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Stochastic Process Algebra — Introduction and
Motivation

Stochastic process algebras . . .

� are formalisms originally developed to model concurrency.
� are discrete event modelling formalisms and incorporate timing and
probabilistic information with the events in the system.

� have formal semantics which can be used to automatically derive an
underlying Markov process (when durations are assumed to be
exponentially distributed)

The major difference between them is compositionality.
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Advantages of compositionality

For model construction:
� when a system consists of interacting components, the components,
and the interaction, can each be modelled separately;

� models have a clear structure and are easy to understand;
� models can be constructed systematically, by either elaboration or
refinement;

� the possibility of maintaining a library of model components,
supporting model reusability, is introduced.
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Process Algebra

� Models consist of agents which engage in actions.

α.P
��
�*

HH
HY

action type
or name

agent/
component

� The structured operational (interleaving) semantics of the language is
used to generate a labelled transition system.

Process algebra model Labelled transition system-
SOS rules
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Dynamic behaviour

� The behaviour of a model is dictated by the semantic rules governing
the combinators of the language.

� The possible evolutions of a model are captured by applying these
rules exhaustively, generating a labelled transition system.

� This can be viewed as a graph in which each node is a state of the
model (comprised of the local states of each of the components) and
the arcs represent the actions which can cause the move from one
state to another.
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Dynamic behaviour

Browser def= display .(cache.Browser + get.download .rel .Browser)
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Stochastic Process Algebra

� Models are constructed from components which engage in activities.

(α, r).P
��
�* 6 H

HHY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

� The language is used to generate a CTMC for performance modelling.

SPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition
diagram
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PEPA syntax

S ::= (α, r).S (prefix)

S1 + S2 (choice)

X (variable)

C ::= C1 BC
L C2 (cooperation)

C / L (hiding)

S (sequential)
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PEPA: informal semantics

(α, r).S
The activity (α, r) takes time ∆t (drawn from the
exponential distribution with parameter r).

S1 + S2
In this choice either S1 or S2 will complete an activity first.
The other is discarded.

Prof. Michele Loreti Stochastic Process Algebras: PEPA 159 / 275



PEPA: informal semantics

C1 BC
L C2

All activities of C1 and C2 with types in L are shared: others
remain individual.
NOTATION: write C1 ‖ C2 if L is empty.

C / L
Activities of C with types in L are hidden (τ type activities)
to be thought of as internal delays.
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Example: M/M/1/N/N queue

Arrival0
def= (accept, λ).Arrival1

Arrival i
def= (accept, λ).Arrival i + 1 + (serve,>).Arrival i − 1

(0 < i < N)
ArrivalN

def= (serve,>).ArrivalN − 1

Server def= (serve, µ).Server
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Example: M/M/1/N/N queue

Queue0 Queue1

� �
� �N

(accept, λ)

H

(serve, µ)

�
�

I
(accept, λ)

N

(serve, µ)

. . .

�(accept, λ)

�
(serve, µ)

J

H
QueueN − 1

� �
� �

H

(accept, λ)

N

(serve, µ)

QueueN

Queuei ≡ Arrival i BC
{serve}

Server
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Example: Browsers, server and download

Server def= (get,>).(download , µ).(rel ,>).Server

Browser def= (display , pλ).(get, g).(download ,>).(rel , r).Browser
+ (display , (1− p)λ).(cache,m).Browser

WEB def=
(
Browser ‖ Browser

)
BC

L
Server

where L = {get, download , rel}
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Synchronisation

What should be the impact of synchronisation on rate?

PEPA assumes bounded capacity: that is, a component cannot be made
to perform an activity faster by cooperation, so the rate of a shared
activity is the minimum of the apparent rates of the activity in the
cooperating components.

The apparent rate of a component P with respect to action type α, is the
total capacity of component P to carry out activities of type α, denoted
rα(P).
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PEPA activities and rates

When enabled an activity, a = (α, λ), will delay for a period determined by
its associated distribution function, i.e. the probability that the activity a
happens within a period of time of length t is Fa(t) = 1− e−λt .
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PEPA activities and rates

� We can think of this as the activity setting a timer whenever it
becomes enabled.

� The time allocated to the timer is determined by the exponential
distribution via the rate of the activity.

� If several activities are enabled at the same time each will have its
own associated timer.

� When the first timer finishes that activity takes place—the activity is
said to complete or succeed.

� This means that the activity is considered to “happen”: an external
observer will witness the event of activity of type α.

� An activity may be preempted, or aborted, if another one completes
first.
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PEPA and time

All PEPA models are time-homogeneous since all activities are
time-homogeneous: the rate and type of activities enabled by a component
are independent of time.
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PEPA and irreducibility and positive-recurrence

The other conditions, irreducibility and positive-recurrent states, are easily
expressed in terms of the derivation graph of the PEPA model.

We only consider PEPA models with a finite number of states so if the
model is irreducible then all states must be positive-recurrent i.e. the
derivation graph is strongly connected.

In terms of the PEPA model this means that all behaviours of the system
must be recurrent; in particular, for every choice, whichever path is chosen
it must eventually return to the point where the choice can be made
again, possibly with a different outcome.
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The Importance of Being Exponential
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The memoryless property of the negative exponential distribution means
that residual times do not need to be recorded.
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Structured Operational Semantics

PEPA is defined using a Plotkin-style structured operational semantics (a
“small step” semantics).

Prefix

(α, r).E
(α,r)
−−−→ E

Choice
E

(α,r)
−−−→ E ′

E + F
(α,r)
−−−→ E ′

F
(α,r)
−−−→ F ′

E + F
(α,r)
−−−→ F ′

Prof. Michele Loreti Stochastic Process Algebras: PEPA 170 / 275



Structured Operational Semantics

PEPA is defined using a Plotkin-style structured operational semantics (a
“small step” semantics).

Prefix

(α, r).E
(α,r)
−−−→ E

Choice
E

(α,r)
−−−→ E ′

E + F
(α,r)
−−−→ E ′

F
(α,r)
−−−→ F ′

E + F
(α,r)
−−−→ F ′

Prof. Michele Loreti Stochastic Process Algebras: PEPA 170 / 275



Structured Operational Semantics

PEPA is defined using a Plotkin-style structured operational semantics (a
“small step” semantics).

Prefix

(α, r).E
(α,r)
−−−→ E

Choice
E

(α,r)
−−−→ E ′

E + F
(α,r)
−−−→ E ′

F
(α,r)
−−−→ F ′

E + F
(α,r)
−−−→ F ′

Prof. Michele Loreti Stochastic Process Algebras: PEPA 170 / 275



Structured Operational Semantics: Cooperation
(α /∈ L)

Cooperation

E
(α,r)
−−−→ E ′

E BC
L

F
(α,r)
−−−→ E ′ BC

L
F

(α /∈ L)

F
(α,r)
−−−→ F ′

E BC
L

F
(α,r)
−−−→ E BC

L
F ′

(α /∈ L)
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Structured Operational Semantics: Cooperation
(α ∈ L)

Cooperation E
(α,r1)
−−−→ E ′ F

(α,r2)
−−−→ F ′

E BC
L

F
(α,R)
−−−→ E ′ BC

L
F ′

(α ∈ L)

where R = r1
rα(E )

r2
rα(F )min(rα(E ), rα(F ))
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Apparent Rate

rα((β, r).P) =
{

r β = α
0 β 6= α

rα(P + Q) = rα(P) + rα(Q)

rα(A) = rα(P) where A def= P

rα(P BC
L

Q) =
{

rα(P) + rα(Q) α /∈ L
min(rα(P), rα(Q)) α ∈ L

rα(P/L) =
{

rα(P) α /∈ L
0 α ∈ L
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Structured Operational Semantics: Hiding

Hiding

E
(α,r)
−−−→ E ′

E/L
(α,r)
−−−→ E ′/L

(α /∈ L)

E
(α,r)
−−−→ E ′

E/L
(τ,r)
−−−→ E ′/L

(α ∈ L)

Prof. Michele Loreti Stochastic Process Algebras: PEPA 174 / 275



Structured Operational Semantics: Hiding

Hiding

E
(α,r)
−−−→ E ′

E/L
(α,r)
−−−→ E ′/L

(α /∈ L)

E
(α,r)
−−−→ E ′

E/L
(τ,r)
−−−→ E ′/L

(α ∈ L)

Prof. Michele Loreti Stochastic Process Algebras: PEPA 174 / 275



Structured Operational Semantics: Constants

Constant

E (α,r)−→ E ′

A (α,r)−→ E ′
(A def= E )
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Multiway synchronisation

Cooperation in PEPA is multi-way. Two, three, four or more partners may
cooperate, and they all need to synchronise for the activity to happen.

For example, the system(
(α, r).P BC

{α}
(α, s).Q

)
BC
{α}

(α, t).R

will have a three-way synchronisation between P,Q and R on the activity
of type α
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Multiway synchronisation

The cooperation sets can make a big difference in the behaviour.

If we consider again the example from the previous slide but with a small
change to the cooperation sets we get different possibilities.

� ((α, r).P ‖ (α, s).Q) BC
{α}

(α, t).R
will have P and Q competing to cooperate with R giving rise to two
possible α type activities, only one of which can proceed.

�

(
(α, r).P BC

{α}
(α, s).Q

)
‖ (α, t).R

will have two α type activities: one synchronising P and Q and one in
R alone, both of which can proceed.
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Solving PEPA models

� As we have seen a continuous time Markov chain (CTMC) is
generated from a PEPA model via its structured operational
semantics.

� Linear algebra is used to solve the model in terms of equilibrium
behaviour.

� As we seen previously, the probability distribution can be used to
derive performance measures via a reward structure.
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The PEPA Eclipse Plug-in

Calculating by hand the transitions of a PEPA model and subsequently
expressing these in a form which was suitable for solution was a tedious
task prone to errors. The PEPA Eclipse Plug-in relieves the modeller of
this work.
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The PEPA Eclipse Plug-in: functionality

The plug-in will report errors in the model function:
� deadlock,
� absorbing states,
� static synchronisation mismatch (cooperations which do not involve
active participants).

The plug-in also generates the transition graph of the model, computes
the number of states, formulates the Markov process matrix QQQ and
communicates the matrix to a solver.

The plug-in provides a simple pattern language for selecting states from
the stationary distribution.
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PEPA Eclipse Plug-In input
P1

def= (start, r1).P2 P2
def= (run, r2).P3 P3

def= (stop, r3).P1

P1 ‖ P1
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PEPA Eclipse Plug-In input
P1

def= (start, r1).P2 P2
def= (run, r2).P3 P3

def= (stop, r3).P1

P1 ‖ P1

State space
1 P1 ‖ P1
2 P1 ‖ P2
3 P2 ‖ P1
4 P1 ‖ P3
5 P2 ‖ P2
6 P3 ‖ P1
7 P3 ‖ P2
8 P3 ‖ P2
9 P3 ‖ P3
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PEPA Eclipse Plug-In input
P1

def= (start, r1).P2 P2
def= (run, r2).P3 P3

def= (stop, r3).P1

P1 ‖ P1

CTMC representation computed by the plug-in

−2r1 r1 r1 0 0 0 0 0 0
0 −r1 − r2 0 r2 r1 0 0 0 0
0 0 −r1 − r2 0 r1 r2 0 0 0
r3 0 0 −r1 − r3 0 0 0 r1 0
0 0 0 0 −2r2 0 r2 r2 0
r3 0 0 0 0 −r1 − r3 r1 0 0
0 r3 0 0 0 0 −r2 − r3 0 r2
0 0 r3 0 0 0 0 −r2 − r3 r2
0 0 0 r3 0 r3 0 0 −2r3
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The PEPA website

http://www.dcs.ed.ac.uk/pepa

From the website the PEPA Eclipse Plug-in is available for download (as
well as some other tools).

In particular you will find the plug-in and further instructions at
http://www.dcs.ed.ac.uk/pepa/tools/plugin/download.html

There is a short movie which may help you with installing the PEPA
Plug-in for Eclipse at
http:
//homepages.inf.ed.ac.uk/stg/pepa_eclipse/installing_pepa/
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To be continued. . .
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Stochastic Process Algebra — Introduction and
Motivation

Stochastic process algebras . . .

� are formalisms originally developed to model concurrency.
� are discrete event modelling formalisms and incorporate timing and
probabilistic information with the events in the system.

� have formal semantics which can be used to automatically derive an
underlying Markov process (when durations are assumed to be
exponentially distributed)

The major difference between them is compositionality.
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Advantages of compositionality

For model construction:
� when a system consists of interacting components, the components,
and the interaction, can each be modelled separately;

� models have a clear structure and are easy to understand;
� models can be constructed systematically, by either elaboration or
refinement;

� the possibility of maintaining a library of model components,
supporting model reusability, is introduced.
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Process Algebra

� Models consist of agents which engage in actions.

α.P
��
�*

HH
HY

action type
or name

agent/
component

� The structured operational (interleaving) semantics of the language is
used to generate a labelled transition system.

Process algebra model Labelled transition system-
SOS rules
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Dynamic behaviour

� The behaviour of a model is dictated by the semantic rules governing
the combinators of the language.

� The possible evolutions of a model are captured by applying these
rules exhaustively, generating a labelled transition system.

� This can be viewed as a graph in which each node is a state of the
model (comprised of the local states of each of the components) and
the arcs represent the actions which can cause the move from one
state to another.
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Dynamic behaviour

Browser def= display .(cache.Browser + get.download .rel .Browser)

α.P α−→ P

P α−→ P ′

P + Q α−→ P ′

Q α−→ Q′

P + Q α−→ Q′

Browser

?
display

cache.Browser + get.downloadrel .Browser

?
get

�
�
��cache

download .rel .Browser

?
download

rel .Browser

rel

�
�
�
�
�
�
�
�
�
HH

H
HH

H
HH

HY
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download .rel .Browser

?
download

rel .Browser

rel

�
�
�
�
�
�
�
�
�
HH

H
HH

H
HH

HY
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Stochastic Process Algebra

� Models are constructed from components which engage in activities.

(α, r).P
��
�* 6 H

HHY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

� The language is used to generate a CTMC for performance modelling.

SPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition
diagram
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PEPA syntax

S ::= (α, r).S (prefix)

S1 + S2 (choice)

X (variable)

C ::= C1 BC
L C2 (cooperation)

C / L (hiding)

S (sequential)
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PEPA: informal semantics

(α, r).S
The activity (α, r) takes time ∆t (drawn from the
exponential distribution with parameter r).

S1 + S2
In this choice either S1 or S2 will complete an activity first.
The other is discarded.
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PEPA: informal semantics

C1 BC
L C2

All activities of C1 and C2 with types in L are shared: others
remain individual.
NOTATION: write C1 ‖ C2 if L is empty.

C / L
Activities of C with types in L are hidden (τ type activities)
to be thought of as internal delays.
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Example: M/M/1/N/N queue

Arrival0
def= (accept, λ).Arrival1

Arrival i
def= (accept, λ).Arrival i + 1 + (serve,>).Arrival i − 1

(0 < i < N)
ArrivalN

def= (serve,>).ArrivalN − 1

Server def= (serve, µ).Server
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Example: M/M/1/N/N queue

Queue0 Queue1

� �
� �N

(accept, λ)

H

(serve, µ)

�
�

I
(accept, λ)

N

(serve, µ)

. . .

�(accept, λ)

�
(serve, µ)

J

H
QueueN − 1

� �
� �

H

(accept, λ)

N

(serve, µ)

QueueN

Queuei ≡ Arrival i BC
{serve}

Server
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Example: Browsers, server and download

Server def= (get,>).(download , µ).(rel ,>).Server

Browser def= (display , pλ).(get, g).(download ,>).(rel , r).Browser
+ (display , (1− p)λ).(cache,m).Browser

WEB def=
(
Browser ‖ Browser

)
BC

L
Server

where L = {get, download , rel}
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Synchronisation

What should be the impact of synchronisation on rate?

PEPA assumes bounded capacity: that is, a component cannot be made
to perform an activity faster by cooperation, so the rate of a shared
activity is the minimum of the apparent rates of the activity in the
cooperating components.

The apparent rate of a component P with respect to action type α, is the
total capacity of component P to carry out activities of type α, denoted
rα(P).
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PEPA activities and rates

When enabled an activity, a = (α, λ), will delay for a period determined by
its associated distribution function, i.e. the probability that the activity a
happens within a period of time of length t is Fa(t) = 1− e−λt .
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PEPA activities and rates

� We can think of this as the activity setting a timer whenever it
becomes enabled.

� The time allocated to the timer is determined by the exponential
distribution via the rate of the activity.

� If several activities are enabled at the same time each will have its
own associated timer.

� When the first timer finishes that activity takes place—the activity is
said to complete or succeed.

� This means that the activity is considered to “happen”: an external
observer will witness the event of activity of type α.

� An activity may be preempted, or aborted, if another one completes
first.
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PEPA and time

All PEPA models are time-homogeneous since all activities are
time-homogeneous: the rate and type of activities enabled by a component
are independent of time.
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PEPA and irreducibility and positive-recurrence

The other conditions, irreducibility and positive-recurrent states, are easily
expressed in terms of the derivation graph of the PEPA model.

We only consider PEPA models with a finite number of states so if the
model is irreducible then all states must be positive-recurrent i.e. the
derivation graph is strongly connected.

In terms of the PEPA model this means that all behaviours of the system
must be recurrent; in particular, for every choice, whichever path is chosen
it must eventually return to the point where the choice can be made
again, possibly with a different outcome.
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The Importance of Being Exponential

@
@
@R

�
�

��	

?

�
�
�	

@
@
@@R

Stop ‖ (β, s).Stop (α, r).Stop ‖ Stop

Stop ‖ Stop

(α, r).Stop ‖ (β, s).Stop

(β, s)

(α, r) (β, s)

(α, r) (β, s)

(α, r)
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The memoryless property of the negative exponential distribution means
that residual times do not need to be recorded.
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Structured Operational Semantics

PEPA is defined using a Plotkin-style structured operational semantics (a
“small step” semantics).

Prefix

(α, r).E
(α,r)
−−−→ E

Choice
E

(α,r)
−−−→ E ′

E + F
(α,r)
−−−→ E ′

F
(α,r)
−−−→ F ′

E + F
(α,r)
−−−→ F ′
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Structured Operational Semantics: Cooperation
(α /∈ L)

Cooperation

E
(α,r)
−−−→ E ′

E BC
L

F
(α,r)
−−−→ E ′ BC

L
F

(α /∈ L)

F
(α,r)
−−−→ F ′

E BC
L

F
(α,r)
−−−→ E BC

L
F ′

(α /∈ L)
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Structured Operational Semantics: Cooperation
(α ∈ L)

Cooperation E
(α,r1)
−−−→ E ′ F

(α,r2)
−−−→ F ′

E BC
L

F
(α,R)
−−−→ E ′ BC

L
F ′

(α ∈ L)

where R = r1
rα(E )

r2
rα(F )min(rα(E ), rα(F ))
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Apparent Rate

rα((β, r).P) =
{

r β = α
0 β 6= α

rα(P + Q) = rα(P) + rα(Q)

rα(A) = rα(P) where A def= P

rα(P BC
L

Q) =
{

rα(P) + rα(Q) α /∈ L
min(rα(P), rα(Q)) α ∈ L

rα(P/L) =
{

rα(P) α /∈ L
0 α ∈ L
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Structured Operational Semantics: Hiding

Hiding

E
(α,r)
−−−→ E ′

E/L
(α,r)
−−−→ E ′/L

(α /∈ L)

E
(α,r)
−−−→ E ′

E/L
(τ,r)
−−−→ E ′/L

(α ∈ L)
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Structured Operational Semantics: Constants

Constant

E (α,r)−→ E ′

A (α,r)−→ E ′
(A def= E )
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Multiway synchronisation

Cooperation in PEPA is multi-way. Two, three, four or more partners may
cooperate, and they all need to synchronise for the activity to happen.

For example, the system(
(α, r).P BC

{α}
(α, s).Q

)
BC
{α}

(α, t).R

will have a three-way synchronisation between P,Q and R on the activity
of type α
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Multiway synchronisation

The cooperation sets can make a big difference in the behaviour.

If we consider again the example from the previous slide but with a small
change to the cooperation sets we get different possibilities.

� ((α, r).P ‖ (α, s).Q) BC
{α}

(α, t).R
will have P and Q competing to cooperate with R giving rise to two
possible α type activities, only one of which can proceed.

�

(
(α, r).P BC

{α}
(α, s).Q

)
‖ (α, t).R

will have two α type activities: one synchronising P and Q and one in
R alone, both of which can proceed.
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Solving PEPA models

� As we have seen a continuous time Markov chain (CTMC) is
generated from a PEPA model via its structured operational
semantics.

� Linear algebra is used to solve the model in terms of equilibrium
behaviour.

� As we seen previously, the probability distribution can be used to
derive performance measures via a reward structure.
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The PEPA Eclipse Plug-in

Calculating by hand the transitions of a PEPA model and subsequently
expressing these in a form which was suitable for solution was a tedious
task prone to errors. The PEPA Eclipse Plug-in relieves the modeller of
this work.
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The PEPA Eclipse Plug-in: functionality

The plug-in will report errors in the model function:
� deadlock,
� absorbing states,
� static synchronisation mismatch (cooperations which do not involve
active participants).

The plug-in also generates the transition graph of the model, computes
the number of states, formulates the Markov process matrix QQQ and
communicates the matrix to a solver.

The plug-in provides a simple pattern language for selecting states from
the stationary distribution.
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PEPA Eclipse Plug-In input
P1

def= (start, r1).P2 P2
def= (run, r2).P3 P3

def= (stop, r3).P1

P1 ‖ P1
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PEPA Eclipse Plug-In input
P1

def= (start, r1).P2 P2
def= (run, r2).P3 P3

def= (stop, r3).P1

P1 ‖ P1

State space
1 P1 ‖ P1
2 P1 ‖ P2
3 P2 ‖ P1
4 P1 ‖ P3
5 P2 ‖ P2
6 P3 ‖ P1
7 P3 ‖ P2
8 P3 ‖ P2
9 P3 ‖ P3
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PEPA Eclipse Plug-In input
P1

def= (start, r1).P2 P2
def= (run, r2).P3 P3

def= (stop, r3).P1

P1 ‖ P1

CTMC representation computed by the plug-in

−2r1 r1 r1 0 0 0 0 0 0
0 −r1 − r2 0 r2 r1 0 0 0 0
0 0 −r1 − r2 0 r1 r2 0 0 0
r3 0 0 −r1 − r3 0 0 0 r1 0
0 0 0 0 −2r2 0 r2 r2 0
r3 0 0 0 0 −r1 − r3 r1 0 0
0 r3 0 0 0 0 −r2 − r3 0 r2
0 0 r3 0 0 0 0 −r2 − r3 r2
0 0 0 r3 0 r3 0 0 −2r3
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The PEPA website

http://www.dcs.ed.ac.uk/pepa

From the website the PEPA Eclipse Plug-in is available for download (as
well as some other tools).

In particular you will find the plug-in and further instructions at
http://www.dcs.ed.ac.uk/pepa/tools/plugin/download.html

There is a short movie which may help you with installing the PEPA
Plug-in for Eclipse at
http:
//homepages.inf.ed.ac.uk/stg/pepa_eclipse/installing_pepa/
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To be continued. . .
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Upgrading a PC LAN

Suppose we wish to determine the mean waiting time for data packets at a
PC connected to a local area network, operating as a token ring.

The transmission medium supports no more than one transmission at any
given time. To resolve conflicts, a token is passed round the network from
one node to another in round robin order.
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Token ring communication

A node has control of the medium, i.e. it can transmit, only whilst it holds
the token.

In a PC LAN every PC corresponds to a node on the network.

Other nodes on the network might be peripheral devices such as printers or
faxes but for the purposes of this study we make no distinction and
assume that all nodes are PCs.

Prof. Michele Loreti Performance Modelling and Analysis with PEPA
221 / 275



Token ring communication

A node has control of the medium, i.e. it can transmit, only whilst it holds
the token.

In a PC LAN every PC corresponds to a node on the network.

Other nodes on the network might be peripheral devices such as printers or
faxes but for the purposes of this study we make no distinction and
assume that all nodes are PCs.

Prof. Michele Loreti Performance Modelling and Analysis with PEPA
221 / 275



Token ring communication

A node has control of the medium, i.e. it can transmit, only whilst it holds
the token.

In a PC LAN every PC corresponds to a node on the network.

Other nodes on the network might be peripheral devices such as printers or
faxes but for the purposes of this study we make no distinction and
assume that all nodes are PCs.

Prof. Michele Loreti Performance Modelling and Analysis with PEPA
221 / 275



Upgrading a PC LAN

There are currently four PCs (or similar devices) connected to the LAN in
a small office, but the company has recently recruited two new employees,
each of whom will have a PC.

Our task is to find out how the delay experienced by data packets at each
PC will be affected if another two PCs are added.
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Modelling Assumptions

Each PC can only store one data packet waiting for transmission at a
time, so at each visit of the token there is either one packet waiting or no
packet waiting. The average rate at which each PC generates data packets
for transmission is known to be λ.

We also know the mean duration, d , of a data packet transmission, and
the mean time, m, taken for the token to pass from one PC to the next.

It is assumed that if another data packet is generated, whilst the PC is
transmitting, this second data packet must wait for the next visit of the
token before it can be transmitted. In other words, each PC can transmit
at most one data packet per visit of the token.
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Modelling the system: choosing components

The first stage in developing a model of the system in PEPA is to
determine the components of the system and the actions which they can
undertake.

It seems clear that one type of component should be used to represent the
PCs. The components representing the four/six PCs with have essentially
the same behaviour. But since token visits the nodes in order we will need
to distinguish the components.

We will need another component to represent the medium. As remarked
previously, the medium can be represented solely by the token.
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Modelling the system: choosing actvities

The description of the PC is very simple in this case. It only has two
activities which it can undertake:

� generate a data packet;
� transmit a data packet.

Moreover we are told that it can only hold one data packet at a time and
so these activities must be undertaken sequentially.

This suggests the following PEPA component for the ith PC:

PCi0
def= (arrive, λ).PCi1

PCi1
def= (transmit i , µ).PCi0

This will need some refinement when we consider interaction with the
token.
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Modelling the system: choosing activities

For the token we can think of its current state being characterised by its
current position. Thus, if there are N PCs in the network the states of the
token correspond to the values {1, 2, . . .N}.

When it is at the ith PC then the token may
� transmit a token if there is one to transmit and then walk on; or
� walk on at once if there is no token waiting.

Tokeni
def= (walkoni+1, ω).Tokeni+1 +

(transmit i , µ).(walk i+1, ω).Tokeni+1
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Refining the components

In order to ensure that the token’s choice is made dependent on the state
of PC being visited, we add a walkon action to the PC when it is empty,
and impose a cooperation between the PC and the Token for both walkon
and serve.

PCi0
def= (arrive, λ).PCi1 + (walkon2, ω).PCi0

PCi1
def= (transmit i , µ).PCi0
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Complete model: four PC case

PC10
def= (arrive, λ).PC11 + (walkon2, ω).PC10

PC11
def= (transmit1, µ).PC10

PC20
def= (arrive, λ).PC21 + (walkon3, ω).PC20

PC21
def= (transmit2, µ).PC20

PC30
def= (arrive, λ).PC31 + (walkon4, ω).PC30

PC31
def= (transmit3, µ).PC30

PC40
def= (arrive, λ).PC41 + (walkon1, ω).PC40

PC41
def= (transmit4, µ).PC40
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Token1
def= (walkon2, ω).Token2 + (transmit1, µ).(walk2, ω).Token2

Token2
def= (walkon3, ω).Token3 + (transmit2, µ).(walk3, ω).Token3

Token3
def= (walkon4, ω).Token4 + (transmit3, µ).(walk4, ω).Token4

Token4
def= (walkon1, ω).Token1 + (transmit4, µ).(walk1, ω).Token1

LAN def= (PC10 ‖ PC20 ‖ PC30 ‖ PC40) BC
L

Token1

where L = {walkon1,walkon2,walkon3,walkon4,

serve1, serve2, serve3, serve4}.

Here we have arbitrarily chosen a starting state in which all the PCs are
empty and the Token is at PC1.
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To be continued. . .
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