
Predicting Testability of Concurrent Programs

Tingting Yu, Wei Wen, Xue Han, Jane Huffman Hayes

Department of Computer Science

University of Kentucky

Lexington, Kentucky, 40506, USA

tyu@cs.uky.edu, wei.wen0@uky.edu, xha225@g.uky.edu, hayes@cs.uky.edu

Abstract—Concurrent programs are difficult to test due to
their inherent non-determinism. To address the nondetermin-
ism problem, testing often requires the exploration of thread
schedules of a program; this can be time-consuming for testing
real-world programs. We believe that testing resources can be
distributed more effectively if testability of concurrent programs
can be estimated, so that developers can focus on exploring the
low testable code. Voas introduces a notion of testability as the
probability that a test case will fail if the program has a fault, in
which testability can be measured based on fault-based testing
and mutation analysis. Much research has been proposed to
analyze testability and predict defects for sequential programs,
but to date, no work has considered testability prediction for
concurrent programs, with program characteristics distinguished
from sequential programs. In this paper, we present an approach
to predict testability of concurrent programs at the function level.
We propose a set of novel static code metrics based on the unique
properties of concurrent programs. To evaluate the performance
of our approach, we build a family of testability prediction models
combining both static metrics and a test suite metric and apply
it to real projects. Our empirical study reveals that our approach
is more accurate than existing sequential program metrics.

I. INTRODUCTION

The advent of multicore processors has greatly increased the

prevalence of concurrent programs in order to achieve higher

performance. Unfortunately, failures due to concurrency faults

still occur prolifically in deployed concurrent systems [60].

To tackle this, engineers use software testing as the primary

method to detect concurrency faults [51].

It is challenging to test real world concurrent programs pri-

marily because concurrency faults are sensitive to execution in-

terleavings that are imposed by various concurrency constructs

(e.g., synchronization operations). Unless a specific interleav-

ing that can cause faults to occur and cause their effects to be

visible is exercised during testing, they will remain undetected.

To address this problem, numerous research efforts have been

focused on applying dynamic analysis techniques to testing

for concurrency faults by monitoring program execution [5],

[14], [16] and controlling thread interleavings.

While software testing is an expensive process in general,

concurrent software testing can be particularly expensive.

Existing dynamic techniques typically monitor every shared

memory access and synchronization operation so they incur

significant runtime overhead. Recent work [13] reports that

testing concurrent programs can introduce a 10x-100x slow-

down for each test run. Such overhead increases as test suite

size increases. Therefore, it is desirable to determine which

code regions are more likely to contain concurrency faults as

this can guide developers to focus the testing efforts on the

identified code.

Software testability of a program or code region is a pre-

diction of the amount of effort required for software testing as

well as of the likelihood for revealing faults. Voas et al. define

software testability as the likelihood of a program failing on

the next test input from a predefined input distribution, given

that there is a fault in the program [54]. Mutation testing has

been used to evaluate testability of a given program for a

given testing criterion [55]. The mutation scores obtained from

running a number of mutants are used to measure testability.

Since testability is a dynamic attribute of software, it is very

computationally-intensive to measure directly. One approach

to address this is to apply a testability prediction model

to software at various levels of granularity (e.g., functions,

classes, files). In practice, software development organizations

often use test cases generated by the same testing crite-

rion to perform unit testing across multiple releases of the

software [3]. Thus, a testability prediction model based on

inexpensive measurements from the current software release

could be a cost-effective way to measure testability throughout

the life of a software product.

Software testability prediction is related to software defect

prediction. There has been much research on software defect

prediction by combining static code metrics to identify defect-

prone source code artifacts [59]. A variety of statistical and

machine learning techniques have been used to build defect

prediction models [11]. Similar approaches have also been

applied to predict testability based on mutation scores. For

example, Jalbert et al. [25] propose a machine learning ap-

proach to predict mutation scores based on a combination of

source code and test suite metrics. Their results show that the

combination approach can be effective.

However, all existing research has focused on sequential

software. To date, no work has considered concurrent software

systems for which testing is extremely expensive due to the

large number of possible thread interleavings and instrumenta-

tion overhead. Unlike testability prediction for sequential pro-

grams, that often relies on a set of well-defined and traditional

code metrics (e.g., lines of code, cyclomatic complexity),

testability prediction for concurrent programs must consider

the unique concurrency properties in its fault models: threads,

shared variable accesses between threads, and synchronization

operations. A software component with a low testability score

2016 IEEE International Conference on Software Testing, Verification and Validation

978-1-5090-1827-7/16 $31.00 © 2016 IEEE

DOI 10.1109/ICST.2016.39

168

suggests that the current testing approach is not adequate for

exposing concurrency faults and, therefore, effort should be

made to test this component (e.g., adding instrumentation).

In this paper, we address the problem of testability pre-

diction for concurrent programs. We propose five novel code

metrics specific to concurrent programs (concurrent code

metrics or CPM) by taking unique features related to con-

currency properties into account. Specifically, we adapt the

concurrency control flow graph (CCFG) to generate code

metrics involving (i) concurrent cyclomatic complexity, (ii)

number of shared variables, (iii) number of conditional basic

blocks that contain concurrency constructs, (iv) number of

synchronization operations, and (v) access distance between

shared variables in a local thread. We conjecture that these

metrics and their combination can predict the testability of a

program. The testability score (mutation score) is computed by

applying a variety of mutation operators specific to concurrent

programs. Then, we create accurate testability predictors by

combining both code metrics and test suite metrics (i.e., code

coverage), as the testability score is affected by the quality of

the test suite. We use different statistical and machine learning

techniques to determine the best combination of metrics for

predicting testability.

To evaluate our approach, we apply it to seven real word

applications. Our results show that, given test cases generated

from specifications (widely used test case generation approach

in industry), concurrent program metrics (static code metrics

and test suite metrics) outperform traditional metrics for se-

quential programs in terms of predicting testability. To further

demonstrate the practicality of our approach, we study the bug

repository of the applications and show that modules with low

testability tend to produce post-release concurrency faults. The

ultimate benefit of our approach is that developers can predict

whether a testing technique is likely to reveal concurrency

faults in specific code modules. Our paper makes the following

contributions:

1) The first approach to effectively predict testability of

concurrent programs,

2) A set of novel source code metrics specific to concurrent

programs, and

3) An empirical study showing the effectiveness of our

approach.

II. BACKGROUND AND DEFINITIONS

This section provides background information on concur-

rency and testability analysis. Related work is discussed fur-

ther in Section VII.

A. Mutation Analysis for Concurrent Programs

Mutation testing is an approach for evaluating test suites

and testing techniques using a large number of systematically

seeded program changes, allowing for statistical analysis of

results [3], [27]. Mutation testing typically involves three

stages: (1) Mutant generation – in this stage, a predefined

set of mutation operators are used to generate mutants from

program source code or byte code. A mutation operator is

TABLE I: List of Concurrency Mutation Operators

Operator Description Consequence
rmlock Remove call to lock/unlock order/atomicity violations

msem Modify permit count in semaphore order/atomicity violations

mwait Modify parameter/time in cond timedwait performance fault

rmwait Remove call to cond wait/cond timedwait order/atomicity violations

swptw Swap cond wait with cond timedwait deadlock, performance fault

rmsig Remove call to cond signal/cond broadcast order/atomicity violations

swptw Swap cond signal with cond broadcast order/atomicity violations

rmjoinyld Remove call to join/yield starvation, crash

repjn Replace join with sleep crash

rmvol Remove volatile keyword order/atomicity violations

swplck Swap lock-unlock pairs order/atomicity violations, deadlock

shfecs Shift critical section order/atomicity violations

shkecs Shrink critical section order/atomicity violations

epdecs Expand critical section deadlock, performance fault

spltecs Split critical section order/atomicity violations

rmbarrier Remove call to barrier wait order/atomicity violations

mbarrier Modify parameter/time in barrier wait performance fault

a rule that is applied to a program to create mutants, such

as AOR (arithmetic operator replacement) [58]. (2) Mutant

execution – in this stage, the goal is execution of test cases

against both the original program and the mutants. (3) Result

analysis – in this stage, the goal is to check the mutation score

obtained by the test suite, where mutation score is defined as

the ratio of the number of killed mutants to the number of all

(non-equivalent) generated mutants.

Mutants that contain a single fault are called first-order mu-

tants. First-order mutants have been widely used for mutation

analysis of sequential programs. There has been some work to

generate first-order mutants for concurrent programs [6], [18].

For example, Ghosh generates concurrency-related mutants

by removing single synchronization keywords [18]. Bradbury

et al. proposed a set of first-order mutation operators for

Java [6]. However, more recent work has shown that first-order

mutants are not sufficient to simulate subtle concurrency faults

due to the complexity of thread synchronizations [21], [31],

[36]. Therefore, some research has investigated higher-order

mutants [23], [26] for concurrent mutation operators [31] by

inserting two or more faults. Higher-order mutants subsume

first-order mutants, as killing the former is a sufficient but not

necessary condition for killing the latter.

To generate higher order mutants for concurrent programs,

Kaiser et al. [31] propose a set of mutation operators for multi-

threaded Java programs based on concurrency bug patterns that

include subtle concurrency faults (e.g., data races). Kusano et

al. [36] implemented CCmutator based on the Clang/LLVM

compiler framework to inject concurrency faults for multi-

threaded C/C++ applications Their work considers both first-

order and higher-order mutants. In this work, we extended

CCmutator by synthesizing existing work to include various

concurrency-related mutation operators. Table I summarizes

the mutation operators used in this paper, including operator

names, descriptions, and their possible consequences [40].

These operators include mutex locks, condition variables,

atomic objects, semaphores, barriers, and thread creation and

join. For example, removing a lock-unlock pair can create po-

tential data races and atomicity violations, swapping lock pairs

can create potential deadlock, shifting and splitting critical

sections can introduce potential data races and order violations

169

�������	
���
����
�������	
���
����

�
���
���
��������� �������	
���
����

�������	
���
������
�������	
���
����

����
���

������
������
�
���

�����

����
�������
��
����
���

���
�
�����������
���
 ����
�!��"��#
��
�����#���

Fig. 1: Process of Predicting Testability

as some variables are no longer synchronized. Replacing a call

to join with a call to sleep can cause nondeterministic behavior.

If the sleep time is sufficiently long, the program may appear

to be correct. Otherwise, the program may crash due to the

improper join.

We use the term location to indicate a place in a program

where a fault can occur. Although the techniques we propose

can be used at different granularities (e.g., statements), this

paper concentrates on locations that correspond to single

program instructions.

B. Software Testability

In this work, we use the PIE model proposed by Voas [54]

to measure testability. PIE applies mutation analysis to predict

a program location’s ability to cause the program to produce

observable failures if the location were to contain a fault.

Specifically, software testability is a function of <program,

test selection criteria>, where inputs can be generated using

a certain criterion. A highly testable program is more likely to

reveal faults than a low testable program given the same test

selection criterion.

Based on the PIE model, we define testability as the proba-

bility that existing faults will be revealed by existing test cases.

To measure the testability of a single faulty location l, we

use the product of execution probability E(l) and propagation

probability P(l), denoted by TB(l) = E(l) * P(l), where E(l)
indicates the probability l is executed and P(l) indicates the

probability l propagates to the output. In this work, testability

is measured at the function level, so the testability is calculated

by averaging the TB(l) of all mutants in a function f , denoted

as:

TB(f) =
|M |∑

i=1

TB(l)i

Above, TB(f) is the testability of a function f , |M | is the

number of mutants, and TB(l)i is the testability of a single

location i in f .

Static code metrics have also been considered as an indirect
measurement to predict the effort needed for testing [56]. For

example, if a module has high complexity, more effort may be

needed to effectively test the module. Compared to dynamic

testability analysis, the direct measurement of testability [33],

static metrics require much less computation and are thus more

efficient. It should be noted, though, that a static metric can

be too coarse-grained to predict testability [56]. We strive for

a cost-effective testability predictor, and posit that we can

����

����$%�&��'��%�	(

���(

���
%�'��������	(

����	

�����% ����������

���)����	(

������������
�����

�����	(

�����$%�&�����	��

�����$%�&�$�����	��

����
����� ���

��

������������

� ��'�%$'�

��
�	

����(

����!��������
�����

�����$%�&�����	��

�����$%�&�$�����	��

����
����� ����

� ��'�%$'�

����(

(

 ��'�%$'�

����"�	(

��������������

��

�������������

����(

%�&�����	��

�&�$�����	��

����� ���

����������

����������� �

��
����� ��
�����

Fig. 2: Concurrency Control Flow Graph

leverage various static metrics to learn a precise model to

predict dynamic testability.

C. Machine Learning and Testability Prediction

There has been a great deal of research on applying machine

learning techniques to predict faults [11], [54] and testabil-

ity [32] based on various code metrics and/or test suite metrics.

In our research, the testability score is the dependent variable

while code metrics and test suite metrics form the independent

variables. We aim to explore the effect of metrics on the

testability of each function using machine learning methods.

Figure 1 shows the process of testability prediction in this

work. First, we define instances as units of programs, these can

be files, classes or functions. The instances that we consider

are at the function level. We then apply concurrency mutation

operators to the program to generate a set of mutants. Next,

the mutants are executed by existing test cases and a testability

score is obtained for each function. The testability scores are

labels in machine learning. For building a regression model,

we predict continuous values (e.g., testability scores). For

building a classification model, we label functions as LOW,

MEDIUM, or HIGH in terms of their testability scores. The

code metrics and test suite metrics are used as features. Having

both features and labels, the next step is to train prediction

models. Finally, the prediction models classify instances as

LOW, MEDIUM, or HIGH or predict the concrete testability

score.

III. CONCURRENCY-RELATED CODE METRICS

In this section, we define a family of static code metrics

specific to concurrent programs. We use these metrics com-

bined with test suite metrics (i.e., code coverage) to predict

concurrent program testability.

A. Concurrency Control Flow Graph

A concurrent program P consists of threads that com-

municate with each other through shared variables and syn-

chronization operations. Given the program source code, we

can construct a concurrent control flow graph (CCFG) for a

170

procedure p ∈ P based on a flow and context-sensitive points-

to analysis, where p can be accessed by multiple threads. The

idea of building CCFGs is not new and there has been research

on using CCFGs to achieve different objectives [17], [30]. For

example, Kahlon et al. [30] build a context-sensitive CCFG

to perform staged data race detection. Our CCFG is similar

to those used in existing work but is implemented to satisfy

our goal of predicting concurrent program testability. First, p
is constructed into a control flow graph (CFG), denoted as

(N(p), E(p)). A node N(p) is an instruction I and an edge

Ii → Ij ∈ E(p) describes the control flow and data flow

between nodes in this CFG. In the CCFG, we add additional

edges to represent communications between procedures po-

tentially running on two different threads. Figure 2 illustrates

an example CCFG, where the solid lines reflect the local

edges and the dotted lines reflect the cross-threads’ edges,

including fork, join, and communication edges. The

Main function creates two threads, on which functions foo
and bar are running, respectively. The variables marked as

bold are shared between threads. For readability purposes, we

use statements rather than instructions to represent each node.

Specifically, a fork edge is added from the program

location where thread_create instruction is called to the

entry node of the procedure to be executed. In Figure 2, edges

< 1, foo > and < 1, bar > form two fork edges. If the

thread on which the procedure is to be executed is specified

as in the thread pool model, the procedure is duplicated on

the other thread. A join edge is added from the return of a

procedure that is executed by the fork to the node representing

thread_join instruction. In Figure 2, edges < 14, 3 > and

< 24, 3 > are considered to be join edges. A communicate
edge is added from a write of one shared variable (SV) on

one thread to the read of the same SV on the other thread.

For example, Figure 2 contains two communication edges

involving two shared variable pairs < 11, 17 > and < 18, 7 >.

B. Static Complexity Metrics

We introduce five code metrics specific to concurrent pro-

grams. These metrics are generated from the CCFG.

Synchronization Point Count (SPC). We define the syn-
chronization point count, SPC(f), as the number of nodes

involving synchronization operations (SOs) in a function f .

The use of the SPC metric is based on the intuition that the

number of SOs contributes to the complexity of concurrent

programs. As the number of SOs increase, the program is

more likely to contain more faults related to synchronization

usage, such as deadlock and atomicity violations. The SPC

metric for a function is defined as:

SPC(f) = num of syncs(f)

Here, we consider mutex, semaphore, conditional variables,

and barriers as synchronization operations. In the Figure 2

example, SPC(main) = 2, SPC(foo) = 2, and SPC(bar)
= 2, because each function contains two synchronization

operations (e.g., mutex_lock).

Shared Variable Count (SVC). In this metric, we count the

nodes in the CCFG involving shared variable (SV) read/write

in the procedure p. The shared variables can affect data

communication between threads. The increasing complexity of

SV usage is likely to cause incorrect data state to propagate

across threads. As such, we define SVC for p as:

SV C(f) = num of SV s(f)

In Figure 2, SV C(foo) = 2 and SV C(bar) = 2. The variables

marked with bold are SVs. Note that we do not count SVs

passed as lock objects. SV C(main) = 0, because there are

no global variables in the main function.

Conditional Synchronization Count (CSC). We define con-
ditional synchronization count, CSC(f), as the number of

conditional basic blocks (e.g., branches) within function f that

contain at least one shared variable or synchronization opera-

tion. The CSC metric takes into account the local control flow

of a procedure in one thread that can potentially complicate the

communication with procedures running on other threads. The

intuition is that the conditional block containing concurrency

elements increases the complexity of a function in terms

of multithreading communication, affecting the sensitivity of

inputs that reach such synchronization points. The CSC metric

for f is defined as:

CSC(f) = num of cond syncs(f)

As Figure 2 shows, CSC(foo) = 2, because there are two

conditional blocks in foo that contain SVs (i.e., while, if).

The shaded areas are irrelevant basic blocks that CSC does

not count . Note that CSC(bar) = 0 and CSC(main) = 0,

because the two functions contain no conditional basic blocks

containing SVs or synchronization points (the two shaded

conditional basic blocks in bar are irrelevant basic blocks).

Concurrency Cyclomatic Complexity (CCC). We extend the

traditional McCabe’s cyclomatic complexity [44] to measure

complexity of concurrent programs, denoted as concurrency
cyclomatic complexity (CCC). To compute CCC, we first prune

the CCFG to transform it into CCFG’, which involves two

steps: 1) remove each basic block b that is irrelevant to con-

currency properties (i.e., SVs and synchronizations) computed

by the CSC metric, as well as remove their incoming and

outgoing edges; and 2) add an auxiliary edge from each

predecessor of b to each successor of b. Thus, the CCC(p) of

a function is defined with reference to its CCFG’:

CCC(f) = E′ −N ′ + 2

Here, E′ is the number of edges and N ′ is the number of

nodes in the f of CCFG, where E′ includes both ingoing

and outgoing edges for f . In Figure 2, the shaded nodes are

irrelevant and thus removed. Auxiliary edges are added from

node 8 to node 13, and from node 19 to node 24. Thus,

CCC(main) = 8 - 5 + 2 = 5, CCC(foo) = 15 - 10 + 2

= 7, and CCC(bar) = 10 - 7 + 2 = 5. Note that the sequential

Cyclomatic Complexity of the three functions are 5 - 4 + 1 =

2, 12 - 11 + 2 = 3, and 11 - 11 + 2 = 2.

171

Shared Variable Access Distance (SVD). The distance be-

tween two shared variable (SV) accesses in one thread is

also an important factor for concurrency fault exposure [39].

For example, if x is written at l1 and later read at l2 by

the same thread T1, and there exists a different thread T2
that updates the value of x, the distance between l1 and l2
can impact the chances of T2 interleaving between them.

We consider access distance as the instruction gap between

two SV accesses (reads or writes) in the same procedure p.

To compute SV D(f), we first identify all SV pairs (SV P)

in p. For each SV pair < sv1, sv2 >, we calculate all

instruction gaps by traversing all path segments1 between sv1
and sv2. Note that one SV P can associate with multiple

distance values due to possible control flow edges. To consider

all path segements, we calculate the mean distance over all

path segments. Specifically, we average all distance values if

they are normally distributed, otherwise we use their trimmed

mean. Thus, SV D(f) is defined as:

SV D(f) =
N∑

i=1

M∑

i=j

Dis(SV Pi,j)

Here, N is the number of shared variable pairs and M is

the number of path segments for an SV P . In the function

foo of Figure 2, there are two path segments: (7,8,10,11) and

(11,12, 13, 6,7) for SV P s <7, 11> and <11, 7>, respectively.

Suppose each node counts for 2 instructions, then SV D(foo)
= (8 + 10) / 2 = 9.

C. Test Suite Metrics

Since dynamic testability analysis requires a test suite,

the quality of the test suite is also a considerable factor

in building effective predictors. While a test suite provides

various observable attributes (e.g., the number of test cases)

for software metrics, coverage metrics are the most commonly

used metrics as they directly measure the relationship between

the test suite and source code. Thus, our predictors are based

on a combination of static code and coverage metrics of the

program under test.

The interleaving coverage criteria have been widely used

to measure test suite quality for concurrent programs [7],

[24], [39]. An interleaving criterion is a pattern of inter-

thread dependencies through SV accesses that helps select

representative interleavings to effectively expose concurrency

faults. An interleaving criterion is satisfied if all feasible

interleavings of SV defined in the criteria are covered. In this

work, we employ a Def-Use criterion, which is satisfied if

and only if a write w in one thread happens before a read r in

another thread and there is no other write to the variable read

by r between them. In fact, the Def-Use criterion is equivalent

to communication edge coverage in the context of CCFG.

To combine with static metrics, test suite metrics are also

measured at the function level. However, it is quite possi-

ble that an interleaving def-use pair involves two functions,

1A path segment is a path slice for which every node is visited at most
once.

TABLE II: Object Program Characteristics

Program NLOC instances mutants tests mutantse mutantsp stmtcov Intcov
MYSQL1 861k 2478 2,267 1,813 81% 44% 70% 79%

MYSQL2 1,192k 1083 2,644 2,972 85% 39% 71% 82%

MEMCACHED 380k 153 234 1,028 82% 35% 77% 81%

AGET 1,850 5 24 572 95% 68% 54% 95%

PFSCAN 752 6 73 488 90% 82% 92% 88%

PBZIP2 4373 24 41 520 100% 98% 78% 100%

BZIP2SMP 4236 19 226 509 100% 92% 82% 100%

“

such as the two shared variable pairs (i.e., < 18, 7 > and

< 11, 17 >) in Figure 2. In this case, the function includes

both variables in a pair rather than a single variable. For

example, the coverage of the function foo is 100% if both

communication edges are covered; covering only single vari-

ables (e.g., node 7 or node 11) is not considered valid.

D. Implementation

Our metrics are implemented using the popular Clang/L-

LVM compiler platform [37] using LLVM opt pass. Clang’s

CFG provides a directed graph for each function, where the

nodes are the basic blocks and the directed edges represent

how the control flows. As noted above, our CCFG extends the

basic CFG by adding edges describing inter-thread communi-

cations. We apply shared variable analysis to identify variables

shared by two threads, such as heap objects and data objects

that are passed to a function (e.g., thread starter function)

called by another thread. Since our metrics implemented by

LLVM intermediate representation (IR) are based on single

static assignment (SSA) form, we can potentially leverage

compiler front-ends to handle other languages.

IV. EMPIRICAL STUDY

Our goal is to evaluate the effectiveness of concurrent

program metrics (CPM). We consider the following research

questions:

RQ1: Does each single concurrent program metric on f
correlate with the testability score of f?

RQ2: Can the combination of concurrent program metrics be

used to predict testability of new functions in the same project,

and does it outperform sequential program metrics?

RQ3: Can the combination of concurrent program metrics be

used to predict testability of new functions in a new project?

RQ4: Can the testability predictor be used to predict real

concurrency faults?

A. Objects of Analysis

As objects of analysis we chose eight concurrent programs.

Table II lists these programs and the numbers of lines of

non-comment code they contain (other columns are described

later). MYSQL [50] is a free distribution of one of the most

widely used open source database applications. We chose

version 5.0.11 (MYSQL1) and version 5.5.3 (MYSQL2). While

the two program versions share similar functionality, the im-

plementation varies considerably from MYSQL1 to MYSQL2.

MEMCACHED [45] is a high performance distributed memory

object caching system to ease database loading for dynamic

172

web applications. We use version 1.4.4. AGET [1] is a mul-

tithreaded HTTP/FTP download accelerator aimed to provide

similar functionality as FlashGet on Windows. We use version

0.57. PFSCAN is a file scanner that offers a combined function-

ality of find, xargs, and fgrep in parallelism. We use version

1.0. BZIP2SMP [9] is a parallel implementation of BZIP2

targeting improvements on symmetric multiprocessing (SMP)

machines. We use version 1.0. PBZIP2 [8] is a file compressor

that implements parallel BZIP2 to speed up compression on

SMP machines. We use version 1.1.12. Since the number of

functions in the last four programs were too small (fewer than

20 functions) to effectively apply machine learning, we merged

them into one dataset, SMALL. We selected these programs

because they are representative of real-world code and have

been widely used in academic research. In addition, they are

each applicable to one or more of the classes of mutation

operators described in Section II. Column 3 of Table II

shows the number of functions (or instances) that contain

concurrency constructs; only these functions are considered

in the study.

To address our research questions we also required test

cases. A test case includes input data and command options.

For the three large programs that had been released with

tests, we used them as input data (e.g., .test files in MySQL

programs). The input data is combined with various com-

mand options regulated by the constraints. The four small

object programs (i.e., AGET, PFSCAN, BZIP2SMP and PBZIP2),

however, were not equipped with tests. For these programs,

we created black-box suites. Engineers often use such test

suites designed based on system parameters and knowledge

of functionality [10]. We followed this approach, using the

category-partition method [52], which employs a Test Speci-

fication Language (TSL) to encode choices of parameters and

environmental conditions that affect system operations and

combine them into test inputs. Column 6 of Table II lists the

numbers of tests ultimately utilized for each object program.

To address our research questions, we also required faulty

versions of our object programs. We extended CCMUTATOR

[36] to create seeded concurrency faults of the classes de-

scribed in Section II. This process left us with the numbers of

mutants reported in Column 4 of Table II.

Testing also requires test oracles. For programs released

with existing test suites and with built-in oracles provided, we

used those. Otherwise we checked program outputs, including

messages printed on the console and files generated and

written by the programs.

B. Data collection

We executed our test cases on all of the mutants of each

object program. To control for variance due to randomization

of thread interleavings, we ran each mutant 100 times. A

mutant is marked as being executed or propagated if it does

this at least once. We used a Linux cluster to perform the

executions, distributing each job on a distinct node. The testa-

bility score was computed by following the process described

TABLE III: List of Code Metrics

CPM Metrics Description
ConcurrencyComplexity(CCC) Concurrent program complexity

CountSharedVaraible (CSV) # of shared variable

CountConditionalBasicBlock (CBB) # of conditional basic blocks

CountSynchronizations(CSO) # of synchronization operations

CountDistance(CCD) average distance between shared variables

InterleavingCoverage(CCV) interleaving coverage by running tests

SPM Metrics Description
CountInstruction (CI) # of instructions

CountBasicBlock (CB) # of basic blocks

CountParameter(CP) # of parameters for a function

CyclomaticComplexity(CC) Mcabe’s cyclomatic complexity

StatementCoverage(SCV) statement coverage by running tests

in Section II-A. Columns 6-7 of Table II report the percentage

of mutants executed and killed.

To gather metric data, for each function we computed five

concurrency-related code metrics and four sequential code

metrics. The method of computing concurrency metrics is

described in Section III. The four sequential metrics include

number of instructions (CI), number of basic blocks (CB), the

number of parameters (CP), and McCabe’s complexity (CC).

All metrics are collected using LLVM pass.

As for the test suite metric, we used the open source test

coverage tool GCov to measure statement coverage (SCV).

To measure interleaving coverage (CCV), we followed the

approach described in Section III-C. To record thread in-

formation, we used PIN [41] to instrument the entry point

of each function and recorded thread IDs that exercised the

function. Column 8-9 of Table II report the statement coverage

and interleaving coverage, respectively. Table III summarizes

a set of concurrent program metrics (CPM) and a set of

sequential program metrics (SPM), which includes both static

code metrics and test suite metrics.

C. Prediction Models

We build four prediction models using statistical and ma-

chine learning techniques from Weka [22]. We employ both

linear regression and classification models. For linear regres-

sion, the model was trained to predict a specific testability

score percentage. For the classification techniques, we cate-

gorized all testability scores as LOW, MEDIUM, or HIGH
to reduce the value prediction to a three-group classification

problem. The ranges of values in each category are deter-

mined based on the distribution of the testability scores in

our training data. Since the testability scores are unlikely

to follow a balanced distribution (i.e., LOW: 0%– 33%,

MEDIUM: 34%0 – 66%, and HIGH: 67%0 – 100%), we

adjusted the group ranges to accommodate the distribution

with freq3bin [25], [48] that depends on equal frequency

count (equal number of instances in each bin). Specifically,

all testability scores are sorted in descending order. Then

the first ceiling (#of(all Instances)/3) instances are as-

signed HIGH, the second ceiling (#of(all Instances)/3)

instances are assigned MEDIUM, and the third ceiling

(#of(all Instances)/3) instances are assigned LOW.

We used Linear Regression, Bayesian Network, J48 Deci-

sion Tree, and Logistic Regression in Weka [22]. We chose

them because they are popular and have been shown to be

173

effective at predicting defects in a recent study [19]. To

examine our research questions, we applied the four models

to CPM and SPM metrics.

D. Performance Measures

To evaluate and compare the performance of CPM and the

baseline metric SPM, we measure their prediction performance

on linear regression and classification models, respectively.
1) Linear Regression: We calculated the correlation coeffi-

cient (CC), the mean absolute error (MAE), and the root mean

squared error (RMSE) [57]. Correlation coefficient measures

the correlation between predicted and actual testability scores.

If the correlation coefficient is closer to 1, the metrics are more

correlated to testability. Both MAE and root MSE represent

the difference between predicted and actual testability scores.

If both error values of a prediction model are less than others,

it means the model has higher prediction accuracy. To compare

the prediction model of CPM with SPM, we measured all three

of these values.2

2) Classification: We used F-measure to evaluate perfor-

mance of CPM and SPM across the three classification models.

F-measure usually represents the harmonic mean of precision

and recall. The computed F-measure values are between 0 and

1 and a larger F-Measure value indicates a higher classification

quality. The following outcomes are used to define precision,

recall, and F-measure: (1) Category A is correctly classified

as A (a → a); (2) Category A is incorrectly classified as

B (a → b); and (3) Category B is incorrectly classified as

A(b → a). We use the above outcomes to evaluate the predic-

tion accuracy of our models with the following measures:

• Precision: the number of instances correctly classified as

A (Na→a) over the number of all instances classified as

A.

PrecisionP (a) = Na→a

Na→a+Nb→a

• Recall: the number of instances correctly classified as A

(Nb→b) over the total number of instances in A.

RecallP (b) = Na→a

Na→a+Na→b

• F-measure: a composite measure of precision P(b) and

recall R(b) for buggy instances.

F −measureF (a) =
2∗P (a)∗R(a)
P (a)+R(a)

To evaluate our prediction models, we used 10-fold cross

validation, widely used to evaluate prediction models [38],

[49]. Since 10-fold cross validation randomly samples in-

stances and puts them in ten folds [2], we repeated this

process 100 times for each prediction model to avoid sampling

bias [38].

To assess whether prediction performance of different met-

ric sets were statistically significant, we applied the t-test to

the data sets, comparing each pair of metric sets within each

model. We checked if the mean of F-measure values of CPM

was greater than the mean of F-measures of CPM at the 95%

confidence level (p− value < 0.05).

2Here we use the Guildford scale [28], in which correlations with
absolute value less than 0.4 are described as “low,” 0.4 to 0.7 as
“moderate,” 0.7 to 0.9 as “strong,” and over 0.9 as “very stong.”

TABLE IV: Correlation Coefficient

Prog. CPM SPM
CCCCSV CBBCSOCCDCCV CI CB CP CC SCV

MYSQL1 -0.526 -0.483 -0.537 -0.540 -0.600 0.676 -0.339 -0.412 -0.275 -0.289 -0.451
MYSQL2 -0.556 -0.558 -0.555 -0.182 -0.402 0.611 -0.138 -0.150 0.000 -0.130 -0.567
MEMCACHED -0.444 -0.478 -0.430 -0.353 -0.661 0.676 -0.455 -0.418 -0.199 -0.381 0.507
SMALL -0.536 -0.527 -0.545 -0.633 -0.682 0.632 -0.503 -0.489 -0.132 -0.425 -0.445

E. Threats to Validity

The primary threat to external validity for this study involves

the representativeness of our programs, mutants, coverage

criteria, and test cases. Other systems may exhibit different

behaviors, as may other forms of test cases. However, the

programs we investigated are popular open source programs.

Furthermore, the test cases are either those provided with the

programs or created via a commonly used process (TSL in this

case): they are representative of test cases that could be used

in practice to test these programs. Most of the test subjects

we used had relatively good test suites (i.e., of the covered

mutants, the mutation scores were above 80%). Mutants can

be influenced by external factors such as mutation operators.

We used only concurrency mutation operators. However, con-

currency faults can also be introduced by sequential glitches.

In addition, other interleaving criteria (e.g., synchronization

coverage) may lead to different coverage results. We controlled

for these threats by using well studied concurrency mutation

operators and popular interleaving criteria.

The primary threats to internal validity for this study are

possible faults in the implementation of our approach and in

the tools that we used to perform evaluation. We controlled for

this threat by extensively testing our tools and verifying their

results against smaller programs for which we could manually

determine the correct results. We also chose to use popular

and established tools (e.g., LLVM, Weka) for implementing

the various stages of our approach.

Where construct validity is concerned, our measurements

involve using metrics extracted from source code and test

coverage (independent variables) to predict testability based

on mutation score (dependent variable). Other code metrics

and test suite metrics are also of interest. Furthermore, other

machine learning performance measures can be used to mea-

sure effectiveness and accuracy. To control for this threat, we

chose commonly used F-measures.

V. RESULTS AND ANALYSIS

Results for each research question are presented below.3

A. RQ1: Correlation Analysis

To investigate effectiveness of linear regression, we deter-

mined the correlation between each metric for each function

F with the testability score.

Table IV shows the correlation coefficient between each

single metric and testability score across all four datasets. All

correlation coefficients are significant at the 0.05 level. The

numbers rendered in bold font indicate strong or moderate

3All data we used in our experiments are publicly available at http://cs.uky.edu/∼tyu/
research/cpm

174

CPM SPM

0.4

0.5

0.6

0.7

0.8

0 25 50 75 100 0 25 50 75 100
MySQL1

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

CPM SPM

0.4

0.6

0.8

0 25 50 75 100 0 25 50 75 100
MySQL2

CPM SPM

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100 0 25 50 75 100
Memcached

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

CPM SPM

0.5

0.0

0.5

1.0

0 25 50 75 100 0 25 50 75 100
Small

Fig. 3: Performance Comparison of Linear Regression Models.

CPM SPM

0.6

0.7

0.8

0.9

1.0

0.6

0.7

0.8

0.9

1.0

0.6

0.7

0.8

0.9

1.0

BayesN
et

J48
Logistic

0 25 50 75 100 0 25 50 75 100
MySQL1

FM
ea

su
re

CPM SPM

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

BayesN
et

J48
Logistic

0 25 50 75 100 0 25 50 75 100
MySQL2

CPM SPM

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

BayesN
et

J48
Logistic

0 25 50 75 100 0 25 50 75 100
Memcached

FM
ea

su
re

CPM SPM

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

BayesN
et

J48
Logistic

0 25 50 75 100 0 25 50 75 100
Small

Fig. 4: Performance Comparison of Classification Models.

correlation coefficients. For example, in project MySQL1,

the higher the concurrency cyclomatic complexity (CCC), the

lower the testability score. In fact, four out of five static metrics

(i.e., CCC, CSV, CBB CCD) and the test suite metric (SCV)

in CPM are each moderately correlated to the testability across

all four datasets. Only CSO demonstrates low correlation for

MYSQL2 and MEMCACHED.

In contrast, for all four datasets, none of the static metrics

in SPM have moderate/strong correlation to testability. Only

the test suite metric (SCV) is moderately correlated with testa-

bility. However, SCV is still not as effective as CCV. The best

static metric in SPM is CB, which is moderately correlated for

three out of four datasets (MYSQL1, MEMCACHED, SMALL).

TABLE V: Performance of CPM and SPM metrics.

Prog. MYSQL1 MYSQL2 MEMCACHED SMALL

CPM SPM CPM SPM CPM SPM CPM SPM

CC 0.785 0.622 0.849 0.544 0.899 0.412 0.816 0.629

MAE. 11.1 14.6 15.6 24.7 13.4 29.8 21.7 25.7

RMSE 19.1 22.5 18.8 35.3 16.8 33.7 36.4 42.5

BayesNet 0.996 0.745 0.984 0.671 0.954 0.412 0.932 0.672

Decision Tree 0.997 0.753 0.986 0.650 0.999 0.450 0.938 0.720

Logistics 0.995 0.666 0.982 0.487 0.960 0.363 0.879 0.771

The worst metric is CP - it is weakly correlated with testability

for all four datasets.

Overall, these results indicate that each of the single CPM
metrics was more effective than SPM at predicting concurrent
program testability. For SPM, however, only the test suite

metric was effective.

B. RQ2: Effectiveness of CPM vs. SPM

To examine RQ2, we employ both linear regression and

classification techniques. We also compare the performance

of CPM to that of SPM using both types of techniques.

1) Linear Regression: Figure 3 shows correlation coeffi-

cients for CPM and SPM across all four datasets across 100

iterations. The horizontal axis is iteration and the vertical axis

is correlation coefficient. In the three large datasets, while the

correlation coefficients vary across iterations, the trend clearly

indicates that CPM outperforms SPM. The only exception

occurs on SMALL, where CPM varies dramatically across

iterations. There are two reasons for this, possibly leading to

deteriorated quality of prediction. First, the size of the dataset

is small (54 instances). Second, while the three applications in

SMALL share similar functionality, they are still very diverse

(e.g., developed by different teams).

The second row (CC) in Table V shows the average corre-

lation coefficients across 100 iterations for the two metric sets

and all four datasets. The numbers marked with bold under

CPM indicate that the value difference in comparison to SPM

is statistically significant. For example, correlation coefficient

(0.785) of CPM in MYSQL1 is significantly better than that

(0.622) of SPM. In fact, for all four datasets, CPM is strongly

correlated with testability. In addition, CPM is more effective

than SPM in terms of correlation coefficients. Where error is

concerned, for all datasets, the average mean absolute error

(MAE) and average root mean squared error (RMSE) of CPM

are lower than those of SPM at the 0.05 significance level.

Overall, these results indicate that the combination of CPM
metrics is more effective and accurate than traditional sequen-
tial program metrics at predicting testability of concurrent
programs.

2) Classification: We use F-measure to evaluate predic-

tion performance for the three classification algorithms, as

described in Section IV. Figure 4 shows F-measure values for

each of classification techniques and four datasets on the two

metric sets CPM and SPM. The horizontal axis is iteration and

the vertical axis is F-measure. In the three large datasets, the

trend clearly indicates that CPM outperforms SPM. Similar

to the linear regression model, on the SMALL dataset, the F-

measure values dramatically fluctuate across iterations.

175

Rows 5-7 in Table V show the mean of F-measures from

100 ten-fold cross validations for the three techniques. The

F-measure values for CPM are bolded if they are significant

(p-value < 0.05) in comparison to SPM. On MYSQL1 using

BayesNet, for instance, the F-measure (0.996) of CPM is

statistically better than that of SPM (0.745). In fact, on all

four datasets, CPM is more effective than SPM for each of the

three classification techniques. Overall, these results suggest

that when using classification models, CPM outperform the
traditional sequential program metrics.

3) Metrics Effectiveness Analysis: To evaluate the effec-

tiveness of each CPM metric for classification, we measured

the information gain ratio [35] of metrics in CPM. The

information gain ratio indicates how well a metric distin-

guishes labels (i.e., LOW, MEDIUM, HIGH) of instances.

Specifically, we used the information gain evaluator API

(evaluateAttribute) in Weka to get the information gain

score for each metric. Figure 5 shows these information gain

scores. While the effectiveness of metrics vary for different

datasets, SCV was ranked first in the three large datasets and

second in the small dataset. CSV ranked third for MYSQL2,

but lower for all other datasets. While CCC ranked second

in MYSQL2, it ranked much lower for all other datasets. In

the small dataset, CSO ranked first. It also ranked second for

MYSQL1. This suggests that each CPM metric can play an
important role in testability prediction, and the quality of the
test suite is particularly important.

C. RQ3: Across Projects Prediction

RQ3 investigates whether a predictor for one application

group (dataset) can be used for other applications. We applied

linear regression and classification models built from each

dataset to the instances of each of the other three datasets. We

then checked how accurate the prediction is by assessing the

performance of each model. The prediction results are shown

in Table VI. For example, columns 2-4 show the performance

values of using models learned from MYSQL2, MEMCACHED

and SMALL to predict MYSQL1.

For the linear regression technique, 11 out of the 12 models

have strong correlation coefficients. Only the model learned

from MYSQL2 yielded moderate correlation on SMALL. For the

classification techniques, the F-measure values for 35 out of 36

models were greater than 0.5, indicating that the cross project

classification is effective. Only the BayesNet model learned

from SMALL had low effectiveness (F-measure = 0.359) in

predicting MYSQL2. Overall, these results suggest that CPM
is effective at predicting testability across projects. In addition,

it is not surprising to see that the models are even more

successful across similar projects (i.e., MYSQL1 and MYSQL2).

D. RQ4: Connection to Real Concurrency Faults

Just et. al [29] study whether mutants are indeed a valid

substitute for real faults. The results show that mutation

testing is appealing because large numbers of mutants can

be automatically generated and used as a substitution for

real faults. While their results are promising, we further

�

���

���

���

���

�

���

���

���

���

	
��
� 	
��
� 	�������� �����

��� ��� ��� ��� ��� ����

Fig. 5: CPM Metrics based on the Information Gain Ratio.

investigate whether this conclusion holds in the context of

testing concurrent programs.

We located and isolated real faults that have been previously

found and fixed by analyzing projects that have version

control and bug tracking systems. We study only the three

large datasets, as the SMALL dataset does not have any such

systems. Specifically, we obtained real faults from a project’s

version control history by identifying commits that corrected

a failure in the program’s source code. We also examined

the bug repository and identified the functions that were re-

ported as containing concurrency faults. As a result, MYSQL1

yields two deadlock faults involving four functions (e.g.,

lock_deadlock_recursive), and MYSQL2 contains

two deadlock faults and one data race, where the deadlock

faults involve two functions and the data race fault involves

three functions. MEMCACHED contains a data race in the

function process_arithmetic_command.

We next correlated these functions with the testabil-

ity scores. The results show that eight out of 10 func-

tions fall into the LOW testability category. The only

two exceptions were on lock_deadlock_occurs and

init_failsafe_rpl_thread; these were categorized as

HIGH and MEDIUM. However, further examination indicates

that each of the two functions has communication edges with

other functions that were all classified as LOW. While the data

is anecdotal, if these results generalize to other real datasets

and prediction models, then if one function f is labeled as
LOW testable, other functions that can be reached through a
communication edge from f should also be flagged as possible
LOW testable.

VI. DISCUSSION AND IMPLICATIONS

As presented in the previous section, we were able to

demonstrate that CPM is useful for predicting testability

of concurrent programs. Specifically, we showed (subject to

stated threats to validity) that individual metrics in CPM are

more effective at predicting concurrent program testability

than SPM based on correlation analysis, linear regression,

and classification. We also showed that test suite quality

is important (due to information gain ratio of SCV for all

four datasets). Using cross project prediction, we showed

that models built on three datasets can be used to predict

testability for the fourth dataset with good effectiveness (with

one exception). We also showed that our LOW testable label

was indeed tied to real concurrency faults in three of the

176

TABLE VI: Performance on Cross Project Prediction using CPM.

Prog. MYSQL1 MYSQL2 MEMCACHED SMALL

MYSQL2 MEMCACHED SMALL MYSQL1 MEMCACHED SMALL MYSQL1 MYSQL2 SMALL MYSQL1 MYSQL2 MEMCACHED

CC 0.851 0.725 0.764 0.881 0.755 0.773 0.752 0.804 0.745 0.757 0.565 0.824

MAE 18.1 24.1 13 16 20.5 19.6 22.8 16.6 18.2 11.1 21.3 19.6

RMSE 28.9 32.5 22.3 18.8 25.8 28.7 29.2 20 26.3 17.7 32.1 30.2

BayesNet 0.823 0.746 0.766 0.796 0.582 0.359 0.6 0.859 0.508 0.714 0.526 0.528

Decision Tree 0.711 0.673 0.599 0.975 0.967 0.779 0.784 0.751 0.645 0.583 0.365 0.33

Logistics 0.693 0.687 0.519 0.975 0.967 0.779 0.753 0.762 0.571 0.67 0.602 0.603

four datasets, and found a possible link between functions in

concurrent programs that should be examined further.

The two findings that might not be intuitive are that the

test suite metric (SCV) has high predictability power and that

functions that can be reached via communication edges from

LOW testable functions might also be LOW testable.

Our results have implications for practitioners and re-

searchers, discussed below.

Implications for Practitioners. Results indicate that

concurrency-related code metrics can be effective and are

more effective than SCM predictors learned from sequential

program attributes. Practitioners can apply this finding by

building a CCFG, obtaining the CPM metrics (we plan to

provide a tool in the future to simplify this), and substituting

their metrics into our learned model in order to predict LOW

testable functions. In addition, our results showed that metric

CCC was a good predictor of testability. As it increases,

program testability decreases. Industry practitioners can use

the CCFG to calculate CCC and examine its distribution for

their project. Functions that have higher values of CCC should

be examined and possibly subjected to additional code review

and/or unit testing to lower the risk of concurrency faults.

Also, functions that share communication edges with LOW

testable functions warrant additional attention during software

assurance activities.

Implications for Researchers. Our study shows that concur-

rent metrics can be used to predict testability of concurrent

programs. Researchers should consider adding the CCFG to

their arsenal of program representations. The CPM metrics

may have other applications, such as for predicting fault

prone components in concurrent programs, predicting change

prone components in concurrent programs, and predicting

the number of test that are needed to achieve coverage of

concurrent programs. Additionally, the finding on communica-

tion edges implies that researchers should examine concurrent

edge coverage more carefully as an important test criterion.

Identification and test of functions that can reach LOW testable

functions may hold promise for further reduction of concur-

rency faults and could be the focus of future work.

VII. RELATED WORK

There has been some research on developing various soft-

ware metrics to assess software quality [15]. For example, Lee

et al. [38] proposed a set of micro-interaction metrics (MIMs)

that leverage developers’ interaction information combined

with source code metrics to predict defects. Meneely [46] et al.

examine structure of developer collaboration and use developer

network derived from code information to predict defects.

However, none of the above work has considered concurrency-

related code metrics. The only related work found is the work

by Mathews et al. [43] based on Ada programs. This work

considers only the number of synchronizations and conditional

branches that contain synchronization points without utilizing

them to perform testability/defect prediction.

Although prediction of mutation scores of concurrent pro-

grams has not been previously researched, the related topic of

using software metrics to predict faults in source code has

been well researched. For example, Koru and Liu utilized

static software measures along with defect data at the class

level to predict bugs using machine learning. Machine learning

techniques are popular for predicting software defects and

testability [4], [11], [34], [49]. For example, Menzies et al. [47]

conclude that static code metrics are useful in predicting de-

fects under specific learning methods. Khoshgoftaar et al. [32]

use a neural network to learn models from source code metrics

to predict testability based on mutation analysis. Jalbert et

al. [25] predict mutation scores by using source code met-

rics combined with coverage information. These techniques,

however, focus on sequential programs while ignoring code

attributes and testability for concurrent programs.

There has been a great deal of research on mutation testing

for sequential programs [12], [42], [53]. Jia and Harman [27]

provide a recent survey. In this work, we focus on techniques

that share similarities with ours. There has also been some

work on mutation testing for concurrent programs [6], [21],

[31], which has been discussed in Section II. Other tools such

as MuTMuT [20] have been used to optimize the execution of

mutants by reducing interleaving space that has to be explored.

None of the techniques, however, attempt to predict testability

using software metrics.

VIII. CONCLUSIONS

This paper presents an approach to predict the testability of

concurrent programs at the function level. We proposed five

novel static code metrics and combined them with a dynamic

test suite metric to learn four prediction models. We applied

the models to four data sets from large and small real-world

programs. Our results showed that our approach of using CPM

significantly improved testability prediction and classification.

In the future, we will consider other code metrics and test

suite attributes and investigate their effectiveness.

IX. ACKNOWLEDGMENTS

This work has been partially funded by NSF under grant

CCF-1511117.

177

REFERENCES

[1] AGET. Multithreaded HTTP Download Accelerator. Web page.
http://www.enderunix.org/aget/.

[2] E. Alpaydin. Introduction to Machine Learning. The MIT Press, 2004.
[3] P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge

University Press, 2008.
[4] V. R. Basili, L. C. Briand, and W. L. Melo. A validation of

object-oriented design metrics as quality indicators. IEEE Transactions
on Software Engineering, 22(10):751–761.

[5] M. D. Bond, K. E. Coons, and K. S. McKinley. PACER: Proportional
detection of data races. In PLDI, June 2010.

[6] J. Bradbury, J. Cordy, and J. Dingel. Mutation operators for concurrent
java (j2se 5.0). In International Workshop on Mutation Analysis, pages
11–11, 2006.

[7] A. Bron, E. Farchi, Y. Magid, Y. Nir, and S. Ur. Applications of
synchronization coverage. In Proceedings of the ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages
206–212, 2005.

[8] BZIP2. Parallel BZIP2 . Web page. http://compression.ca/pbzip2/.
[9] BZIP2SMP. Parallelizing BZIP2 for SMP machines. Web page.

http://bzip2smp.sourceforge.net.
[10] A. Causevic, D. Sundmark, and S. Punnekkat. An industrial survey on

contemporary aspects of software testing. In International Conference
on Software Testing, Verification and Validation, pages 393–401, 2010.

[11] V. U. B. Challagulla, F. B. Bastani, I.-L. Yen, and R. A. Paul.
Empirical assessment of machine learning based software defect
prediction techniques. International Journal on Artificial Intelligence
Tools, 17(02):389–400.

[12] M. E. Delamaro, J. C. Maldonado, and A. P. Mathur. Interface
mutation: An approach for integration testing. IEEE Transactions on
Software Engineering, 27(3):228–247.

[13] D. Deng, W. Zhang, and S. Lu. Efficient concurrency-bug detection
across inputs. In Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems
Languages & Applications, pages 785–802, 2013.

[14] D. Dimitrov, V. Raychev, M. Vechev, and E. Koskinen. Commutativity
race detection. In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages
305–315, 2014.

[15] N. E. Fenton and S. L. Pfleeger. Software Metrics: A Rigorous and
Practical Approach. CRC Press, 1998.

[16] C. Flanagan and S. N. Freund. FastTrack: efficient and precise
dynamic race detection. In PLDI, 2009.

[17] M. K. Ganai and C. Wang. Interval analysis for concurrent trace
programs using transaction sequence graphs. In Proceedings of the
International Conference on Runtime Verification, pages 253–269,
2010.

[18] S. Ghosh. Towards measurement of testability of concurrent
object-oriented programs using fault insertion: A preliminary
investigation. In Proceedings of the IEEE International Workshop on
Source Code Analysis and Manipulation, pages 17–, 2002.

[19] B. Ghotra, S. McIntosh, and A. E. Hassan. Revisiting the impact of
classification techniques on the performance of defect prediction
models. In Proceedings of the International Conference on Software
Engineering - Volume 1, pages 789–800, 2015.

[20] M. Gligoric, V. Jagannath, and D. Marinov. Mutmut: Efficient
exploration for mutation testing of multithreaded code. In
International Conference on Software Testing, Verification and
Validation, pages 55–64, 2010.

[21] M. Gligoric, L. Zhang, C. Pereira, and G. Pokam. Selective mutation
testing for concurrent code. In Proceedings of the International
Symposium on Software Testing and Analysis, pages 224–234, 2013.

[22] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten. The weka data mining software: An update. Special Interest
Group on Knowledge Discovery and Data Mining Explorations
Newsletter, 11(1):10–18, Nov. 2009.

[23] M. Harman, Y. Jia, and W. B. Langdon. Strong higher order
mutation-based test data generation. In Proceedings of the ACM
SIGSOFT Symposium and the European Conference on Foundations of
Software Engineering, pages 212–222, 2011.

[24] S. Hong, J. Ahn, S. Park, M. Kim, and M. J. Harrold. Testing
concurrent programs to achieve high synchronization coverage. In
Proceedings of the International Symposium on Software Testing and
Analysis, pages 210–220, 2012.

[25] K. Jalbert and J. S. Bradbury. Predicting mutation score using source
code and test suite metrics. In Proceedings of the International
Workshop on Realizing AI Synergies in Software Engineering, pages
42–46, 2012.

[26] Y. Jia and M. Harman. Higher order mutation testing. Information and
Software Technology Journal, 51(10):1379–1393.

[27] Y. Jia and M. Harman. An analysis and survey of the development of
mutation testing. IEEE Transactions on Software Engineering,
37(5):649–678, 2011.

[28] B. F. Joy Paul Guilford. Fundamental Statistics in Psychology and
Education. McGraw-Hill, 1978.

[29] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and
G. Fraser. Are mutants a valid substitute for real faults in software
testing? In Proceedings of the ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 654–665,
2014.

[30] V. Kahlon, N. Sinha, E. Kruus, and Y. Zhang. Static data race
detection for concurrent programs with asynchronous calls. In
Proceedings of the Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering, pages 13–22, 2009.

[31] L. W. G. Kaiser. Constructing subtle concurrency bugs using
synchronization-centric second-order mutation operators. In
International Conference on Software Engineering and Knowledge
Engineering, 2011.

[32] T. Khoshgoftaar, E. Allen, and Z. Xu. Predicting testability of
program modules using a neural network. In IEEE Symposium on
Application-Specific Systems and Software Engineering Technology.,
pages 57–62, 2000.

[33] T. Khoshgoftaar, R. Szabo, and J. Voas. Detecting program modules
with low testability. In Proceedings of International Conference on
Software Maintenance, pages 242–250, 1995.

[34] S. Kim, E. J. Whitehead, Jr., and Y. Zhang. Classifying software
changes: Clean or buggy? IEEE Transactions on Software
Engineering, 34(2):181–196.

[35] S. Kullback. Information Theory and Statistics. A Wiley publication
in mathematical statistics. Dover Publications, 1997.

[36] M. Kusano and C. Wang. CCmutator: A mutation generator for
concurrency constructs in multithreaded C/C++ applications. In
IEEE/ACM International Conference on Automated Software
Engineering, pages 722–725, 2013.

[37] C. Lattner and V. Adve. Llvm: a compilation framework for lifelong
program analysis transformation. In International Symposium on Code
Generation and Optimization., pages 75–86, 2004.

[38] T. Lee, J. Nam, D. Han, S. Kim, and H. P. In. Micro interaction
metrics for defect prediction. In Proceedings of the ACM SIGSOFT
Symposium and the European Conference on Foundations of Software
Engineering, pages 311–321, 2011.

[39] S. Lu, W. Jiang, and Y. Zhou. A study of interleaving coverage
criteria. In The International Symposium on the Foundations of
Software Engineering: Companion Papers, pages 533–536, 2007.

[40] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: A
comprehensive study on real world concurrency bug characteristics. In
ASPLOS, Mar. 2008.

[41] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building customized
program analysis tools with dynamic instrumentation. In Proceedings
of the ACM Special Interest Group on Programming Languages
conference on Programming language design and implementation,
2005.

[42] Y.-S. Ma, J. Offutt, and Y.-R. Kwon. Mujava: A mutation system for
java. In Proceedings of the International Conference on Software
Engineering, pages 827–830, 2006.

[43] M. E. Mathews and S. Tu. Metrics measuring control flow complexity
in concurrent programs. IEEE Transactions on Computers, 3(5):5.

[44] T. J. McCabe. A complexity measure. IEEE Transactions on Software
Engineering, 2(4):308–320.

[45] memcached. memcached - a distributed memory object caching
system. Web page. http://memcached.org.

[46] A. Meneely, L. Williams, W. Snipes, and J. Osborne. Predicting
failures with developer networks and social network analysis. In
Proceedings of the ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 13–23, 2008.

178

[47] T. Menzies, J. Greenwald, and A. Frank. Data mining static code
attributes to learn defect predictors. IEEE Transactions on Software
Engineering, 33(1):2–13.

[48] T. Menzies, O. Jalali, J. Hihn, D. Baker, and K. Lum. Stable rankings
for different effort models. Automated Software Engineering,
17(4):409–437, Dec. 2010.

[49] R. Moser, W. Pedrycz, and G. Succi. A comparative analysis of the
efficiency of change metrics and static code attributes for defect
prediction. In ACM/IEEE International Conference on Software
Engineering., pages 181–190, 2008.

[50] MySQL. MySQL. Web page. https://www.mysql.com/.
[51] A. Orso and G. Rothermel. Software testing: A research travelogue

(2000–2014). In Proceedings of the on Future of Software
Engineering, pages 117–132, 2014.

[52] T. J. Ostrand and M. J. Balcer. The category-partition method for
specifying and generating functional tests. Communications of the
ACM, 31(6):676–686.

[53] D. Schuler, V. Dallmeier, and A. Zeller. Efficient mutation testing by
checking invariant violations. In Proceedings of the International
Symposium on Software Testing and Analysis, pages 69–80, 2009.

[54] J. M. Voas. Pie: A dynamic failure-based technique. IEEE
Transactions on Software Engineering, 18(8):717–727.

[55] J. M. Voas and K. W. Miller. Putting assertions in their place. In
Proceedings of International Symposium on Software Reliability
Engineering, pages 152–157, 1994.

[56] J. M. Voas, K. W. Miller, and J. E. Payne. An empirical comparison
of a dynamic software testability metric to static cyclomatic
complexity. In Proceedings of the International Conference on
Software Quality Management, pages 431–445, 1994.

[57] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning
Tools and Techniques, Second Edition. Morgan Kaufmann Series in
Data Management Systems. Morgan Kaufmann, 2005.

[58] W. E. Wong, editor. Mutation Testing for the New Century. Advances
in Database Systems. Springer, 2001.

[59] H. Zhang, X. Zhang, and M. Gu. Predicting defective software
components from code complexity measures. In Pacific Rim
International Symposium on Dependable Computing, pages 93–96,
2007.

[60] W. Zhang, C. Sun, and S. Lu. Conmem: Detecting severe concurrency
bugs through an effect-oriented approach. In Proceedings of the
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 179–192, 2010.

179

