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Probability. . .
Recall. . .

A sample space Ω is the set of possible outcomes of an experiment.

A σ-algebra Σ on Ω is a family of subsets of Ω such that:
� Ω ∈ Σ;
� if A ∈ Σ then A = Ω− A ∈ Σ;
� for any A1, . . . ,An ∈ Σ ⋃

i
Ai ∈ Σ

An element ω ∈ Ω is named a sample outcomes or realisation while A ∈ Σ
is an event.
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Probability. . .
Recall. . .

Example: Tossing a coin twice

Ω = {TT ,TH,HT ,HH}

The event “the first is head” is

A = {HT ,HH}

Example: Measurement of a physical experiment

Ω = R = [−∞,+∞]

The event “measure is larger than 10 but less or equale to 23” is

A = (10, 23]
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Probability. . .
Recall. . .

A probability space is a tuple (Ω,Σ,Pr) where

� Ω is a sample space;
� Σ is a σ-algebra on Ω;
� Pr : Σ→ [0, 1] such that:

� Pr(Ω) = 1
� for any A1, . . . ,An (Ai ∩ Aj = ∅ for any i 6= j):

Pr
(⋃

i
Ai

)
=
∑

i
Pr(Ai )

Remark: If Ω is finite, and if each outcome is equally likely, then

Pr(A) = |A|
|Ω|
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Probability. . .
Recall. . .

Let (Ω,Σ,Pr) be a probability space. . .

For any A,B ∈ Σ, Pr(A ∪ B) = Pr(A) ∪ Pr(B)− Pr(A ∩ B).

Two events A,B ∈ Σ are independent if and only if

Pr(A ∩ B) = Pr(A) · Pr(B).
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Probability. . .
Recall. . .

Let A,B ∈ Σ, if Pr(B) > 0 then the conditional probability of A given B is:

Pr(A|B) = Pr(A ∩ B)
Pr(B)

Remark: Pr(A|B) is the fraction of times A occurs among those in which
B occurs!

If A and B are independent. . .

Pr(A|B) = Pr(A ∩ B)
Pr(B) = Pr(A) · Pr(B)

Pr(B) = Pr(A)
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Random Variables. . .

A random variable is a mapping X : Ω→ R.

Let (Ω,Σ,Pr) be a probability space, a random variable X : Ω→ R is a
measurable function from Ω to R.

The probability that X takes value in a measurable set S ⊆ R is written as:

Pr(X ∈ S) = Pr({ω ∈ Ω|X (ω) ∈ S})
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Random Variables. . .
Example. . .

The sample space of 3 coin flips is:

Ω = {TTT ,TTH,THT ,THH,HTT ,HTH,HHT ,HHH}

If the coin is fair, for each ω ∈ Ω Pr(ω) = 1
8 .

Let X (ω) be the number of heads in the sequence ω.

Let k ∈ {0, 1, 2, 3}:

Pr(X = k) =
(
3
k

)
1
8 = 3!

k! · (3− k)!
1
8

Prof. Michele Loreti Data Analysis 331 / 365



Random Variables. . .
Example. . .

The sample space of 3 coin flips is:

Ω = {TTT ,TTH,THT ,THH,HTT ,HTH,HHT ,HHH}

If the coin is fair, for each ω ∈ Ω Pr(ω) = 1
8 .

Let X (ω) be the number of heads in the sequence ω.

Let k ∈ {0, 1, 2, 3}:

Pr(X = k) =
(
3
k

)
1
8 = 3!

k! · (3− k)!
1
8

Prof. Michele Loreti Data Analysis 331 / 365



Random Variables. . .
Example. . .

The sample space of 3 coin flips is:

Ω = {TTT ,TTH,THT ,THH,HTT ,HTH,HHT ,HHH}

If the coin is fair, for each ω ∈ Ω Pr(ω) = 1
8 .

Let X (ω) be the number of heads in the sequence ω.

Let k ∈ {0, 1, 2, 3}:

Pr(X = k) =
(
3
k

)
1
8 = 3!

k! · (3− k)!
1
8

Prof. Michele Loreti Data Analysis 331 / 365



Random Variables. . .
Example. . .

The sample space of 3 coin flips is:

Ω = {TTT ,TTH,THT ,THH,HTT ,HTH,HHT ,HHH}

If the coin is fair, for each ω ∈ Ω Pr(ω) = 1
8 .

Let X (ω) be the number of heads in the sequence ω.

Let k ∈ {0, 1, 2, 3}:

Pr(X = k) =
(
3
k

)
1
8 = 3!

k! · (3− k)!
1
8

Prof. Michele Loreti Data Analysis 331 / 365



Distribution function

Let X a random variable on the probability space (Ω,Σ,Pr), we define the
distribution function FX for each real x ∈ R by

FX (x) = Pr[X ≤ x ] = Pr({ω|X (ω) ≤ x})

We associate another function pX (·), called the probability mass function,
with X (pmf), for each x ∈ R:

p(x) = Pr[X = x ] = Pr({ω|X (ω) ≤ x})

A random variable X is continuous if p(x) = 0 for all real x .

NB: If X is a continuous random variable, then X can assume infinitely
many values, and so it is reasonable that the probability of its assuming
any specific value we choose beforehand is zero.
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Example: Dice Roll

A random variable can be used to describe the process of rolling two (fair)
dice and the possible outcomes.

We can consider the probability space (Ω2D,Σ2D,Pr2D) such that:

Ω2D = {(n1, n2)|1 ≤ n1, n2 ≤ 6} Σ2D = 2Ω2D Pr(A) = |A|36

The total number rolled is then a random variable X given by the function
that maps the pair to the sum: X ((n1, n2)) = n1 + n2

The pms function pX and the df FX function can be defined as:

pX (x) =
{

min(x−1,13−x)
36 2 ≤ x ≤ 12

0 otherwise
FX (x) =

∑
y≤x

pX (y)
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Mean, or expected value

If X is a discrete random variable with probability mass function p(·), we
define the mean or expected value of X ∈ S, µ = E [X ] by

E (X ) =
∑
x∈S

x · p(x)

If X is a continuous random variable with density function f (·) = dF (·)
dx , we

define the mean or expected value of X , µ = E [X ] by

µ = E [X ] =
∫ ∞
−∞

x · f (x)dx
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Variance

The expectation only gives us an idea of the average value assumed by a
random variable, not how much individual values may differ from this
average.

The variance, Var(X ), gives us an indication of the “spread” of values:

Var(X ) = E
[
(X − E [X ])2

]
= E

[
X 2
]
− E [X ]2

The standard deviation of X , sd(X ) =
√
Var(X ).
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Covariance. . .

Let X and Y be two random variables with means µX and µY and
standard deviations σX and σY . The covariance between X and Y is
defined as:

Cov(X ,Y ) = E [(X − µX )(Y − µY )]

The correlation is defined as:

ρX ,Y = Cov(X ,Y )
σXσY
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Normal Distribution

A random variable X has a Normal (or Gaussian) distribution with
parameters µ and σ if and only if it has probability density function:

φµ,σ2(x) = 1
σ
√
2π

e−
1

2σ2 (x−µ)2

Prof. Michele Loreti Data Analysis 337 / 365



Normal Distribution

A random variable X has a Normal (or Gaussian) distribution with
parameters µ and σ if and only if it has probability density function:

φµ,σ2(x) = 1
σ
√
2π

e−
1

2σ2 (x−µ)2

Prof. Michele Loreti Data Analysis 337 / 365



Normal Distribution

We say that X has a standard Normal distribution if µ = 0 and σ = 1.

Random variables with standard Normal distribution are denoted by Z .

Some facts about Normal Distribution:

� If X has distribution N(µ, σ2 then Z = (X−µ)
σ has distribution N(0, 1)

� If Z has distribution N(0, 1) then X = µ+ σZ has distribution
N(µ, σ2).

� X1, . . . ,Xn are independent and distributed with N(µi , σ
2
i ) then

∑
i Xi

has distribution
N
(∑

i
µi ,
∑

i
σ2

i

)
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Normal Distribution

Let X be a random variable distributed as N(µ, σ2):

Pr(a < X < b) = Pr
(a − µ

σ
< Z <

b − µ
σ

)
= Φ

(b − µ
σ

)
− Φ

(a − µ
σ

)

where Φ is the distribution function of Z .

Unfortunately, there is not any closed form for Φ!

Tables are available!
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Tables are available!

Prof. Michele Loreti Data Analysis 339 / 365



Normal Distribution

Let X be distributed as N(3, 5). . .

Compute Pr(X > 1).

Pr(X > 1)

= 1−Pr(X < 1) = 1−Pr
(
Z <

1− 3√
5

)
= 1−Φ(−.8944) = 0.81

Find q such that Pr(X < q) = .2.

0.2 = Pr(X < q)

= Pr
(
Z <

q − 3√
5

)
= Φ

(q − 3√
5

)

From the Normal table, Φ(−.8416) = .2. Hence:

−.8416 = q − 3√
5
⇒ q = 1.1181
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Inequialities: Markov and Chebyshev Inequialities

Markov’s Inequiality: Let X be a non-negative random variable and
suppose that E [X ] exists. For any t > 0:

Pr(X > t) ≤ E [X ]
t

Chebyshev Inequiality: Let µ = E [X ] and σ2 = Var [X ]. The,

Pr(|X − µ| > t) ≤ σ2

t Pr(|Z | ≥ k) ≤ 1
k2

where Z = X−µ
σ .
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Statistics. . .

Probability provides a priori information about a random phenomena.

Unfortunately, often we don’t know the exact probability distribution of a
random variable X .

In this case we can try to reconstruct the properties of X by using a
number of observation.

We can consider two approaches:
� Descriptive Statistics, that is used to say something about a set of
information that has been collected only.

� Inferential Statistics, that is used to make prediction or comparisons
about a larger group (a population) using information gathered about
a small part of that population.
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Independent and Identically Distributed Random
Variables. . .

Let us consider a set of data X collected by observing a random
phenomenon:

X = (v1, . . . , vn)

We can say that X = (X1, . . . ,Xn) is a random vector and that X1,. . . , Xn
are Independent and Identically Distributed Random Variables with a
Cumulative Distribution Function F .

We call (v1, . . . , vn) a random sample from F .
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Medians. . .

Let X = (v1, . . . , vn) be a sequence of data.

The median of X is the middle number of a set of numbers arranged in
numerical order. If the number of values in a set is even, then the median
is the sum of the two middle values, divided by 2.

Example:

1, 3, 3, 6, 7, 8, 9

⇒ Median = 6

1, 2, 3, 4, 5, 6, 8, 9

⇒ Median = 4 + 5
2 = 4.5
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Mode. . .

Let X = (v1, . . . , vn) be a sequence of data.

The mode is the most frequent value in the set. A set can have more than
one mode; if it has two, it is said to be bimodal, or in general multimodal.

Example:

1, 1, 2, 3, 5, 8

⇒ mode is = 1

1, 3, 5, 7, 9, 9, 21, 25, 25, 31

⇒ modes are = 9 and 25
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Mean. . .

Let X = (v1, . . . , vn) be a sequence of data.

The mean is the sum of all the values in a set, divided by the number of
values. The mean of a sample X is usually denoted by X .

The mean is sensitive to any change in value, unlike the median and mode,
where a change to an extreme or uncommon value usually has no effect.

One disadvantage of the mean is that a small number of extreme values
can distort its value:

1, 1, 1, 2, 2, 3, 3, 3, 200

The trimmed mean, where the smallest and largest quarters of the values
are removed before the mean is taken, can solve this problem.
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Variability

Let X = (v1, . . . , vn) be a sequence of data.

The range of X is the difference between the largest and smallest values of
X .

The range of a set is simple to calculate, but is not very useful because it
depends on the extreme values, which may be distorted.

Example:

1, 1, 1, 2, 2, 3, 3, 3, 200
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Interquartile range

The Interquartile Range (IRQ) is computed as the range of the set with
smallest and largest quarters removed.

Algorithm:
1. Quartiles are calculated recursively, by using median;
2. If the number of entries is an even number 2n:

� first quartile Q1 is defined as median of the n smallest entries;
� the third quartile Q3 is the median of the n largest entries.

3. If the number of entries is an odd number 2n + 1:
� first quartile Q1 is defined as median of the n smallest entries;
� the third quartile Q3 is the median of the n largest entries;
� the second quartile Q2 is the the same as the ordinary median.
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Interquartile range
Example. . .
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Outliers. . .

The IQR is useful for determining outliers, or extreme values such as the
element 200 in the following dataset:

1, 1, 1, 2, 2, 3, 3, 3, 200

If Q1 and Q3 are the lower and the upper quartiles respectively, then one
could define an outlier to be any observation outside the range:

[Q1− k(Q3− Q1),Q3 + k(Q3− Q1)]

where k is a nonnegative constant.

This method has been proposed by John Tukey and suggested k = 1.5 to
indicate an outlier and k = 3 for far out.
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Variance and standard deviation

Let X = (v1, . . . , vn) be a sequence of data.

The variance s2 of X is a measure of how items are dispersed about their
mean. It can be calculated as:

s2 =
∑

(vi −X )
n − 1

The standard deviation s of X is the square root of the variance.

The relative variability of X is the standard deviation of X divided by its
mean.
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Position

Let X = (v1, . . . , vn) be a set of data we are interested study how each vi
is positioned (or ranked) in X .

A simple ranking is used when an element is ranked as its position in the
order.

The percentile ranking of a value vi is the percent of values that are below
it.

The z-score of a value vi is the number of standard deviations it is from
the mean:

z = vi −X
s
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Position
Example

Let X = {1.1, 2.34, 2.9, 3.14, 3.29, 3.57, 4.0}, we have that:
� X = 2.91
� s = 0.88

Let us consider value 3.57:
� Its simple ranking is 2 out of 7;
� Its percentile ranking is 5

7 = 71, 43%;
� Its z-score is 3.57−2.91

0.88 = 0.75.
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Five-number summary

The five-number summary is a set of descriptive statistics that provide
information about a dataset.

It consists of the five most important sample percentiles:
� the sample minimum (smallest observation);
� the lower quartile or first quartile;
� the median (the middle value);
� the upper quartile or third quartile;
� the sample maximum (largest observation).
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Box plot. . .
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Convergence of Random Variables. . .

Let X1, X2,. . . be a sequence of random variables, and let X be another
random variable. Let Fn denote the CDF of Xn and let F denote the CDF
of X .

Xn converges to X in probability, written Xn
P−→ X , if for every ε > 0,

Pr(|Xn − X | > 0)→ 0

as n→∞.

Xn converges to X in distribution, written Xn  X , if for every ε > 0,

lim
n→∞

Fn(t) = F (t)

at all t for which F is continuous.
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The Weak Law of Large Numbers. . .

Let X1, X2,. . . be an IID sample and let µ = E [X1] and σ2 = Var [X1] then:

Xn
P−→ µ

where Xn = 1
n
∑

Xn and Var [Xn] = σn

n .

The Weak Law of Large Numbers guarantee that the distribution of Xn
becomes more concentrated around µ as n gets large!

X1, X2,. . . must be IID!
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The Weak Law of Large Numbers. . .
Example

Consider flipping a coin for which the probability of heads is p. Let Xi
denote the outcome of a single toss (0 or 1). Hence,
p = Pr(Xi = 1) = E [Xi ].

The fraction of heads after n tosses is Xn. According to the WLLN Xn
converges to p in probability.

This does not mean that Xn will numerically equal p!

We only know that when n is large, Xn is tightly concentrated around p.

Question: How large should be n so that

Pr(|Xn − p| < 0.1) ≥ p?
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The Weak Law of Large Numbers. . .
Example

Answer: From Chebyshev’s inequality we know that:

Pr(|X − p| > 0.1) ≤ σ2

n · (0.1)2

Hence:

Pr(|Xn − p| ≤ 0.1) = 1− Pr(|X − p| > 0.1) ≥ 1− σ2

n · (0.1)2

Warning: In the general case σ2 is unknown!

Solution: We can use s2!
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Central Limit Theorem

Let X1, X2,. . . be an IID sample and let µ = E [X1] and σ2 = Var [X1] then:

Zn ≡
√
n(Xn − µ)

σ
 Z

where Z is distributed as N(0, 1).

Probability statements about Xn can be approximated using a Normal
distribution. It’s the probability statements that we are approximating, not
the random variable itself.

After a reasonable number of observations we can estimate how
good is the average value we have computed!
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Central Limit Theorem

Let X1, X2,. . . be an IID sample and let µ = E [X1] and σ2 = Var [X1] then
following notations are all equivalent:

� Zn ≈ N(0, 1)

� Xn ≈ N(µ, σ2

n )

� Xn − µ = N(0, σ2

n )

�
√
n(Xn − µ) = N(0, σ2)

�

√
n(Xn−µ)
σ = N(0, 1)

Remark: When µ and σ2 are unknown we can use their estimations!
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To be continued. . .
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