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Statistical Inference. . .

Statistical Inference (or learning) is the process of using data to infer the
distribution that generated the data.

Problem: We observe X1,. . . , Xn having CDF F , we want to
infer/estimate/learn F or some feature of F (such as its mean).

In our context Xi will be the outcome of a simulation!

Prof. Michele Loreti Statistical Inference 364 / 450



Statistical Inference. . .

Statistical Inference (or learning) is the process of using data to infer the
distribution that generated the data.

Problem: We observe X1,. . . , Xn having CDF F , we want to
infer/estimate/learn F or some feature of F (such as its mean).

In our context Xi will be the outcome of a simulation!

Prof. Michele Loreti Statistical Inference 364 / 450



Statistical Inference. . .

Statistical Inference (or learning) is the process of using data to infer the
distribution that generated the data.

Problem: We observe X1,. . . , Xn having CDF F , we want to
infer/estimate/learn F or some feature of F (such as its mean).

In our context Xi will be the outcome of a simulation!

Prof. Michele Loreti Statistical Inference 364 / 450



Statistical models. . .

A statistical model is a set of distributions F.

A parametric model is a set F that can be parametrised by a finite number
of parameters.

A nonparametric model is a set F that cannot be parametrised by a finite
number of parameters

F =
{

F
∣∣∣∣F is a CDF

}
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Parametric models. . .

Example. Parametric model for data coming from a Normal distribution:

F =
{

f (x : µ, σ) = 1
σ
√
π

e−
1

2σ2 (x−µ)2
∣∣∣∣µ ∈ R, σ > 0

}

In general a parametric model takes the form:

F =
{

f (x ; θ)
∣∣∣∣θ ∈ Θ

}
where:

� θ is an unknown parameter (or vector of parameters);
� Θ is the parameter space.
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Regression, prediction and classification. . .

Suppose that we observe pairs of data. . .

(X1,Y1), (X2,Y2) . . . (Xn,Yn)

Example: Xi is the blood pressure of a subject i and Yi is how long they
live.

X is called predictor/regressor/feature/independent variable.

Y is called outcome/response variable/dependent variable.

The regression function is the function

r(x) = E (Y |X = x)
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Regression, prediction and classification. . .

Let us assume that r ∈ F. . .

. . . if we know something about the structure of F (e.g. is a set of linear
function) we have a parametric regression model

The goal of predicting Y for a new patients based on their X values is
called prediction.

If Y is discrete the prediction is called classification.
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Corner Stones of Inference. . .

Point Estimation Confidence Sets Hypothesis Testing
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Point Estimation. . .

Point Estimation refers to providing a single best guess of some quantity
of interest.

The quantity of interest can be. . .
� a parameter in a parametric model;
� a CDF F ;
� a regression function r ;
� . . .

By convention we denote a point to estimate of θ by θ̂. . .
� θ is a fixed, unknown quantity;
� θ̂ is a random variable.
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Point Estimation. . .

Let X1,. . . , Xn be n IID data points from some distribution F . A point
estimator θ̂n of a parameter θ is some function of X1,. . . ,Xn:

θ̂n = g(X1, . . . ,Xn)

We let the bias of θ̂n

bias(θ̂n) = E (θ̂n)− θ

A model is unbiased if E (θ̂n) = θ.

A point estimator θ̂n is consistent if θ̂n
P−→ θ.
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Point Estimation. . .

The distribution θ̂n is called the sampling distribution.

The standard deviation of θ̂n is called the standard error, denoted by se:

se = se(θ̂n) =
√

V [θ̂n]

Often it is not possible to compute the standard error but usually we can
estimate it. The estimated standard error is denoted by ŝe.
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Point Estimation. . .

The quality of a point estimate is sometimes assessed by the mean squared
error (MSE):

MSE = E (θ̂n − θ)

MSE can be written as

MSE = bias(θ̂n)2 + V (θ̂n)

If bias→ 0 and se→ 0 as n→∞ then θ̂n is consistent, that is θ̂n
P−→ θ
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Point Estimation. . .

An estimator is asymptotically Normal if

θ̂n − θ
se  N(0, 1)

Mean is asymptotically Normal!
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Confidence Sets

A 1− α confidence interval for a parameter θ is an interval Cn = (a, b)
where

a = ga(X1, . . . ,Xn) b = gb(X1, . . . ,Xn)

are functions such that:

Pr(θ ∈ Cn) ≥ 1− α

for all θ ∈ Θ.
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Confidence Sets
Example

Consider flipping a coin for which the probability of heads is p. Let Xi
denote the outcome of a single toss (0 or 1). Hence,
p = Pr(Xi = 1) = E [Xi ].

The 1− α confidence interval for p can be computed as:

Cn = (p̂n − εn, p̂n + εn) where εn =
log( 2

α)
2n

This because X1,. . . ,Xn have a Bernulli distribution with parameter p and
that for any ε > 0:

Pr(|Xn − p| > ε) ≤ 2e−2nε2
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Normal-based Confidence Interval

Suppose that θ̂n ≈ N(θ, se2). Let Φ be the CDF of a standard Normal and
let zα/2 = Φ−1(1− (α/2)), that is (where Z ∼ N(0, 1)):

Pr(Z > zα/2) ≥ α/2 and Pr(−zα/2 < Z < zα/2) = 1− α

Let

Cn = (θ̂n − zα/2ŝe, θ̂n + zα/2ŝe)

Then

Pr(θ ∈ Cn)→ 1− α

For 1− α = 0.95 (95% confidence interval) α = 0.05, zα/2 = 1.96 ≈ 2.
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Normal-based Confidence Interval
Example

Consider flipping a coin for which the probability of heads is p. Let Xi
denote the outcome of a single toss (0 or 1). Hence,
p = Pr(Xi = 1) = E [Xi ].

We know by the Central Limit Theorem that p̂n ≈ N(p, ŝe2) where:

p̂n = 1
n

n∑
i=1

Xi and ŝe =

√
p̂n(1− p̂n)

n

An approximate 1− α confidence interval is:

p̂n ± zα/2

√
p̂n(1− p̂n)

n

Prof. Michele Loreti Statistical Inference 378 / 450



Normal-based Confidence Interval
Example

Consider flipping a coin for which the probability of heads is p. Let Xi
denote the outcome of a single toss (0 or 1). Hence,
p = Pr(Xi = 1) = E [Xi ].

We know by the Central Limit Theorem that p̂n ≈ N(p, ŝe2) where:
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√
p̂n(1− p̂n)

n

An approximate 1− α confidence interval is:

p̂n ± zα/2

√
p̂n(1− p̂n)

n

Prof. Michele Loreti Statistical Inference 378 / 450



From theory to practice. . .
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Empirical Distribution Function

Let X1, . . . ,Xn ∼ F be IID where F is a CDF on the real line.

We can estimate F via the empirical distribution function F̂n defined as
follows:

F̂n(x) =
∑n

i=1 I(Xi ≤ x)
n

where

I(Xi ≤ x) =
{

1 Xi ≤ x
0 Xi > x
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Plug-in estimator

A statistical functional T (F ) is any function of F , such at mean, variance,
median. . .

The plug-in estimator of θ = T (F ) is defined by

θ̂n = T (F̂n)

This is obtained by using F̂n for the unknown F .

For T (F̂n) we can compute a Normal-based interval by assuming:

T (F̂n) ≈ N(T (F ), ŝe)

Warning: calculating ŝe is not easy in the general case!
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Plug-in estimator
Examples

Let X1, . . . ,Xn ∼ F be IID where F is an unknown CDF:

Mean:

Xn = 1
n

n∑
i

Xi

Variance:

σ̂2 = 1
n

n∑
i=1

(Xi − Xn)2 S2
n = 1

n − 1

n∑
i=1

(Xi − Xn)2

The two are equivalent for large values of n.
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From theory to practice. . .
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Bootstrap method

The bootstrap is a nonparametric method for estimating standard errors
and computing confidence intervals.

Let Tn = g(X1, . . . ,Xn) be a statistic, that is, any function of the data.

Suppose we want to know VF (Tn), the variance of Tn. This value
depends on the unknown distribution function F .

The idea of bootstrap method is to approximate F with F̂n.
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depends on the unknown distribution function F .

The idea of bootstrap method is to approximate F with F̂n.
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Simulation

Suppose we draw an IID sample Y1, . . . ,Y ďB from a distribution G . By
the law of large numbers we have that when B →∞:

Y n = 1
B

B∑
j=1

Yj
P−→ E [Y ]

We can use sample mean Y n to approximate E [Y ]. In a simulation we can
make B as large as we like.
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Simulation

More generally, if h us a function with finite mean then when B →∞ then:

Y n = 1
B

B∑
j=1

Yj
P−→ E [Y ]

In particular:

1
B

B∑
j=1

(Yj − Y )2 = 1
B

B∑
j=1

Y 2
j −

 1
B

B∑
j=1

Yj

2
P−→ V [Y ]
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Bootstrap Variance Estimation

We can approximate VF̂n
[Tn] by simulation.

Boostrap Variance Estimation
1. Draw X1, . . . ,Xn from F
2. For i = 0 to m do:

� Sample X∗
i1 , . . . ,X

∗
in from F̂n

� Let T ∗
i = g(X∗

i1 , . . . ,X
∗
in )

3. Let

vboot = 1
m

m∑
i=1

T ∗i −
1
m

m∑
j=1

T ∗j


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Bootstrap Variance Estimation

Warning: We are using two approximations:

VF [Tn] ≈ VF̂n
[Tn] ≈ vboot
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From Theory to Practice
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Bootstrap Confidence Interval

Normal Interval: let ŝeboot be the bootstrap estimate of the standard
error

Tn ± zα/2ŝeboot

The interval is not accurate unless Tn is close to Normal.
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The interval is not accurate unless Tn is close to Normal.

Prof. Michele Loreti Statistical Inference 390 / 450



Bootstrap Confidence Interval

Let θ = T (F ) and θ̂n = T (F̂n). The pivot Rn = θ̂n − θ.

Let θ̂∗n,1,. . . , θ̂∗n,m denote the bootstrap replications of θ̂n.

Let H(r) denote the CDF of the pivot:

H(r) = PrF (Rn ≤ r)
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Bootstrap Confidence Interval

We can consider C∗n = (a, b) where

a = θ̂n − H−1
(
1− α

2

)
and b = θ̂n − H−1

(
α

2

)

We have that (a and b are random variables):

Pr(a ≤ θ ≤ b) = Pr(a − θ̂n ≤ θ − θ̂n ≤ b − θ̂n)
= Pr(θ̂n − b ≤ Rn ≤ θ̂n − a)
= H(θ̂ − a)− H(θ̂ − b)
= H

(
H−1(1− α

2 )
)
− H

(
H−1(α2 )

)
= 1− α

2 −
α
2 = 1− α

Good news: C∗n is an exact 1− α interval for θ!
Bad news: H is unknown!
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Bootstrap Confidence Interval

We can form a bootstrap estimate of H:

Ĥ(r) = 1
m

m∑
j=1

I(R∗n,j ≤ r)

where R∗n,j = θ̂∗n,j − θ̂n. We let r∗β and θ∗β denote the β sample quantiles of
(R∗n,1, . . . ,R∗n,m) and (θ∗n,1, . . . , θ∗n,m).

An approximate 1− α confidence interval Cn = (â, b̂) is:

â = θ̂n − Ĥ−1(1− α
2 ) = θ̂n − r∗1−α

2
= 2θ̂n − θ∗1−α

2

b̂ = θ̂n − Ĥ−1(α2 ) = θ̂n − r∗α
2

= 2θ̂n − θ∗α
2

Bootstrap pivotal confidence interval Cn is typically pointwise,
asymptotic confidence interval.
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b̂ = θ̂n − Ĥ−1(α2 ) = θ̂n − r∗α
2

= 2θ̂n − θ∗α
2

Bootstrap pivotal confidence interval Cn is typically pointwise,
asymptotic confidence interval.

Prof. Michele Loreti Statistical Inference 393 / 450



Bootstrap Confidence Interval

Bootstrap percentile interval is defined as

Cn =
(
θ∗α

2
, θ∗1−α

2

)
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From Theory to Practice
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Hypothesis testing. . .

In our bike sharing system we have to choose among two different
allocation policy P1 and P2 in terms of balanced use of resources.

We built two models (MP1 and MP2) that (based on some assumptions
about the utilisation environment) can be used to predict system
behaviour.

We can consider two hypothesis:
� The Null Hypothesis, P1 is worst than P2;
� The Alternative Hypothesis, P1 is not worst than P2.

If we observe that performance in MP1 is much better than that observed
in MP2 we reject the null hypothesis in favour of alternative hypothesis.
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Hypothesis testing. . .

Suppose that we partition the parameter space Θ in two disjoint sets Θ0
and Θ1 and that we wish to test:

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1

We call:
� H0 the null hypothesis;
� H1 the alternative hypothesis.
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Hypothesis testing. . .

Let X be a random variable and let X be the range of X . We test a
hypothesis by finding an appropriate subset of outcomes R ⊆ X called the
rejection region.

If X ∈ R we reject the null hypothesis, otherwise, we do not reject the
null hypothesis:

� X ∈ R =⇒ reject H0;
� X 6∈ R =⇒ retain (do not reject H0.

Usually the rejection region R is of the form R = {x : T (x) > c} where T
is a test statistic and c is a critical value.

The problem in hypothesis testing is to find an appropriate test statistic T
and an appropriate cutoff value c.
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Hypothesis testing. . .

When hypothesis testing is applied there are two types of errors we can
make.

Type I error: we reject H0 when H0 is true.

Type II error: we reject H1 when H1 is true.

Possible outcomes of hypothesis testing are:

Retain Null Reject Null
H0 is true OK Type I error
H1 is true Type II error OK
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Hypothesis testing. . .
Power function, size and level of a test

The power function of a test with rejection region R is defined by

β(θ) = Prθ(X ∈ R)

The size of a test is defined to be:

supθ∈Θ0β(θ)

A test is said to have a level α if its size is less than or equal to α.
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Hypothesis testing. . .

A hypothesis of the form θ = θ0 is called a simple hypothesis.

A hypothesis of the form θ > θ0 or θ < θ0 is called composite hypothesis.
A test of the form

H0 : θ = θ0 versus H0 : θ 6= θ0

is called two-sided test.

A test of the form

H0 : θ ≤ θ0 versus H0 : θ > θ0

or
H0 : θ ≥ θ0 versus H0 : θ < θ0

is called one-sided test.
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The Wald Test

Let θ be a scalar parameter, let θ̂ be an estimate of θ and let ŝe be the
estimated standard error of θ̂.

Consider testing:

H0 : θ = θ0 versus H1 : θ 6= θ0

Assume that θ̂ is asymptotically Normal:
√

n(θ̂ − θ0)
ŝe  N(0, 1)

The size α Wald test is: reject H0 when |W | > zα/2 where:

W = θ̂ − θ
ŝe
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The size α Wald test is: reject H0 when |W | > zα/2 where:

W = θ̂ − θ
ŝe
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The Wald Test

The Wald test has asymptotically size α:

Prθ0(|Z | > zα/2)→ α

as n→∞.

Suppose that θ is θ? 6= θ0. The power β(θ?) (that is the probability of
correctly rejecting the null hypothesis) is (approximatively):

1− Φ
(
θ0 − θ?

ŝe + zα/2

)
+ Φ

(
θ0 − θ?

ŝe − zα/2

)
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Compute zα/2

1. Divide α by two;
2. Subtract what you obtain from .5;
3. Find the value in the z − table.

Easy approach, use table for recurrent values of α:

Confidence Level α α/2 zα/2
90% 0.1 0.05 1.645
95% 0.05 0.025 1.96
98% 0.02 0.01 2.326
99% 0.01 0.005 2.576
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Wald test. . .
Comparing two means. . .

Let X1, . . . ,Xm and Y1, . . . ,Y ďn be two independent samples from
populations with means µ1 and µ2, respectively.

Let’s test for null hypothesis that µ1 = µ2, that we can write as:

H0 : δ = 0 versus H1 : δ 6= 0

where δ = µ1 − µ2.

The size α Wald test reject H0 when |W | > zα/2

W = δ̂ − 0
ŝe = X − Y

ŝe =
√

s2
1

m + s2
2
n
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ŝe = X − Y
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Wald Test in Action. . .

We can use Wald test to check correctness of Knut-Yao Algorithm:
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To be continued. . .
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