
84

Conformance Testing for Cyber-Physical Systems

MATTHIAS WOEHRLE, KAI LAMPKA, and LOTHAR THIELE, ETH Zurich

Cyber-Physical Systems (CPS) require a high degree of reliability and robustness. Hence it is important to
assert their correctness with respect to extra-functional properties, like power consumption, temperature,
etc. In turn the physical quantities may be exploited for assessing system implementations. This article
develops a methodology for utilizing measurements of physical quantities for testing the conformance of a
running CPS with respect to a formal description of its required behavior allowing to uncover defects. We
present foundations and implementations of this approach and demonstrate its usefulness by conformance
testing power measurements of a wireless sensor node with a formal model of its power consumption.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging—Testing tools

General Terms: Algorithms, Verification

Additional Key Words and Phrases: Conformance test, timed testing, cyber-physical systems

ACM Reference Format:
Woehrle, M., Lampka, K., and Thiele, L. 2012. Conformance testing for cyber-physical systems. ACM Trans.
Embedd. Comput. Syst. 11, 4, Article 84 (December 2012), 23 pages.
DOI = 10.1145/2362336.2362351 http://doi.acm.org/10.1145/2362336.2362351

1. INTRODUCTION

Cyber-Physical Systems (CPS) are computation systems deeply integrated into and
interacting with the environment and its physical processes. Commonly, these systems
require a high degree of reliability and robustness due to uncertainties in their physical
environment. Hence, one of the main challenges for designing and implementing CPSs
is the assertion of their correctness. Correctness does not only encompass algorithmic
and functional aspects but also extra-functional properties that are closely related to
the inherent interaction with the system environment. Examples of such properties
may be temperature, power consumption, and timing. On the other hand, this addi-
tional observable behavior of a CPS may also help in assessing the overall correctness
as computations not only consume and provide data but also have side-effects that
can be exploited. The article addresses this challenge and presents a methodology for
utilizing nonintrusive measurements of a physical quantity obtained from a CPS to
identify defects in the implementation. This conformance testing between formal spec-
ification and implementation is in fact an important issue: (abstract) system designs
can carefully be studied on the basis of formal methods. However, the actual imple-
mentation is built manually, not automatically generated from the specification model,
such that their conformance with a predefined formal model is unknown. Consider an

The work presented here was supported by the National Competence Center in Research on Mobile In-
formation and Communication Systems (NCCR-MICS), a center supported by the Swiss National Science
Foundation under grant no. 5005-67322.
Authors’ addresses: M. Woehrle, K. Lampka, and L. Thiele, ETH Zurich, Computer Engineering and Net-
works Laboratory (TIK), ETZ G 75, Gloriastrasse 35,8092 Zurich, Switzerland.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1539-9087/2012/12-ART84 $15.00

DOI 10.1145/2362336.2362351 http://doi.acm.org/10.1145/2362336.2362351

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 84, Publication date: December 2012.

84:2 M. Woehrle et al.

implementation of a wireless sensor node and measured traces of power consumption.
We want to use the measurements of the actual (heterogeneous) hardware to assure
that our previous modeling and the energy-efficient design of the system actually
hold for the implementation. Visual inspection of such traces or the use of reference
traces are not suitable for the large number of tests required for analyzing the various
properties of the software in different test environments. Our aim is to exploit formal
methods for an automated approach. This is useful since we need to compare the
measured trace against all possible traces that can be produced by the specification.

Formal state-based analysis techniques have shown to be of great value when it
comes to the verification of systems. However, the expansion of all possible system
behaviors may yield an exponential number of system states with respect to a system’s
concurrently executed activities. This problem, the well-known state space explosion
problem, worsens when timing and physical quantities from a continuous domain have
to be considered. Hence physical quantities are commonly excluded from any verifi-
cation process, which is problematic as they are important for guaranteeing correct
behavior of CPSs. Nevertheless, formal methods support an expressive, concise, and
often compositional formulation of expected system behavior. It is the goal of this ar-
ticle to present a scalable approach for detecting implementation defects of a CPS by
exploiting some unobtrusively measured physical quantity.

The proposed technique employs formal, state-based models for specifying the ex-
pected behavior and for representing a series of measurements of a physical quantity.
This approach allows to investigate the conformance of expected and observed behavior
by using a timed model checker. The failure of the conformance test provides a diag-
nostic (debugging) trace to the test engineer, which helps in debugging implementation
errors of a CPS’s hard- and software. It is interesting to note that the proposed approach
is bidirectional. The values of the physical quantity may be outputs produced by the
CPS or they may be inputs to the CPS stimulating some behavior or a combination of
the two cases.

As we are dealing with complex hard- and software systems deeply integrated into
the environment the presented approach has to cope with the following challenges.

(1) As standard instrumentation techniques can falsify the system behavior, nonintru-
sive techniques are preferable. However, with such techniques the concrete state of
the CPS is hidden and cannot be observed directly, for example the current mode
of operation.

(2) The individual hardware components may react/contribute differently to the ob-
served quantity, but it is only the overall effect that can be seen. For example,
components may have different power modi, but it is only the sum of the individual
power consumptions that can be measured.

(3) The observed physical properties are the result of the interaction between the CPS
and its environment. This interaction needs to be part of the underlying system
model and increases the complexity of the conformance test.

(4) The complexity of systems yields a high-degree of nondeterminism ruling out an
exhaustive analysis due to the notorious state space explosion problem.

(5) As with all physical observations, measurements are subject to uncertainty and
measurement inaccuracy.

To deal with these aspects, we devise a conformance test, i.e., for a series of mea-
surements and a modeled system, both given as (timed) automata. One central concept
is the mapping of physical quantities to a set of distinct, finite intervals in order to:
(a) reduce the computational complexity of the conformance test and (b) to enable the
use of existing tools that are tailored towards value-discrete timed models, such as

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 84, Publication date: December 2012.

Conformance Testing for Cyber-Physical Systems 84:3

Uppaal [Bengtsson and Yi 2004; Behrmann et al. 2004] and TRON [Larsen et al. 2004;
Hessel et al. 2008].

The main contribution of this work can be summarized as follows.

—We present the new approach for automatic conformance testing of CPSs based on
timed automata.

—We present an efficient modeling for the composition of physical measurements and
a system specification and discuss optimizations towards computational efficiency
that are required when dealing with measurements from a real system.

—We demonstrate the feasibility of the conformance tests by testing measured power
traces of an implementation of a complex CPS.

—We investigate the computational efficiency of our approach for different verification
tools, Uppaal and TRON.

We continue with a presentation of the theoretical background before detailing on our
method in Section 3. Section 4 discusses a second approach of our method using an
online testing tool. We present a wireless sensor node application in Section 5 and show
the results of conformance tests of power consumption measurements in Section 6. We
conclude with a summary, including related work and a discussion of other approaches.

2. BACKGROUND THEORY

In the following, we clarify the required notations and theoretical concepts.

Definition 1 (Timed Trace). A timed action is a pair (t, a) where a is some label and
t ∈ R≥0 some nonnegative timestamp. A timed trace � := (t1, a1); (t2, a2); (t3, a3); . . . is a
sequence of timed actions ordered by increasing timestamps, with ti ≤ ti+1 for i ∈ N.

Timed automata are used as a formal model in the proposed method. In particular,
this work focuses on timed automata as used in the Uppaal model checker and follows
the notation of the corresponding literature [Bengtsson and Yi 2004; Behrmann et al.
2004].

Definition 2 (Timed Automaton Extended with Variables). A timed automaton ex-
tended with variables is a tuple T A = (Loc, l0, Act, C, V, ↪→, I) where:

—Loc is a finite set of locations.
—l0 ∈ Loc is the initial location.
—Act is a set of actions including the internal, unobservable action τ .
—C is a finite set of clocks.
—V is a finite set of (discrete) variables.
—↪−→⊆ Loc × ClockCons(C) × V arCons(V) × Act × 2C × F × Loc is an edge relation,

where ClockCons is a set of constraints on clocks and V arCons is a set of constraints
on (discrete) variables. These constraints on edges are denoted as guards. F is a set
of edge-specific valuation functions on variables.

—I: Loc → ClockCons(C) × V arCons(V) is an invariant assignment function.

Clock and variable constraints are conjunctions of atomic guards of the form x ��
n, x ∈ C ∪ V, n ∈ N0 where ��∈ {<,≤,>,≥,=}. Clocks are assigned to real values
using a valuation function u : C → R≥0. Clocks implicitly increase their value as time
progresses. u+d denotes that each clock x ∈ C is mapped to the value u(x)+d, i.e., time
is increased by d ∈ R≥0. All clocks in the system increase at the same rate. Clocks can
only be inspected or reset denoted by u′ = [r → 0]u, which signifies resetting the clocks
in r ⊆ C. All other (not resetted) clocks agree with the valuation u, i.e., u′ = u for all
clocks C \ r. Variable valuations are determined by an edge-specific valuation function
fe ∈ F with fe : D

|V | → D
|V |, where D is the finite domain of the discrete variables:

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 84, Publication date: December 2012.

84:4 M. Woehrle et al.

D ⊂ N0. Variables are updated on (discrete) transitions, i.e., v′ = fe(v), where v is a
vector of variables before the update and v′ the corresponding variable vector after
the update. Unless specifically indicated, we always refer to a valuation of a clock or
discrete variable instead of the variable itself. Furthermore, u ∈ gc denotes that a clock
valuation u satisfies a clock constraint gc ∈ ClockCons; analogously v ∈ gv states that a
variable valuation v satisfies a constraint gv ∈ V arCons. We also write (u, v) ∈ I(l) with
l ∈ Loc to state that the valuations of clocks and variables satisfy location invariant
I(l). Note that here a set notation on the valuation is used for the following reason:
Invariant and guards are constraints on clocks (or variables) that specify a set of
valuations allowed in a given location. Hence, a clock (or variable) valuation is valid
if it is included in the set of allowed valuations. This notation is used for consistency
with literature [Bengtsson and Yi 2004; Behrmann et al. 2004].

The active location of a (single) timed automaton is the location wherein the execution
of the automaton (currently) resides. A state in a timed automaton is defined by an
active location and clock and variable valuations 〈l, u, v〉. The transition relation T as
induced by the edge relation and the advance of time in timed automata can be defined
as follows.

Definition 3 (Transition System of a Timed Automaton). A transition system T ′ as
induced by a T A is a tuple (R,→), where:

—R is the set of (reachable) states; each defined by a triple 〈l, u, v〉 with l ∈ Loc as
the active location, u ∈ R≥0 as clock valuation, and v ∈ D

|V | as vector of variable
evaluations.

—→⊆ R × (Act ∪ R≥0) × R is a(n) (infinite) transition relation. Its elements are either
delay or discrete (edge-induced) transitions (as discussed shortly).

With delay transitions in the preceding definition we refer to the fact that the timed
automaton remains in its (currently active) location and time passes. With discrete
transitions we refer to the situation that the timed automaton changes its location,
i.e., the traversal of an enabled edge takes place which is instantaneously followed
by a reset of clocks and an update of variables; an enabled edge is an edge where
the clock and variable constraints gc and gv, respectively, are satisfied by the current
clock and variable valuations. Formally, these two types of transitions are defined as
follows.

—delay transition

〈l, u, v〉 d→ 〈l, u + d, v〉 if ∀d′ ∈ R≥0 : 0 ≤ d′ ≤ d implies (u + d′, v) ∈ I(l)

—discrete transition

〈l, u, v〉 α→ 〈l′, u′, v′〉 if l
gc,gv,α,r, fe

↪−→ l′ and u ∈ gc and v ∈ gv and u′ = [r → 0]u
and v′ = fe(v) and (u′, v′) ∈ I(l′),

where gc ∈ ClockCons(C), gv ∈ V arCons(V), α ⊆ Act, r ⊆ C, fe ∈ F as specified
before. As a discrete transition is induced by the traversal of an enabled edge of a
timed automaton, we will also speak of executing an edge, rather than of its traversal.

Delays may be sampled from intervals of R≥0, hence the previous transition rules
induce an infinite transition system. The infinite set of reachable states was already
denoted by us R′, whereas we used the symbol → for referring to the infinite transition
relation as induced by a timed automaton. However, these sets can be mapped to finite
quotient systems R and ⇒, yielding a finite transition system T . On the basis of this
finite structure state reachability for timed automata can be decided in finite time;
one solely needs to generate the |R| different system configurations. The obtained

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 84, Publication date: December 2012.

Conformance Testing for Cyber-Physical Systems 84:5

transition system is commonly denoted as region graph. For further details on this
concept the reader is referred to Alur and Dill [1994].

As the presented approach emphasizes a compositional modeling style, it is required
to extend the basic concept to networks of (cooperating) timed automata, where the
individual TA are denoted as component automata in the following. The clocks of the
individual component automata increase all at the same rate. In the following, a brief
overview of the related concepts follows; more details can be found in the Uppaal
tutorials [Bengtsson and Yi 2004; Behrmann et al. 2004].

—Cooperation via shared variables. Variables can be declared on the level of a network
of timed automata, allowing the individual timed automaton to read and manipulate
them.

—Rendezvous mechanisms. Uppaal implements different mechanisms allowing to
jointly traverse (or execute) edges within the different component automata, where
such a joint execution is denoted as synchronization. By following Uppaal’s nomen-
clature, the terms channels and signals, as well as sender and receiver are used in
the following.
A channel is a unique edge label. Once it occurs in combination with an exclamation
mark one speaks of a sending edge. Its occurrence with a question mark is referred
to as a receiving edge. The channel of a jointly executed sending and receiving edge
must match, where only a single sending edge but a varying number of receiving
edges can take part in a synchronization. Before clarifying details with respect to
the number of participating receivers, it is important to note that only one edge per
component automaton can be executed. Updates on sending edges are performed
before updates on receiving edges. The order of the receiving edges is undefined. The
following concepts need to be distinguished:
Binary synchronization. One sending and one receiving timed automaton synchro-
nize on the joint execution of dedicated edges: one from the sender, whose edge is
labeled by a channel id and an exclamation mark, and one from the receiver, whose
edge is labeled by the same channel id, but extended with a question mark (see the
on! and on?-labeled edges in the timed automata of Figure 5 and 6). The pairs of
enabled sending and receiving edges belonging to the same channel are selected non-
deterministically, i.e., all possible synchronization pairs are considered in the state
space exploration.
Broadcast channels. A single sender synchronizes with up to n receivers. This refers
to the situation where one timed automaton executes a sending edge, which can be
understood as the emission of a signal and where 0 to n receivers execute a receiving
edge, which can be interpreted as the instantaneous reception of this broadcast
signal. A broadcast requires that each timed automaton that contains (one or more)
enabled receiving edges has to execute one of these edges.

Uppaal features the concept of urgent locations. Within urgent locations no time
passes. Thus the system has to execute any of its outgoing edge in zero time once the
urgent location is entered. If this is not possible, the execution of the timed automaton
deadlocks. Figure 5 shows Uppaal urgent locations that are marked with a ’U’ and an
initial location that is marked with a concentric circle.

Composed timed automata do not share clocks. Updates of global variables on syn-
chronized edges require special care; they are evaluated sequentially: first the updates
on the sending edge are performed, then the one(s) on the receiving edge(s). In case of
updates on multiple receiving edges, the resulting update is not well-defined unless the
operation is commutative, e.g., incrementing a variable. As the presented conformance
testing approach deals with networks of timed automata that are jointly executed, a
state of the system can be uniquely defined by a vector of location identifiers, each

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 84, Publication date: December 2012.

84:6 M. Woehrle et al.

Model Checker

Measurements

y<=70 y<=117 and ready == 2

y==70

crrValue=100

IsInBounds()
event!

y=0, ready=0,
 stateTrace = 2

y==117

crrValue=200

y

TM
Reachability

Send

Receive

RadioOn
z<=2000IDLE

z <= 50000 receive?

z=0

z=0

sending!

send?

initial==true

z=0,
initial=false

z>=48000
z=0

off!

on!Sys Specification
of expected

behavior2 4

Fig. 1. TTQ overview: TTQ uses: (1) a model of the trace of measurements of a physical quantity (TM) and
(2) a model of the system (Sys). On the composed model TM||Sys, reachability is checked using a model
checker.

referring to the active location held by the respective automaton, and the valuation of
all clocks and the vector of values held by the variables. The notation (�s, u, v) is used
for the elements of the set of reachable states R, where �s refers to the vector of active
locations, u refers to the representation of the clock valuations, and v to the values
currently held by the variables.

3. THE TTQ-APPROACH

The main goal of this section is to present Timed Testing of a physical Quantity (TTQ).
TTQ employs a reachability query in order to decide whether a (finite) timed trace of
measurements of a physical quantity is included in the traces of a specification of a
CPS. For being applicable in an industrial environment the approach is designed in
such a way that it can be implemented on the basis of standard real-time tools. The
proposed methodology is illustrated in Figure 1: It relies on models of a timed trace
of measurements of a physical quantity and a user-defined model that describes the
specification of the system under evaluation. Whereas the model of the timed trace
of measurements TM is automatically derived from the time series of measurements,
the formal model of system behavior Sys needs to be (manually) generated from some
specification. Having formal models for both the measurements and the expected
system behavior, we can specify a conformance test. Both models are composed into a
network of timed automata, denoted as Sys||TM. We formulate the conformance test
as a reachability check on the jointly executed network of timed automata

Sys |= TM ⇔ (�s, u, v) ∈ RSys||TM, where �s contains l f
T M,

where l f
T M denotes the final location of TM and RSys||TM is the set of reachable states

for Sys||TM. Intuitively, l f
T M corresponds to the final measurement in a trace. In order

to automatically determine reachability on the composed model, TTQ utilizes a timed
model checker. For representing the time series of measurements a suitable model
is required, such that: (i) the model provides sufficient expressiveness with respect
to the tracked measurements and (ii) the model allows an efficient generation of the
set of reachable states of the composed models RSys||TM. In the following it is shown
how timed automata extended with (discrete) variables can be employed for this
purpose. We implement the presented approach on top of the timed model checker
Uppaal.

To this end, this section describes two fundamental contributions for rendering a
conformance test using a model checker feasible.

—The modeling of the composition of the system model Sys with the trace model
TM. This must allow: (a) the nondeterminism inherent in Sys, (b) a compositional
modeling of the system model Sys, and (c) independent progress for TM and Sys.

—We present an optimization on the size of the trace model TM that considerably
reduces the input size of the model checking problem.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 84, Publication date: December 2012.

Conformance Testing for Cyber-Physical Systems 84:7

3.1. Timed Automaton Models Employed in TTQ

In the following, the timed automata models for the measurements (TM) and for the
system specification are presented (Sys).

3.1.1. Model of Timed Measurements (TM). The formal model of a time series of measure-
ments is a timed automaton TM. It contains a variable p that denotes the measurement
of a physical quantity and a single clock cT M that denotes the clock valuations at a
change of p. Formally TM is defined as follows. We have

TM = (
LocT M, Loc0

T M, ActT M, uT M, vT M, ↪→T M, IT M
)
,

ActT M = {τ }, uT M = {cT M}, vT M = {p},

where we denote lT M ∈ LocT M as a location in TM. l f
T M ∈ LocT M is the final location of

TM.
TM is constructed by generating a location in the trace for each pair in the timed trace

of measurements. A clock is used to stay in a given location exactly for the time between
the current and the previous measurement, i.e., for (t1, a1); (t2, a2) and assuming the
trace starting at time 0, the time in location l1 is t1 and for the subsequent location l2 it is
t2 −t1. However, the size of a trace of measurements is typically very large as: (a) typical
lab instruments provide a high resolution, e.g., in the order of milliseconds (ms) down
to nanoseconds (ns) for power consumption, and (b) the measurement noise leads to
frequent changes of the measurement value resulting in frequent state transitions. As a
result, there is a need for compressing millions of data points into a processable number
of locations in TM. This is described at the end of this section (refer to Section 3.3.2),
as necessary technical concepts need to be presented first.

3.1.2. System Specification Sys. At first, it is assumed that Sys is a single timed automa-
ton. This means that for simplicity of presentation, it is initially ignored that the model
may consist of a set of cooperating timed automata. The locations of Sys are annotated
with invariants on clocks and variables. This results in a description of the system with
respect to timing and the physical quantity. For Sys, the following notation is used.

Sys = (Locs, Loc0
s , Acts, us, vs, ↪→Sys, Is), {hlow, hup, p} ⊆ vs

In the following, some aspects of Sys are detailed.

(1) Set of variables {hlow, hup, p} ⊆ vs. The model of the trace TM communicates with
the system model Sys via a shared variable p that holds the values of the measured
physical quantity. For dealing with deviations in the measurements, Sys employs
a pair of variables hlow, hup, which take values in D. Pairs of these variables specify
upper and lower bounds to be respected by the measurement p, i.e., p ∈ [hlow, hup].
As pointed out earlier, the labels of the variables refer here to their valuations with
respect to a system state (�s, u, v). It is interesting to note that Sys only reads p,
whereas TM updates p to signify changes in the measured physical quantity. The
variables hlow, hup are manipulated when traversing a respective edge of Sys. Sys
may contain additional variables, but such additional variables are irrelevant for
the discussion to follow.

(2) Set of locations Locs. This set consists of the partitions M and N :
Set of system modes M
A location m ∈ M represents a mode of operation that possesses a fixed lower and
upper bound hlow, hup on power consumption p. Corresponding location invariants
allow to invalidate pairs of locations and measured values, namely if p �∈ [hlow, hup].
Hence, it is straightforward to define location invariants that assert that a provided

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 84, Publication date: December 2012.

84:8 M. Woehrle et al.

y<=150 y<=7 y<=1217y==150

p=1000, y=0

y==7

p=100, y=0

y==1217

p=200, y=0l0 l1 l2 l3

Fig. 2. A short excerpt of an exemplary TM in Uppaal. In this implementation, the physical quantity, power
consumption, is annotated as p. The clock is specified as a clock variable y. A value of p = 1000 is initially
measured for the first 150 time units.

m1
m2

1000 ? p
and

p ≤ 1500

50? p
and

p ≤ 150

Fig. 3. System mode transitions without update locations are not possible.

1000 p
and

p 1500

50 p
and

p 10

Update location

m1 m2

Fig. 4. The update mechanism of Sys as implemented in Uppaal. System modes have an intermediate
urgent update location without any invariant.

measurement held by variable p is conformant with the modeled system.1 The up-
per and lower bounds are updated when Sys executes a transition. However, in case
variable p requires an update to a value which does not agree with the currently
provided power interval [hlow, hup] a violation of a location invariant occurs; this
violation terminates the currently explored execution path. As an example con-
sider TM in Figure 2 in combination with the system model Sys in Figure 3: while
residing in location l0 ∈ T M and m1 ∈ Sys, TM cannot traverse into location l1 as
this violates the invariant I(m1). Once clock y reaches 150 this situation leads to a
deadlock of the composite network of timed automata, ultimately terminating the
current branch of execution. Consequently such a naive modeling prohibits updates
of p. For resolving this problem we introduce update locations within the system
model Sys and avoid the potential deadlocks illustrated before.
Set of update locations N
Update locations n ∈ N are urgent locations without any invariants. They are
artifacts of the presented approach as they allow the update of the shared variable
p in another automaton, i.e., by executing a transition of TM. Updates on p in
system modes may not be possible, as they may violate the location invariant
p ∈ [hlow, hup]. Hence update location and system mode locations are interleaved.
As an example consider TM in Figure 2 but now in combination with the system
model Sys in Figure 4. At time y = 150, Sys can traverse into the update location
embedded between m1 and m2. This can immediately be followed by letting TM
traverse into location l1. Without delay Sys may either go back to the previously
held location m1 or a newly reached location m2, depending on the validity of the
associated location invariants. In the example only a traversal into location m2 is
possible. However, in case both locations are valid target locations, a choice is taken
nondeterministically, where due to the exhaustiveness of (timed) verification both
model futures have to be explored.

1As a consequence, the presented approach requires measurements that do not refer to a physical quantity
that is an integral over time. The physical quantity must be an instantaneous measurement that can be
determined by only looking at the current state and does not require any history. It is exactly this assumption
that allows the conformance test to stay within the class of timed automata, rather than being forced to make
use of linear priced timed automata [Behrmann et al. 2005] or other implementations of hybrid automata
[Henzinger et al. 1997].

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 84, Publication date: December 2012.

Conformance Testing for Cyber-Physical Systems 84:9

With the pattern depicted in Figure 4 we implement the following semantics. We
have

〈m, us, {hlow, hup, p}〉 τ→Sys 〈n, us, {hlow, hup, p′}〉 αs→Sys 〈m′, u′
s, {h′

low, h′
up, p′}〉;

with m, m′ ∈ M; n ∈ N ; I(n) = (∅,∅); (us, {p, hlow, hup}) ∈ I(m);
(u′

s, {p′, h′
low, h′

up}) ∈ I(m′); u′
s = [rs → 0]us

where in the following we write for simplicity

〈m, us, {hlow, hup, p}〉 αs→Sys 〈m′, u′
s, {h′

low, h′
up, p′}〉.

Note that x′ denotes a change of x after taking a transition, i.e., either a location
change or a change in the valuation. u′

s = [rs → 0]us denotes that a subset of clocks
rs ⊆ us in Sys may be reset on a transition to a new system mode. Delay transitions
in update locations are not possible, since update locations are urgent locations. Delay
transitions in system modes follow from the definition of timed automata.

3.2. Reachability Check for Verifying TTQ Conformance

The trace model TM and the system model Sys are executed concurrently referred to
by TM||Sys. TM and Sys only cooperate via a shared variable p, i.e., no rendezvous
takes place between them, such that ActT M ∩ Acts = ∅, vT M ∩ vs = {p} holds.

The global variable p is updated when transitions of TM take place. Updates of
p may potentially invalidate location invariants of Sys, which is the reason for using
update locations in Sys. This specific modeling of Sys results in the transition relations
defined next.

3.2.1. Definition of Transition Rules. With the presence of mode and update locations
in Sys, the following transition rules are obtained. Note that in order to distinguish
transitions in TM and Sys from the transitions in a composed model, a subscript is
used on the transition relation: ↪→T M for TM and ↪→Sys for Sys. For all transition
rules, it holds that m ∈ M and lT M ∈ LocT M.

(a) Delay transition. Sys and TM stay in their current location and increase their
clocks with the same duration.

〈lT M, uT M, {p}〉 d→T M 〈lT M, uT M + d, {p}〉 ∧
〈m, us, {hlow, hup, p}〉 d→Sys 〈m, us + d, {hlow, hup, p}〉

〈(lT M, m), (uT M, us), {hlow, hup, p}〉 d→ 〈(lT M, m), (uT M + d, us + d), {hlow, hup, p}〉
;

with d ∈ R≥0 and

∀d′ ∈ R≥0, 0 ≤ d′ ≤ d : (uT M + d′, vT M) ∈ I(lT M) ∧ (us + d′, vs) ∈ I(m)

(b) Current power consumption is accepted by different system locations. Sys may
traverse to another system mode that also accepts the current power consumption.

〈m, us, {hlow, hup, p}〉 αs→Sys 〈m′, u′
s, {h′

low, h′
up, p}〉

〈(lT M, m), (uT M, us), {hlow, hup, p}〉 αs→ 〈(lT M, m′), (uT M, u′
s), {h′

low, h′
up, p}〉

;

with (hlow ≤ p) ∧ (p ≤ hup) ∧ (h′
low ≤ p) ∧ (p ≤ h′

up)

(c) Current system location accepts value of power consumption before and after update.
TM updates the power consumption, yet Sys stays in the current system mode, since

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 84, Publication date: December 2012.

84:10 M. Woehrle et al.

this system mode accepts the power measurement before and after the update.

〈lT M, uT M, {p}〉 τ→T M 〈l′T M, u′
T M, {p′}〉

〈(lT M, m), (uT M, us), {hlow, hup, p}〉 τ→ 〈(l′T M, m), (u′
T M, us), {hlow, hup, p′}〉

;

with u′
T M = [rT M → 0]uT M, (hlow ≤ p) ∧ (p ≤ hup) ∧ (hlow ≤ p′) ∧ (p′ ≤ hup)

(d) Mode change: Sys needs to enter a new system mode to accept a change in power
consumption in TM. This will be denoted as a mode change in the following.

〈lT M, uT M, {p}〉 τ→T M 〈l′T M, u′
T M, {p′}〉 ∧

〈m, us, {hlow, hup, p}〉 αs→Sys 〈m′, u′
s, {h′

low, h′
up, p′}〉

〈(lT M, m), (uT M, us), {hlow, hup, p}〉 αs→ 〈(l′T M, m′), (u′
T M, u′

s), {h′
low, h′

up, p′}〉
;

with u′
T M = [rT M → 0]uT M, (hlow ≤ p)∧ (p ≤ hup) ∧ (h′

low ≤ p′) ∧ (p′ ≤ h′
up)

Note that an actual mode change only occurs if it holds that ¬(h′
low ≤ p) ∧ ¬(p ≤

h′
up) ∧ ¬(hlow ≤ p′) ∧ ¬(p′ ≤ hup), i.e., the current system mode does not accept the

future power consumption and the new system mode does not accept the current power
consumption. Our modeling enables a traversal back to the system mode if a mode
change is not required. This is significant when Sys is composed of a network of timed
automata as explained shortly.

3.2.2. Modeling the Composition. The composition of TM and Sys necessitates careful
modeling. As an example, transition rules (a) and (b) necessitate that TM and Sys may
traverse independently at any point in time. There are also special considerations for
implementing mode changes for a model Sys composed of a network of timed automata.
Each individual component timed automata model in Sys that reads the variable p
may feature mode changes. On a change of p in TM only a subset of these component
timed automata may require a mode change of some components. Other component
timed automata may stay in their given system mode. However, all component timed
automata must intermittently transfer into an update location without an invariant on
p to enable a mode change. For this reason there is a back edge from update locations to
the corresponding system mode as shown in Figure 4. Note that we also experimented
with an alternative composition of TM and Sys using synchronization via a dedicated
broadcast channel. However, the model using synchronization performed worse with
respect to state space size and conformance test runtime.

The transition rules are implemented using the update process shown in Figure 4.
The automaton, which could be an excerpt of a system model Sys, can unconditionally
traverse into an update location. The update location allows TM to execute a transition
that assigns a new value to p. When leaving the update location, Sys updates upper
and lower bounds, i.e., assigning new values to hlow and hup. The location invariant of
potential target mode locations depends on these new values. If the location invariant
does not hold, the corresponding transition is invalidated. This implies that the overall
model TM||Sys deadlocks in an update location if the location invariant does not hold
for any of the potential target mode locations.

The coupling of TM and Sys allows to check if the finite timed trace as produced by
TM is included within the set of traces that can be produced by Sys. A standard timed
model checker like Uppaal can be used to formulate a reachability query for the final
location l f

T M of TM.

3.2.3. Counterexample. If TM models a behavior not explained by Sys, the concurrently
executed model TM||Sys does not reach a state where location l f

T M is marked as active.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 84, Publication date: December 2012.

Conformance Testing for Cyber-Physical Systems 84:11

a <= 250 &&
IsInBounds()

a <= 100 &&
IsInBounds()

a <= 100 &&
IsInBounds()

a <= 250 &&
IsInBounds()

RadioUp = 6000,
RadioLow = 500,
a=0

IsInBounds()

IsInBounds()IsInBounds()

IsInBounds()

IsInBounds()

a <= 500 &&
IsInBounds()

IsInBounds()

RadioUp = 21700,
RadioLow = 500,
a = 0,
radioon = false

EFD

ActualTransmit

AttemptSend

VOLTAGE_REG

sending?

off?

TRANSITIONING_DOWN LISTEN_and_RECEIVE

SEND

OFF

TRANSITIONING_UP

on?
RadioUp = 6000,
RadioLow = 500

RadioUp = 16000,
RadioLow = 6000

RadioUp = 1800,
RadioLow = 0

RadioUp = 500,
RadioLow = 0

RadioUp = 20400,
RadioLow = 12900

RadioUp = 21700,
RadioLow = 16000

RadioUp = 23800,
RadioLow = 15000 RadioUp = 22800,

RadioLow = 11600

RadioUp = 21700,
RadioLow = 16000,

radioon = true

RadioUp = 16000,
RadioLow = 11600 RadioUp = 20400,

RadioLow = 12900

STARTUPIDLE_TRANSITION

Fig. 5. Uppaal model of the radio hardware component. Lower and upper bounds on power consumption
are annotated as RadioLow and RadioUp (in μA). A clock a controls transition times between system modes.
IsInBounds is the location invariant on power consumption of the comprehensive system model as described
in Section 3.3.1.

The last transition that lets a property ultimately fail might be related to the underlying
cause. In the employed reachability property for TTQ, this “deadly transition” is given
by the last state reached on the longest path of TTM||Sys (longest with respect to time). A
possible method to receive this information is to first label the locations of TM, e.g., by
indexing them. Subsequently, one can repeatedly check for the reachability of a location
based on the label using some search strategy such as binary search. Iterative calls
to Uppaal on reachability of annotated index labels are employed to determine the
location in TM where the conformance test fails.

3.3. Compositional Modeling of the System Model

For simplicity, the explanations given before ignored the fact that a system model Sys
might be built in a compositional manner, where different timed automata represent
individual components of the system. In the following, these basic building blocks of the
overall system model will be addressed as component timed automata. As an example,
a hardware component timed automaton may describe a certain piece of hardware such
as a microcontroller with different modes, e.g., performing a computation task or resid-
ing in a low-power mode. A software component timed automaton may represent some
piece of software controlling some hardware components, where in particular these
software components are time-driven. Shared variables or rendezvous mechanisms
can be used for coordinating interactions among the component timed automaton as
explained in Section 2. Figure 5 shows that the radio model for a sensor node is pe-
riodically turned on for listening on the channel via the label on. The corresponding
software model is shown in Figure 6: it specifies that the radio must periodically exit
its power-off state (with an invariant on the IDLE location).

As a major difficulty, such a compositional approach has to cope with the fact that
individual hardware components may contribute differently to the power consumption,
i.e., each system mode of a hardware component timed automaton may contribute dif-
ferently. In particular, each hardware component timed automaton has two variables
for describing the allowed power consumption in a specific system mode. The over-
all allowed power consumption is defined by the set of system modes the hardware
components of Sys are residing in.

As an example, Figure 5 shows the component timed automaton modeling the radio:
It features 11 system modes and the corresponding power consumption bounds (here

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 84, Publication date: December 2012.

84:12 M. Woehrle et al.

z>=48000

initial== true
sendDone

Send

sending!

on!

receive?

send?

Receive
RadioOn

on!

OFF

off!

off!

z=0,
initial = false

initial=true

z=0

z=0
z<=1250z <= 50000

Fig. 6. Uppaal model of the radio software. The initial state of the software is the IDLE location. This location
must be periodically exited, at least every 50,000 times units as seen by the invariant on the clock z: z <=
50000. The software model uses binary synchronization (channels on, off, and sending) to synchronize with
the radio component. Note that receive? and send? synchronize with a testcase model that specifies when
packets may be received and sent.

described with the variables RadioLow for the lower bound and RadioUp for upper
bound). Each system mode is annotated with its individual power consumption bounds
on the incoming edge. In a powered-off state (OFF), power consumption, or equivalently
in this case current draw, is lower bounded by 0mA and upper bounded by 0.5mA.

3.3.1. Interval Composition. Each component timed automaton i has its own set of vari-
ables {hi

low, hi
up} that indicate the currently accepted interval. As a system state (�s, u, v)

contains the active location of each component, the interval bounds of the overall system
model Sys can be obtained by adding the lower and upper bounds associated with the
location of each n component timed automata: h1

low, . . . , hn
low and h1

up, . . . , hn
up. The sums

are assigned to the global variables hlow and hup as introduced earlier: hlow := ∑n
i=1 hi

low

and hup := ∑n
i=1 hi

up. Since the bounds hlow and hup are additively composed, the power
intervals described by the bounds may not be disjoint. All possible intervals of power
consumption can be computed offline given the system model Sys.

As an example, the case study in Section 5 uses two components: a microcontroller
as well as a radio. The implementation in Uppaal is displayed shortly for the bounds
of the radio, RadioLow and RadioUp, and the bounds of the microcontroller, MCLow and
MCUp and the consumption crrValue.
bool IsInBounds(){

int h_up = RadioUp+MCUp;
int h_low = RadioLow+MCLow;
if(crrValue > h_up or crrValue < h_low) return(false);
return(true); }

3.3.2. Reducing Power Trace Size. As discussed in Section 3.1.1, the size of TM is a
major obstacle. A timed trace obtained from some measurement can include millions
of measurements. Given that the input size of models for standard model checkers is
constrained, a considerable reduction must be achieved. In order to reduce the number
of locations in the sequential TM, we can exploit the computed set of intervals of
Sys: We segment the value range of power measurements into intervals. The use of
intervals, i.e., valuations of hlow and hup, on power consumption in Sys allows TTQ
to abstract from the measurements. For keeping the number of power intervals as
small as possible, TTQ exploits the concept of Greatest Common Intervals (GCIs) as
described in the following.

3.3.3. Greatest Common Intervals. In order to determine a minimal representation of
intervals, TTQ exploits the concept of a GCI partitioning [Strehl 2000], whereby a set
of nondisjoint intervals, such as the set of bounds HSys, is transformed into a minimal
size set of disjoint intervals HGCI . Since GCIs are disjoint, a single value can be used
for the representation of a single GCI: the average value of the interval. Each of these

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 84, Publication date: December 2012.

Conformance Testing for Cyber-Physical Systems 84:13

p=11

d≤1 d≤1 d≤1 d≤1 d≤1

d==1
p=12,
d=0

d==1
p=15,
d=0

d==1
p=12,
d=0

d==1
p=16,
d=0

p ∈ h1

d≤4 d≤12

d==4
p ∈ h2,

d=0

d d d d d

dd

TM

TM'

Fig. 7. Construction of TM′ from TM by looking at the GCI-valuation-equivalence. Here h1 = [10, 15] and
h2 = [16, 18].

disjoint intervals represents an equivalence class with respect to the measurement of
the physical quantity. Different measurements inside a GCI cannot be distinguished.
This is used in TTQ for reducing the number of locations of TM.

3.4. Trace Automaton Optimization

The trace reduction described before must preserve the timed behavior with respect to
the physical quantity. The set of GCIs can be computed (offline) from the system specifi-
cation model Sys. As a result, the construction of a compressed trace of measurements
is in principle straightforward. When the compressed trace is constructed, a respective
timed automaton can be derived, which is denoted as quotient timed automaton TM′

in the following. Shortly, it will be shown that TM and TM′ are equivalent with respect
to the timed sequence of GCI-visits, st.

Sys |= TM ⇔ Sys |= TM′

For automating the generation of the quotient timed automaton TM’, TTQ employs
an algorithm that creates a list of locations l′ in T M′ given the measurement samples
and the endpoints of the GCIs as presented in Woehrle et al. [2009]. In a nutshell, a
location is created for k consecutive measurements when the value of the measurement
is within the same GCI.

The process of generating the compressed trace and its timed automaton-based rep-
resentation TM′, is exemplified in Figure 7.

Definition 4 (Residence Time). Each location l ∈ TM has a distinct residence time
r ∈ R≥0 that is given by the time between two differing measurements. This is modeled
by an invariant on a location d ≤ r with 〈l, u, v〉 r→ 〈l, u+r, v〉 where ∀d ∈ R≥0 : 0 ≤ d ≤
r ⇒ (u+ d, v) ∈ I(l). The location invariant and a corresponding guard on the outgoing
transition ensure that the transition to the next location has to be taken exactly after
r time units have passed.

The example in Figure 7 shows a typical trace of measurements TM with equidistant
measurements featuring a residence time of one for each location l ∈ T M.

THEOREM 1. The quotient timed automaton generation algorithm (as described
in Woehrle et al. [2009]) produces a reduced automaton TM′ that is equivalent with
respect to the timed sequence of GCI-visits to the automaton TM derived from the origi-
nal timed trace of measurements.

PROOF. Assumption: A location l′ ∈ T M′ is equivalent to a location l ∈ T M with
respect to its inclusion in a GCI iff for a location l ∈ T M the valuation of p is in a
specific GCI hl, i.e., p ∈ hl, hl ∈ HGCI and the valuation of p′ in the location l′ ∈ TM′

lies inside the same interval: p′ ∈ hl. This is denoted as GCI-valuation-equivalent in

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 84, Publication date: December 2012.

84:14 M. Woehrle et al.

the following. The automaton T M′ is GCI-valuation-equivalent to TM iff there is a
GCI-valuation-equivalent sequential location in T M′ for each location in TM.

Basis (i := 0): Let us assume that we are at a location l0 of TM that features a
measurement of p0. The power consumption p0 is in a given GCI p0 ∈ hl, hl ∈ HGCI ,
i.e., the system model Sys is indifferent to the specific value within hl. Hence, l0 is
equivalent with respect to the GCI of the quotient TM′ that resides in its initial location
l′0 with p′

0 ∈ hl.

Inductive step (i → i + 1): Let us assume we are at a location li with measurement
pi with pi ∈ hl, hl ∈ HGCI . There are two possible options for successor states li+1.

(1) pi+1 ∈ hm, hm ∈ HGCI, m �= l. A new location l′i+1 is generated in TM′ with p′
i+1 ∈ hm

and residence time r′
i+1 = ri+1 = 1. Hence, l′i+1 is GCI-valuation-equivalent to li+1

at least for time r′
i+1.

(2) pi+1 ∈ hl. No additional location is added for T M′, but the residence time is in-
creased for l′i st. r′

i+1 = r′
i + ri+1 = r′

i + 1. l′i features the same valuation with respect
to the GCI for both li and li+1. Hence, at each instant in time TM and TM′ provide
the same valuation with respect to the currently visit GCI.

The induction scheme given before proves that we can generate a quotient timed
automaton T M′ for any time series of measurements. The constructed quotient timed
automaton is GCI-valuation-equivalent with respect to the trace model TM for the
following reasons: Let T M′ be in any location l′i corresponding to the location sequence
lp, . . . , lq in TM. By construction of T M′, it holds that the residence time in l′i is r′

i =∑q
j=p rj . Note that l′i is GCI-valuation-equivalent to lp, . . . , lq. Hence it follows that

TM and T M′ are equivalent for the time t: δi ≤ t ≤ δi + r′
i with respect to their

GCI-valuation, where δ0 = 0 and δ j = ∑i−1
j=0 r′

j . As TM and T M′ may only reside in
a single location at any period in time, the induction over i covers all points in time
of the original time series of measurements and yields again that TM and T M′ are
GCI-valuation-equivalent.

LEMMA 1. If TM′ is an GCI-valuation-equivalent automaton to TM, then Sys |=
TM ⇔ Sys |= TM′ holds.

PROOF. It only depends on the timed sequence of GCIs whether the final location l f
T M

of trace automaton TM or TM′ is reachable within the composed model Sys||TM . As
this is the same for TM and TM′, the lemma holds.

4. ANALYZING A CPS WITH TRON

TRON is a model-based tool that tests the conformance of an implementation and
its timed automata-based specification, where conformance is tested with respect to
timed input/output behavior. Analogously to TTQ, TRON employs timed automata
for specifying the desired behavior of an implementation, i.e., only behavior that is
allowed by the specification may be seen in any run. TRON uses a relativized timed
input/output conformance relation rtioco introduced by Larsen et al. [2004] as defined
shortly. Note that in this section the notations of the original publication are used. In
particular, Larsen et al. [2004] use a different notation for timed traces; in their work,
and hence in the following explanations, a timed trace is a sequence of labels. The labels
may include actions A and (time) delays d ∈ R≥0. Hence a timed trace σ ∈ (A∪ R≥0)∗
is of the form σ = d1a1d2a2 . . . dkak with di ∈ R≥0 and ai ∈ A, i.e., labels and delays are
concatenated.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 84, Publication date: December 2012.

Conformance Testing for Cyber-Physical Systems 84:15

Definition 5 (rtioco).

Let imp and s be T IOT S(timed I/O transitions systems) :
imp rtioco s ⇐⇒ ∀σ ∈ T traces(e) : out(〈imp, e〉 after σ) ⊆ out(〈s, e〉 after σ)

where

—T IOT S is a timed I/O transitions system. For details on T IOT S, the reader is
referred to the original publications of TRON [Larsen et al. 2004], since it is not
necessary for the understanding of the application of TRON. It only should be noted
that T IOT S have labels L that include distinct inputs Li, outputs Lo as well as
timed transitions (d ∈ R≥0) and an unobservable internal action label τ , i.e., L =
Li ∪ Lo ∪ {τ } ∪ R≥0.

—〈imp, e〉 is the composition of implementation imp with the environment e. 〈s, e〉
denotes the composition of specification s with e.

—σ is an observable timed trace, i.e., σ ∈ (Li ∪ Lo ∪R≥0)∗, i.e., a trace containing inputs,
outputs, and (time) delays.

—after σ denotes the set of possible states a system may be in after executing a timed
trace σ .

—T traces(e) is the set of all possible timed traces of the environment e.
—out(K) is the set of outputs (Lo ∪ R≥0) a T IOT S may produce from a set of states K.

Intuitively, rtioco denotes that when providing the same environment to specifica-
tion and implementation and executing any timed trace from the environment, the
outputs that one may see from the implementation model must be a subset of the
specification model. Hence, the implementation has only behavior that is allowed by
the specification. Delays and outputs are only allowed if they are specified in s. TRON
verifies that the outputs of the implementation out(〈i, e〉) after σ are included in the
outputs allowed by the specification out(〈s, e〉) after σ . The discussion with respect to
TTQ only focuses on outputs of a system.

For determining the outputs of the implementation, TRON needs a connection to the
specific implementation. For offline testing as considered in this work, a test adapter
is provided that reads a textual trace. For accessing the timed automaton-based sys-
tem description, TRON needs a sampler process to be provided by the test engineer.
This sampler process uses dedicated signals and variables, allowing a comparison of
input/output values of implementation and specification. In this work, the sampler pro-
cess outputs the physical quantity as produced by the system at a given time, allowing
its comparison to the respective value in the trace of measurements at this instant.
In order to understand the testing procedure, trace adapter and sampler process are
briefly discussed in the following.

4.1. Trace Adapter

TRON needs a connector to the implementation to read its outputs. For TTQ, traces
are already available from a given execution. For such offline testing, TRON provides
a trace adapter that accepts a textual representation of the timed trace. Input actions,
output actions, and delays are defined. As previously mentioned, each action may have
variables attached that are compared to the specification when the action is triggered,
but not in any other case.

Listing 1 shows an exemplary trace used in the case study, where the physical
quantity represents current draw under constant supply (i.e., power consumption).
Lines 1 and 2 show the declaration of input and outputs actions and the associated
(integer) variables: there are no input actions and only a single output action (report)
with an associated variable for defining the power consumption (crrValue). Lines 3

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 84, Publication date: December 2012.

84:16 M. Woehrle et al.

1 input ;
2 output report(crrValue);
3 precision 20;
4 timeout 20000000;
5
6 output report1(0);
7 delay @6.0;
8 output report1(400);
9 delay @8.0;
10 output report1(100);
11 ...

Listing 1. TRON trace format with a single output variable crrValue describing measured power
consumption.

p: int[0,MaxPower/prec]

delay

crrValue=p*prec

sampled

report!

Fig. 8. TRON sampler process for producing the output (crrValue) from the Uppaal model using a non-
deterministic selection p with granularity prec.

and 4 are declarations for TRON parameters that include the precision of individual
time units (here specified as 20μs.), and a timeout that is used to signal when to
stop the testing process2. The actual trace, which starts at line 6, is specified as a
list of delays and output actions with a corresponding value. Delays are specified with
respect to time units (delay @6.0;). Output actions are specified with the value of the
associated variable at that moment in time (output report1(400);). The trace that
follows describes that initially the current draw is 0μA. After 120μs, the current draw
changes to 400μA. Finally at 160μs, the implementation draws 100μA. For TRON
such an execution trace for a given trace of measurements is generated based on the
optimization described in Section 3.4.

4.2. Sampler Process

TRON uses timed automata models of the specification and employs the Uppaal veri-
fication engine [Mikucionis et al. 2004] to compute the future state space of the spec-
ification. The sampler process is a model that specifies input and output actions of
the specification. Figure 8 shows the sampler process used in the case study with a
single output. The sampler process models the time when an output (report) may be
generated. Additionally, it defines the range of possible values for the output variable
crrValue, i.e., it specifies all values that may be output. These are the same output
action and variable as specified in Listing 1, i.e., trace and sampler process synchronize
via report and crrValue.

On the transition, the current valuation of the power consumption variable crrValue
is selected nondeterministically from the interval [0, MaxPower], which is achieved by
using Uppaal’s selections (here p). Selections nondeterministically assign an integer

2The length of the test is determined in the offline case of TTQ by the length of the power trace previously
measured.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 84, Publication date: December 2012.

Conformance Testing for Cyber-Physical Systems 84:17

value within the given interval. To reduce granularity of possible values for crrValue,
we first divide by a constant prec before the selection and then multiply by prec after
the selection. Hence, prec defines the granularity of allowed power consumption values.
An evaluation of prec is detailed in the case study (refer to Section 6.4.2). MaxPower
is a constant, defining the maximum value for the power consumption of the complete
system. Note that Uppaal’s selections require constants in their ranges, i.e., the bounds
of the interval need to be fixed at compile time. The sampler process shown in Figure 8
does not describe any temporal behavior for the output; since power may be measured
(and change) at any point in time, a change in power consumption is allowed at any
time by the model. The sampler process is composed with the system specification
model Sys. Sys is identical to the TTQ-based approach.

4.3. TTQ Execution with TRON

For a better understanding, we may assume that a timed trace σ , as provided through
the trace adapter, is executed. Let us further assume that from the last observation at
time t0 neither an input i ∈ Li nor an output o ∈ Lo is provided by the implementation
for δ time units (δ ∈ R≥0). After this δ time units delay, the implementation produces a
specific output o ∈ Lo. Remember, that the outputs of a T IOT S in states K are defined
as out(K) and that the set of outputs includes Lo ∪ R≥0. Formally, this means that
δ ∈ out(〈i, e〉 after σ) and o ∈ out(〈i, e〉 after σδ), where σδ denotes the concatenation of
time delay δ to the timed trace σ . For resolving this situation, TRON performs a state
space exploration of the system model 〈s, e〉 and computes the largest delay dmax that
is possible starting at t0: dmax = max(d ∈ R≥0|d ∈ out(〈s, e〉 after σ)). Given dmax, it can
determined whether the delay δ is acceptable. If dmax < δ the delay is not acceptable
and the test fails. In case dmax ≥ δ, the delay is allowed by the specification and TRON
needs to check the respective target states for the possible output o. Once again this
is done by state space exploration and the check whether o ∈ out(〈s, e〉 after σδ) holds.
If this is true the delay and output are appended to the timed trace: σ ′ = σδo and the
exploration proceeds with all valid target states. This means that TRON needs to keep
all potential target states in memory, such that it is capable of exploring all potentially
valid traces. This yields that the reachable (valid) states are visited in a breadth-first
search and stepwise manner. Contrary to this, the reachability check as performed by
TTQ can be organized in an arbitrary order, e.g., depth-first search.

As pointed out earlier, TRON features the concept of a future size [Larsen 2009]
that is used to limit the precomputation to δmax time units. TRON features the com-
mand line option -F for specifying the future size δmax (in time units). For TTQ, this
is important, since it determines the computational overhead of determining (future)
outputs.3 Consider the previous example of determining σ ′ = σδo. Let us assume a
delay transition of δ = 3000. If δmax = 1000, TRON would need 3 separate precompu-
tation steps and arrive at a trace: σ ′ = σδmaxδmaxδmaxo. Choosing δmax = 5000 reduces
the computational overhead by pre-computing the state space, since it uses just one
exploration step: σ ′ = σδo. The effect of the future size on checking power traces is
explored in Section 6.4.1.

5. APPLICATION OF TTQ

In the case study we use an actual implementation of a CPS developed in our group: a
wireless sensor node interacting with the environment. We select power consumption
as the physical quantity to be observed. Testing for power consumption is challeng-
ing, as it requires fine-grained measurements resulting in traces with hundreds
of thousands of measurement samples. We measure the power consumption of a

3The future size also plays a role in the testcase generation.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 84, Publication date: December 2012.

84:18 M. Woehrle et al.

typical wireless sensor node, running a standard sensor network application, called
Harvester [Lim et al. 2009]. Harvester collects data from individual sensor nodes to
one or more data sinks. Harvester is an open-source project running on the TinyOS 2
operating system. It targets energy-aware collection of environmental data in order
to be able to monitor environmental phenomena for multiple years. Hence, power con-
sumption for such a system is of utmost importance and the software implementation
needs to guarantee an energy-saving operation, i.e., it requires extensive usage of
the hardware’s low-power modes. The power-aware programming of such systems is
complex and error-prone: Each hardware component features its own characteristic
set of power modes, activities can be executed concurrently and contribute differently
to the level of power consumption. Asserting the correctness of such systems includes
the assertion of functional and nonfunctional properties such as power consumption
as well as real-time properties, as complex communication tasks must be guaranteed.

Harvester is based on the standard TinyOS multihop routing protocol and an
adapted, synchronized Low-Power Listening (LPL) MAC protocol. In this case study
we focus on an implementation on the Tmote Sky sensor node, featuring a TI MSP430
low-power microcontroller and a packet-based TI CC2420 radio.

A simplified version of Harvester is considered, which does not use the analog-to-
digital converter to read sensor values but simply sends a given value periodically.
Thus the components to be modeled can be reduced to the two main contributors, the
microcontroller and the radio. Other components such as LEDs, sensors, or the external
flash are persistently powered off and are not included within the analysis. In our TTQ
the power consumption of a sensor node is monitored by the voltage drop across a
MHP201R0F 1� (±1% tolerance) shunt resistor measured by a digital multimeter
(Agilent 34411A). We measure current consumption under a constant supply voltage
and use current draw and power consumption interchangeably in the following. A node
is monitored for 20s, due to the limited storage depth of samples by the multimeter at
106 data points. Harvester is configured with a wake-up period of 1000 binary ms or
approximately 0.977s.

The Harvester is a complex system running an intricate SW stack on top of a CPS. We
manage the complexity of the system model through an abstract representation of ex-
pected behavior and component decomposition. In particular, we differentiate between
HW-oriented models capturing the low-level behavior of individual HW components and
the corresponding low-level SW, SW-oriented models, representing the application-level
SW as well as the environment and testcase. For details on the models, we refer to the
original report [Woehrle et al. 2009].

6. EMPIRICAL EVALUATION: RESULTS AND BENCHMARKS

In this section, we present experimental results on the case study. Firstly, we describe
the impact of our optimizations on input problem sizes. Secondly, we detail on the
experimental results for the implementations using TRON and Uppaal. The results for
Uppaal are updated from Woehrle et al. [2009] with respect to two improvements. We
refined the system model and used a newer version of Uppaal to remove the input size
limitation to 65,536 locations.

6.1. Power Trace Models

Table I presents a summary of the five testcases from Woehrle et al. [2009] with respect
to the original power trace sizes in number of individual measurements, and the effect
of the quotient transition system optimization concerning the resulting number of
locations in Uppaal. As can be seen, for a typical example the optimization results in a
compression of locations by at least an order of magnitude.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 84, Publication date: December 2012.

Conformance Testing for Cyber-Physical Systems 84:19

Table I. Measurement Samples for Each Individual Testcase and Corresponding
Location Count for the Quotient Transition System Using the Optimization Described

in Section 3.3.3

Trace
Model

Wake-up Inject Complex MC state Specification
Samples 1, 000, 000 990, 000 310, 000 1, 000, 000 1, 000, 000
Locations 1, 141 1, 087 23, 418 1, 293 1, 336

6.2. Experimental Setup

All conformance tests were performed on a Sun-Fire-X2200-M2-64 blade running
Linux. It features 2 dual-core 64-bit AMD Opteron processors, i.e., 4 cores, running
at 2.6 GHz. The blade is equipped with 8GB RAM. The command-line verifier of
Uppaal 4.1.2 is used (verifyta). In particular, verifyta is run with the -u option to
obtain information about explored and stored states. For TRON version 1.4b5 is used,
since tests with version 1.5 showed considerable degradations in performance. TRON
runs with a verbosity level of 8, in order to backup the state set and allow for final
diagnostics in case of a failed conformance test. A logical (simulated or virtual) time
clock (-Q log) is set. Unless otherwise noted, TRON uses a future size of 50,000 (-F
50000, refer to Section 4.3).

The main performance metric of these experiments is the execution time of the
conformance test. The generation of the models from raw measurements is out-of-scope
of this evaluation, but in the same order of magnitude for both tools. The models for
Uppaal and TRON are the same for the system specification Sys; the obvious difference
is that Uppaal includes the trace model TM, while TRON features the Sampler process
and an input trace as described in Section 4. For measuring time, the unix time facility
is used and user times reported. Unless otherwise noted, the quotient transition system
optimizations are performed as described in Section 3.4.

6.3. Uppaal Results

In the following different design decisions are evaluated based on: (i) the representation
of time and (ii) the representation of data values.

6.3.1. Measurement Timing. The first experiments investigate whether the representa-
tion of time in the power trace makes a difference for Uppaal. For each power trace
location, an invariant on the time a specific value was measured is used. In Woehrle
et al. [2009], the trace model TM in Uppaal uses relative durations for each measure-
ment location. However, also an absolute time scale without resetting clocks after each
power trace location can be employed. The runtime of the relative approach is shorter.
However, the size of the explored state space is comparable, indicating that Uppaal can
internally better process short intervals rather than intervals with a large offset. Our
experiments on all testcases show that using relative times performs generally better.

6.3.2. Measurement Granularity. We also performed experiments concerning different
measurement granularities. Initially a resolution for 1 μA of measurements was used.
As a second step, a restricted granularity of 100 μA was employed, since the quotient
transition system optimization allows for a granular representation of power consump-
tion values. This experiment tries to explore whether the size of the value domain has
an impact on the size of the state space and runtime in Uppaal. The results for the size
of the state space are the same and runtime results are comparable.

6.4. TRON Results

In a similar vein, the performance in TRON for measurement granularity and repre-
sentation of time was explored.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 84, Publication date: December 2012.

84:20 M. Woehrle et al.

Table II. TRON: Comparison of Different Measurement
Granularities Using a Future of 50,000

Model
Granularity

1 μA 100 μA GCI-based

Wake-up 456s 254s 210s
Inject 214s 120s 92s

Complex 26, 482s 9, 620s 13, 263s
MC state 240s 131s 98s

Specification 223s 122s 93s

6.4.1. Measurement Timing. For representation of time, the effect of different future
sizes was explored. The future option in TRON (-F) describes the number of time units
the state space of the specification is precomputed. If this future window is short,
TRON has to go through multiple state space explorations as explained in Section 4.3.
If the future size parameter is too large, too much of the future state space is explored;
an output may be previously seen from the implementation. Note that the Harvester
model is periodic with 50,000 time units due to its wake-up behavior, i.e., there is
always an output within an interval less than this period. The results show all future
sizes perform equally as long as the state space precomputation is larger than the
periodicity of the software, i.e., ≥50,000 time unites. Larger future size values do
not result in an expensive exploration: As the models have a periodic behavior, the
state space exploration is finished after one wake-up period. Hence, increasing the
future size value larger than the period does not result in any exploration overhead.
However, there is a penalty for shorter values, since the state space exploration is
cut into smaller pieces. This generates a considerable overhead in terms of individual
iterations of explorations (cf. Section 4.3).

6.4.2. Measurement Granularity. Table II presents the results for TRON concerning mea-
surement granularity (1μA and 100μA) for the different testcases. Note that in this
case, the value domain makes a significant difference. The difference stems from the
coupling through the sampler process: TRON needs to compute the future state space of
the specification and then performs a comparison with the implementation trace. The
sampler process allows for selecting any integer value within the given bounds. Hence,
the finer the granularity, the larger the sets to be compared. The interface between the
Uppaal exploration and TRON needs to compare each possible output with the trace
output of the implementation. This comparison creates a considerable overhead.

In order to allow for the largest minimization of the number of measurement values, a
trace abstraction on GCI intervals was additionally performed: Each measured power
consumption value is annotated only with its associated GCI in the trace (refer to
Section 3.3.3). In turn, the specification needs to be extended to associate GCI intervals
with system states. To this end, the invariant function of the specification model is
changed as shown in Listing 1. The number of possible values in the sampler can be
reduced from 262 (for 100 μAgranularity) down to 42 (GCI) values. This allows for some
further improvements as shown in the right column of Listing 2. ‘Complex’ apparently
does not benefit from a reduced representation in the sampler process, probably due to
the large degree of nondeterminism. It also seems that computing the value of actual
for each location invariant creates some overhead.

6.5. Uppaal versus TRON Comparison

Lastly, the runtime of the best TRON version with the best Uppaal version is compared
to give an overall impression of their relative performance. The results are shown in
Table III. Uppaal outperforms TRON by at least an order of magnitude.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 84, Publication date: December 2012.

Conformance Testing for Cyber-Physical Systems 84:21

bool IsInBounds(){
power_t actual = (intervals[crrValue]+intervals[crrValue+1])/2;

if(actual > RadioUp+MCUp or actual < RadioLow+MCLow) return(false);
return(true); }

Listing 2. Power consumption invariant for GCI-based description of trace. crrValue denotes the GCI inter-
val associated with the measurement. An associated power consumption actual is computed online in the
invariant function.

Table III. Comparison of the Best Runtimes for Uppaal and for TRON

Tool
Model

Wake-up Inject Complex MC state Specification
Uppaal 3s 2s 755s 3s 3s
TRON 210s 92s 9, 620s 98s 93s

While initially better performance using TRON was expected, its performance can be
explained by its typical usage as an online testing tool: (1) In offline testing, one exactly
knows the time of the next event and can in turn do a limited exploration for exactly
this duration. Additionally, in offline testing one knows exactly what the next state
must be and performs an exploration only for this particular future state. In contrast,
TRON has no knowledge of future states and must perform a (more expensive) complete
exploration. In a second step it must perform a comparison between the (large) set of
explored, possible states and match them with the set of states allowed by the trace.
This happens at each synchronization point, i.e., when there is an output in the timed
trace of the implementation. (2) TRON naturally finds the last, “deadly” transition
(refer to Section 3.2.3). Hence, there is no need to perform a search as in the Uppaal-
based version. Uppaal approximately needs log2(n) runs of the model checker, where
n is the number of locations in TM, to determine the failing location. This results in
about 11 to 15 runs for the traces used in the case study.

7. CONCLUSION

The approach presented concerns the conformance testing of an implementation based
on measurements of a physical quantity. Before concluding the work with conclusions,
we present related work concerning the conformance test and our specific approach.

7.1. Related Work

To the best of our knowledge, TTQ is the first approach to exploit a physical quantity
of a CPS to test for conformance to a specification. Typically these physical quantities,
such as power and energy consumption, are rather explored in simulation than in real
tests, e.g., for sensor networks in Shnayder et al. [2004].

TTQ is based on conformance testing. There is related work concerning conformance
relations both untimed [Tretmans 1994] and timed [Larsen et al. 2004] and even for
hybrid system descriptions [van Osch 2006]. Most closely TTQ is related to the work by
Bohnenkamp and Stoelinga on quantitative testing [Bohnenkamp and Stoelinga 2008].
The main differences is that in quantitative testing the uncertainty of the measure-
ment is constant throughout the specification, i.e., there is a behavior at a distance of at
most x, x ∈ R≥0. However, hardware component states may have differing uncertainties
depending on the system mode. Hence, a mode-based uncertainty as employed in TTQ
by using intervals on individual system modes of hardware components is preferable.
Moreover, for quantitative testing there is currently no tool support. The presented
evaluation includes TRON [Larsen et al. 2004], since it is an available, maintained tool

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 84, Publication date: December 2012.

84:22 M. Woehrle et al.

and allows a direct comparison with an Uppaal-based approach. The use of hybrid sys-
tems for testing physical quantities is described in detail in the discussion that follows.

Obvious choices for trace verification are hybrid model checkers such as HyTech
[Henzinger et al. 1997]. The traces of measurements can be better described by a hybrid
automaton that allows models to use continuous variables. For the measurements of a
physical quantity a representation as a continuous variable is suitable. However, the
system specification abstracts away from the continuous properties of measurements
by using bounds. Additionally, the transitional characteristics of physical quantities
are often not of interest. Rather the steady-state physical quantity in a given system
mode needs to be checked. The formulation as a hybrid automaton does not provide
any benefit in modeling when using bounds on system modes. In contrast, model
checking of hybrid automata is a more difficult problem than model checking of timed
automata. In conclusion, TTQ does not benefit from employing hybrid model checkers.

Another option is the discretization of time. Fundamentally, since we deal with a
microprocessor that is synchronous with its clock cycle (for sensor networks in the
order of tens of μs), we can safely abstract away from continuous time to discrete time.
In turn, the problem is discretized and model checkers for untimed automata may be
used. Compared to the blow-up introduced by discretization of time, the representation
of time in Uppaal using symbolic methods seems rather efficient and is not perceived
as the major issue of the limited performance as discussed in the following.

7.2. Conclusions

This work presents a novel method to test a CPS utilizing measurements of a physical
signal. By introducing various optimizations we showed how to use standard timed
verification techniques and tools for carrying out the conformance testing of CPS;
we employed (and benchmarked) the timed model checker Uppaal [Bengtsson and
Yi 2004; Behrmann et al. 2004], and the timed online testing tool TRON [Larsen
et al. 2004]. But there are limitations to the presented approach: (a) For applying the
proposed technique it is required to obtain measurements and hence necessitates the
availability of a deployed system or prototype implementation. (b) The method requires
a formal model of the system, and creating the model is a considerable, one-time
overhead, but can be reused for other validation methods, e.g., model checking. (c) The
approach belongs to the domain of test methods, as it is based on finite execution
traces of deployed systems. Unlike model checking techniques the method is therefore
not exhaustive. However, this nonexhaustiveness relaxes the size and complexity
limitations as imposed by the notorious state space explosion problem inherent to
standard state-based verification techniques.

In this article we use the devised conformance testing approach for testing a wireless
sensor node implementation utilizing nonintrusively collected power measurements
and can identify diverse software defects. Our case study comprises numerous experi-
ments that investigate the effect of different modeling concepts on the efficiency of the
method. The experiments highlight the effectiveness of our approach.

REFERENCES

ALUR, R. AND DILL, D. L. 1994. A theory of timed automata. Theore. Comput Scie. 126, 183–235.
BEHRMANN, G., DAVID, A., AND LARSEN, K. G. 2004. A tutorial on uppaal. In International School on Formal

Methods for the Design of Computer, Communication, and Software Systems (SFM-RT’04). 3185. Lecture
Notes in Computer Science, vol. 3185, Springer, 200–236.

BEHRMANN, G., LARSEN, K. G., AND RASMUSSEN, J. I. 2005. Priced timed automata: Algorithms and applications.
In Proceedings of the Conference on Formal Methods for Components and Objects (FMCO’04). 162–182.

BENGTSSON, J. AND YI, W. 2004. Timed automata: Semantics, algorithms and tools. In Proceedings of the
Lecture Notes on Concurrency and Petri Nets. Lecture Notes in Computer Science, vol. 3098, Springers.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 84, Publication date: December 2012.

Conformance Testing for Cyber-Physical Systems 84:23

BOHNENKAMP, H. AND STOELINGA, M. 2008. Quantitative testing. In Proceedings of the 8th ACM International
Conference on Embedded Software (EMSOFT’08). 227–236.

HENZINGER, T. A., HO, P.-H., AND WONG-TOI, H. 1997. Hytech: A model checker for hybrid systems. In Proceed-
ings of the 9th International Conference on Computer Aided Verification (CAV ’97). 460–463.

HESSEL, A., LARSEN, K. G., MIKUCIONIS, M., NIELSEN, B., PETTERSSON, P., AND SKOU, A. 2008. Testing real-time
systems using UPPAAL. In Formal Methods and Testing, Lecture Notes in Computer Science, vol. 4949.
77–117.

KIM G. LARSEN, MARIUS MIKUCIONIS, B. N. 2009. Uppaal Tron User Manual. CISS, BRICS, Aalborg University,
Aalborg, Denmark.

LARSEN, K. G., MIKUCIONIS, M., AND NIELSEN, B. 2004. Online testing of real-time systems using uppaal. In
Proceedings of the 4th International Workshop Formal Approaches to Software Testing (FATES’04).
79–94.

LIM, R., WOEHRLE, M., MEIER, A., AND BEUTEL, J. 2009. Poster abstract: Harvester - energy savings through
synchronized low-power listening. In Adjunct Proceedings of the 6th European Workshop on Sensor
Networks (EWSN’09). 29–30.

MIKUCIONIS, M., LARSEN, K. G., AND NIELSEN, B. 2004. T-uppaal: Online model-based testing of real-time
systems. In Proceedings of the 19th IEEE International Conference Automated Software Engineering
(ASE’04). 396–397.

SHNAYDER, V., HEMPSTEAD, M., RONG CHEN, B., ALLEN, G. W., AND WELSH, M. 2004. Simulating the power con-
sumption of large-scale sensor network applications. In Proceedings of the 2nd International Conference
on 6th Embedded Networked Sensor Systems (SenSys’04). 188–200.

STREHL, K. 2000. Symbolic methods applied to formal verification and synthesis in embedded systems design.
Ph.D. thesis, ETH Zurich.

TRETMANS, J. 1994. A formal approach to conformance testing. In Proceedings of IFIP TC6/WG6.1 6th Inter-
antional Workshop on Protocol Test Systems VI. 257–276.

VAN OSCH, M. 2006. Hybrid input-output conformance and test generation. In Formal Approaches to Software
Testing and Runtime Verification, 70–84.

WOEHRLE, M., LAMPKA, K., AND THIELE, L. 2009. Exploiting timed automata for conformance testing of power
measurements. In Proceedings of the 7th International Conference on Formal Modelling and Analysis of
Timed Systems (FORMATS’09). 275–290.

Received February 2010; revised August 2010; accepted December 2010

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 84, Publication date: December 2012.

