− α)
√

N ∗ p0(1− p0) = −l∗
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Binomial and Gaussian confidence intervals

binomialCaussianCI(M,α,β,p0,φ,t,ψ):
1. N = f (β)
2. l∗ = Φ−1(α)

√
N ∗ p0(1− p0)

3. u∗ = −l∗

4. s = 0
5. for N times:

� π = simulate(M)
� if π ∈ R(φ, t, ψ) then z = z + 1

6. if s − N ∗ p0 < l∗ return L
7. if s − N ∗ p0 > u∗ return U
8. return I
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Binomial and Gaussian confidence intervals
Choice of N

The choice of N = f (β) plays a crucial role in the efficiency of the test.

If p is very different from p0, a small value for N is suffices, and a large
value for N is source of inefficiency.

If p is close to p0 large values for N are needed.

binomialCaussianCI is a Type II test and we want to guarantee that:
� Pr(¬A+1|H+1) ≤ β
� Pr(¬A−1|H−1) ≤ β
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Binomial and Gaussian confidence intervals
Choice of parameters

Let us assume that p = p0 + ζ (ζ > 0).

The probability of not being able to reject H0 in favour of H+1 after
drawing N samples is:

Pr [p̂N ≤ p0 + Φ−1(1− α)]
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Binomial and Gaussian confidence intervals
Choice of parameters

For large values of N we can assume that p̂N = SN/N is well
approximated by a normal distributed random variable with:

� mean p0 + ζ

� and variance σ2 = (p0 + ζ)(1− p0 − ζ)/N.

Let ξ = Φ−1(1− α) and σ2
H0

= p0(1− p0)/N:

Pr [p̂N ≤ p0 + ξσH0 ] = Pr
[

p̂N−p0−ζ
σ ≤ ξσH0−ζ

σ

]
= Φ

(
ξσH0−ζ

σ

)
= Φ

(
ξ
√

p0(1−p0)−ζ
√

N√
(p0+ζ)(1−p0−ζ)

)
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Binomial and Gaussian confidence intervals
Choice of parameters

To guarantee that Pr(¬A+1|H+1) ≤ β we have:

β = Φ
(
ξ
√

p0(1− p0)− ζ
√

N√
(p0 + ζ)(1− p0 − ζ)

)

N+
G =

(
ξ
√

p0(1− p0)− Φ−1(β)
√

(p0 + ζ)(1− p0 − ζ)
ζ

)2

Analogously, we can compute N−G by assuming p = p0 − ζ and computing
the probability Pr(¬A−1|H−1).

Finally, we let N = max{N+
G ,N

−
G }.

Prof. Michele Loreti Statistical transient analysis 439 / 450



Binomial and Gaussian confidence intervals
Choice of parameters

To guarantee that Pr(¬A+1|H+1) ≤ β we have:

β = Φ
(
ξ
√

p0(1− p0)− ζ
√

N√
(p0 + ζ)(1− p0 − ζ)

)

N+
G =

(
ξ
√

p0(1− p0)− Φ−1(β)
√

(p0 + ζ)(1− p0 − ζ)
ζ

)2

Analogously, we can compute N−G by assuming p = p0 − ζ and computing
the probability Pr(¬A−1|H−1).

Finally, we let N = max{N+
G ,N

−
G }.

Prof. Michele Loreti Statistical transient analysis 439 / 450



CI using Chernoff-Hoeffding bound

In this test the Chernoff-Hoeffding bound is used to compute the
confidence interval:

Pr [|X − E [X ]| > ε] ≤ 2e−2Nt2

chTest(M,α,ε,p0,φ,t,ψ)
1. N = 1

2ε2 log
(

2
α

)
2. s = 0
3. for N times:

� π = simulate(M)
� if π ∈ R(φ, t, ψ) then z = z + 1

4. if s − N ∗ p0 < −ε return L
5. if s − N ∗ p0 > ε return U
6. return I
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CI using Chernoff-Hoeffding bound
Error probability

Let p = p0 + ζ (ζ > 0). We have that:

Pr [X − p0 < εN ] = Pr [p0 − X > −εN ]
= Pr [p0 − X + ζ > ζ − εN ]
≤ e−2N(ζ−ε)2

The worst-case number of samples outside the power-indifference region
can be computed as:

NC = 2
√

log(β) log(α)− log(αβ)
2ζ2
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Chernoff-Hoeffding vs Gaussian CI
α = β
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Sequential probability ratio test

The sequential probability radio test (SPRT) is based on the idea to
sequentially test which of the following two hypothesis is true:

� H+1 : p ≥ p+1
� H−1 : p ≥ p−1

where p−1 < p+1.

The hypotheses’ likelihood ratio TN is:

TN =
pSN

+1(1− p+1)N−SN

pSN
−1(1− p−1)N−SN

Small values of TN speak in favour of H−1, large values of TN speak in
favour of H+1.
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Sequential probability ratio test

The idea of the test is to found boundaries u′ and l ′ such that when TN
crosses either of these boundaries we accept the corresponding hypothesis.

If we consider:
� l ′ = α1/(1− α2)
� u′ = (1− α1)/α2)

we have that:
� Pr [H−1|H+1] ≤ α2
� Pr [H+1|H−1] ≤ α1

We identify an indifference level δ and we set p+1 = p0 + δ and
p−1 = p0 − δ and:

� H+1 : p ≥ p0 + δ

� H−1 : p ≥ p0 − δ
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Sequential probability ratio test

We can observe that instead of the test statistic TN we could use:

log TN = q1SN + q2N

where:
q1 = log

( p+1(1− p1)
(1− p+1)p−1

)
q2 = log

(1− p+1
1− p−1

)

Finally:
l(N) = 1

q1
(log l ′ − q2N)− Np0

u(N) = 1
q1

(log u′ − q2N)− Np0
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Sequential probability ratio test

sequentialTest(M,α1,α2,δ,Nm,p0,φ,t,ψ)
1. q1 = . . .

2. q2 = . . .

3. s = 0
4. N = 0
5. logT = 0
6. while N < Nm do:

� π = simulate(M)
� if π ∈ R(φ, t, ψ) then s = s + 1
� N = N + 1
� logT = q1 · s − q2 · N
� if logT < l(N) return L
� if logT > u(N) return U

7. return I
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To be continued. . .
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