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ABSTRACT
Event-driven applications, such as, mobile apps, are difficult
to test thoroughly. The application programmers often put
significant effort into writing end-to-end test suites. Even
though such tests often have high coverage of the source code,
we find that they often focus on the expected behavior, not on
occurrences of unusual events. On the other hand, automated
testing tools may be capable of exploring the state space
more systematically, but this is mostly without knowledge
of the intended behavior of the individual applications. As
a consequence, many programming errors remain unnoticed
until they are encountered by the users.

We propose a new methodology for testing by leveraging
existing test suites such that each test case is systematically
exposed to adverse conditions where certain unexpected
events may interfere with the execution. In this way, we
explore the interesting execution paths and take advantage
of the assertions in the manually written test suite, while
ensuring that the injected events do not affect the expected
outcome. The main challenge that we address is how to
accomplish this systematically and efficiently.

We have evaluated the approach by implementing a tool,
Thor, working on Android. The results on four real-world
apps with existing test suites demonstrate that apps are
often fragile with respect to certain unexpected events and
that our methodology effectively increases the testing quality:
Of 507 individual tests, 429 fail when exposed to adverse
conditions, which reveals 66 distinct problems that are not
detected by ordinary execution of the tests.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging
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1. INTRODUCTION
As of May 2015 more than 1.5 million Android apps have

been published in the Google Play Store.1 Execution of
such apps is driven by events, such as, user events caused
by physical interaction with the device. One of the primary
techniques developers apply for detecting programming errors
is to create end-to-end test suites (also called UI tests) that
explore the UI programmatically, mimicking user behavior
while checking for problems. Testing frameworks, such as,
Robotium,2 Calabash,3 and Espresso4 are highly popular
among Android app developers. As a significant amount of
the software development time is often devoted to testing
[19], it is not unusual that test suites have high coverage of
the source code and incorporate a deep knowledge of the
app UI and logic. Furthermore, the result of each single
test can be of critical importance to sanction the success
of the entire development process, as tests may be used for
verifying scenarios in the business requirements.

Nevertheless, due to the event-driven model, only a tiny
fraction of the possible inputs is typically explored by such
test suites. As the test cases are written manually, they tend
to concentrate on the expected event sequences, not on the
unusual ones that may occur in real use environments. In
other words, although the purpose of writing test suites is to
detect errors, the tests are traditionally run in “good weather”
conditions where no surprises occur.

Our goal is to improve testing of apps also under adverse
conditions. Such conditions may arise from events that
can occur at any time, comprising notifications from the
operating system due to sensor status changes (e.g. GPS
location change), operating system interference (e.g. low
memory), or interference by another app that concurrently
accesses the same resource (e.g. audio). It is well known that
Android apps can be difficult to program when such events
may occur at any time and change the app state [13, 14, 22,
29]. A typical example of bad behavior is that the value of a
form field is lost when the screen is rotated.

As a supplement or alternative to manually written test
suites, many automated testing techniques have been created
aiming to find bugs with little or no help from the devel-
oper [3, 4, 6, 7, 12, 13, 14, 22, 23, 25, 27, 29]. The primary
advantage of such techniques is that they can, in principle, ex-
plore the state space more extensively, including the unusual
event sequences. However, these techniques generally cannot

1
http://www.appbrain.com/stats/number-of-android-apps

2
http://code.google.com/p/robotium

3
http://calaba.sh/

4
http://code.google.com/p/android-test-kit
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provide as high coverage as manual techniques. Moreover,
automated techniques mostly operate without any knowledge
of the expected behavior of the app, so they typically test
only generic correctness properties (such as, the app should
not crash with a null dereference exception) and fail to notice
more subtle functionality errors.

In contrast to those approaches, we wish to take advantage
of existing, manually written end-to-end test suites that
are already widely used by app developers. We present
an algorithm that systematically injects special events in
existing tests to check the robustness in adverse conditions.
We thereby leverage the application-specific knowledge and
amplify the tests [28, 31].

As observed by Zaeem et al. [29], certain events in mobile
apps are associated with a common sense expectation of how
the app should respond. For example, suspending and then
resuming an app should typically be allowed anytime without
affecting the behavior of the app. We use a similar idea to
select which events to inject. Zaeem et al. exploit their
observation in a model-based testing technique. A limitation
of that approach is that it requires a UI model of the app
under test and a suitable abstraction of the execution states
to determine whether the events cause substantial changes.
By leveraging existing test suites, we avoid both problems.

To our knowledge, no previous work has exploited existing
tests of mobile apps to get assurance about the app behavior
when executed in such adverse conditions. Fard et al. [9]
combine existing tests and crawling for web applications, but
in a way that requires heuristic regeneration of assertions,
whereas we use the existing test assertions unmodified and
focus on injecting events that are typically not mentioned
in the tests. More fundamentally, our aim is to obtain
a systematic exploration of the possible consequences of
injecting such events in each test case.

Although the basic idea in our approach is simple, mak-
ing it work in practice involves several design challenges.
Which events are relevant to inject, and when should they
be injected in each test case? Ideally, the technique should
(1) increase the ability to detect bugs as much as possible,
(2) run without a significant slowdown compared to ordinary
test suite execution, and (3) provide error messages that
precisely indicate the cause of each error being detected, to
aid debugging. The first step of our approach is to establish
a notion of neutral event sequences that may be tailored
to individual apps or test cases, with sensible defaults for
the Android platform. We then present an algorithm for
injecting neutral event sequences, supplemented by strategies
for isolating the causes of failures and reducing redundancy.

By generalizing from existing tests, the classification of
the problems being detected as either bugs or false positives
is naturally subjective. Indeed, in some cases the developer
might think that the problem is not important enough to
be fixed, for example, if a dialog window disappears when
the phone is rotated. To this end, our approach can help
the developer by revealing implicit assumptions of test cases
that concern the special events.

In summary, our contributions are:

• A methodology for leveraging existing tests to detect bugs
that involve unexpected events (Section 3). The method-
ology relies on the insight that existing tests can be run
in adverse conditions to increase the ability to detect bugs
in the apps and identify hidden assumptions of the tests.

• An implementation, Thor, designed for Android apps
with Espresso or Robotium test suites (Section 4), which
includes a selection of neutral event sequences.

• An experimental evaluation (Section 5). We show using
4 real Android apps with existing test suites that our
methodology is able to detect bugs and identify hidden
assumptions that are not exposed by ordinary test execu-
tions. In particular, our technique causes 429 otherwise
succeeding tests to fail in adverse conditions out of a total
of 507 tests. From those failing tests we have manually
identified 66 distinct problems. We estimate that 22 of the
66 problems are critical bugs from the user perspective,
where the remaining ones are likely unintended by the app
developers but not harmful to the overall functionality
of the apps. Among the 22 critical bugs, 18 affect the
functional behavior of the app without causing it to crash,
thereby demonstrating the advantage of exploiting the
application-specific knowledge available in the test suites.
Our experiments also show the effectiveness of the failure
isolation and redundancy reduction strategies.

2. MOTIVATING EXAMPLE
This section explains our methodology using a concrete,

motivating example.
An Android app is structured in various screens, each

called an activity and representing a focused component for
user interaction. Consider the code in Figure 1, showing a
snippet of code from an activity in Pocket Code5 for Android,
an educational app for teaching visual programming.

The ProjectsListFragment allows users to manage their
projects in a list. A Fragment is a piece of an app’s UI that
can be placed inside an Activity. When the activity is put
into the foreground, the onResume method (line 2) is called
on the fragment, which loads the projects from the disk and
creates a ProjectAdapter for them (lines 6–7). This adapter
holds the list of projects and provides a UI element for each
entry through the getView method that is shown by the
activity to the user (see Figure 2(i)).

In order to delete a project, the user should long press the
entry associated with it, triggering a call to onCreateCon-

textMenu (line 9). This method adds the selected project to
the checked projects of the adapter (line 10) and displays
a contextual menu on the screen (see Figure 2(ii)). On
this menu, the user can press “Delete”, which causes the
confirmation dialog initialized on lines 13–18 to appear (see
Figure 2(iii)). If the “Yes” button is clicked, the checked
project is finally deleted (line 22).

The above use case is taken into account by the test test-
DeleteCurrentProject in Figure 3, taken from the original
app repository. The test is written using the Robotium
test framework. The actions are interleaved with assertions,
which check that the state of the UI (lines 7–10) and the app
(line 13) conforms with the expected one. A failure of the
test reveals an unexpected behavior.

However, a test may succeed when executed in an ordinary
manner, giving the developer a peace in mind, although the
app may behave differently in a real-world scenario. As we
shall see, this is the case for the test in Figure 3.

The behavior of an app depends not only on the sequence
of ordinary UI actions (as simulated by the test), but also on
external events that may interfere. Such events arise from

5
http://github.com/Catrobat/Catroid
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1 class ProjectsListFragment extends . . . {
2 void onResume () {
3 initAdapter ();
4 }
5 void initAdapter () {
6 projects = loadListFromDisk ();
7 adapter = new ProjectAdapter(projects);
8 }
9 void onCreateContextMenu(MenuInfo info) {

10 adapter.addCheckedProject ((. . .)info.pos);
11 }
12 void showConfirmDeleteDialog () {
13 list = new OnClickListener () {
14 void onClick(. . .) {
15 deleteCheckedProjects ();
16 }
17 }
18 . . ..setPositiveButton(yes , list);
19 }
20 void deleteCheckedProjects () {
21 for (int pos:adapter.checkedProjects ()) {
22 deleteProject (( ProjectData)
23 getListView ().getItemAtPos(pos));
24 }
25 }
26 }
27 class ProjectAdapter extends . . . {
28 Set <Integer > checkedProjects = new . . .;
29
30 View getView(final int pos , . . .) {
31 findViewById(PROJECT_CHECKBOX)
32 .setOnCheckedChangeListener(
33 new OnCheckedChangeListener () {
34 void onCheckedChanged(boolean checked) {
35 if (checked) {
36 checkedProjects.add(pos);
37 } else {
38 checkedProjects.remove(pos);
39 }
40 }
41 });
42 . . .
43 }
44 }

Figure 1: Snippet from the Pocket Code app.

incoming calls, clicks on hardware buttons, such as, the home
button or the earphone media keys, device rotations, other
apps trying to acquire the audio focus, the user plugging out
his earphones, etc. Manually written test cases rarely take
such events into account.

For this example, consider what happens during the execu-
tion of testDeleteCurrentProject if the app is sent to the
background and resumed, as the result of, for example, the
user long pressing the home button and returning to the app
(see Figure 2(iv)). During this process, the current activity
is paused, which technically means that the activity can still
be partially visible, but can be left soon or, as in this case,
simply resumed. The app is notified of this change by means
of a series of method calls, and it is supposed to commit all
the changes and release all its resources.6 The app will be
resumed when it is put back to the foreground.

This sequence of events reveals a bug in the implementation
of the deletion feature. If the app is paused while the confir-
mation dialog is shown, it will show the same dialog when

6
http://developer.android.com/reference/android/app/

Activity.html

(i) (ii)

(iii) (iv)

Figure 2: Snapshots from Pocket Code during the
deletion of a project (i-iii), and a home button long-
press to show the open apps (iv).

resumed. However, the referenced adapter gets recreated
from scratch (line 3) with a fresh set of checkedProjects

(line 28), causing the project deletion to fail silently.
This problem is not revealed by the test in an ordinary

execution. However, it is caught by the assertion on line 7
in Figure 3 if the test is exposed to an adverse condition
immediately after the UI action on line 5, which simulates
the app being sent to the background and resumed.

3. METHODOLOGY
We assume to be given an app with a UI test suite. A

UI test is a small program that uses the primitives offered
by a test framework to interact with the UI of an app. The
instructions usually contained in a test may trigger events
on the UI (as in lines 3–6 of Figure 3), inspect the UI or
directly interact with the internal state (as in line 2 where
projects are created and added to the app, circumventing
the UI), await timers or other conditions (typically to make
sure some asynchronous task is completed before the test
proceeds), and assert desired properties of the internal state
or the UI (as in lines 7, 9, and 13).

Mobile apps involve many kinds of events: system events
that are triggered by sensors, by changes in the environment,
or by other apps, as well as actions initiated by the user (e.g.
docking, tapping). Events that are triggered in typical test
suites tend to concentrate on user events that directly concern
the graphical UI, not on other kinds of user interactions (e.g.
rotating the device) or system events. For example, although
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1 public void testDeleteCurrentProject () {
2 createProjects ();
3 clickOnButton("Programs");
4 longClickOnTextInList(DEFAULT_PROJECT));
5 clickOnText("Delete");
6 clickOnText("Yes");
7 assertFalse("project still visible",
8 searchText(DEFAULT_PROJECT));
9 assertTrue("project not visible",

10 searchText(OTHER_PROJECT));
11 String newCurrent = ProjectManager.
12 getCurrentProject ().getName ();
13 assertNotSame("project not deleted",
14 DEFAULT_PROJECT , newCurrent);
15 }

Figure 3: A test from Pocket Code that checks the
deletion feature of the projects list (simplified for
presentation).

device rotations are common in real use, they are rare in
test suites. Among the approx. 3 500 events that appear
when executing the 507 tests that we consider in Section 5,
only 7 are of this kind. This means that the behavior of
the apps in presence of such kinds of events largely remains
untested. One likely reason is that the programmers may
be less aware of those kinds of events, or that there is no
obvious place to test them among the ordinary test cases.
Another reason may be that some testing frameworks do not
provide the necessary primitives to trigger such events; for
example, Robotium does not support simulating a click on
the home button.

Neutral event sequences. We say that a sequence n of
events is neutral with respect to a given test if injecting n
during the test is not expected to affect the outcome.

As an example, the event sequence Pause–Stop–Restart,
which consists of the Android life-cycle events that occur
when the user long presses the home button and then returns
to the app, is neutral with respect to the test in Figure 3.
Whether an event sequence is neutral or not is of course
subjective – and must in the end be decided by the app
developer – but a common sense expectation often exists, as
observed by Zaeem et al. [29] who use a related notion called
user-interaction features (see Section 6).

Notice that the property of being neutral may depend on
the individual test. For example, a loss of WiFi connection
followed by a 3G signal recover can be neutral for most tests
but not for one that checks that data is only uploaded when
WiFi is available.

The identification of neutral event sequences is pivotal for
our methodology. Our idea is to systematically issue neutral
sequences of events in specific moments of a test execution.
If a test assertion fails, it is safe to issue a warning reporting
that the app is misbehaving. The neutral event sequences of
interest are those that complement the ordinary user events
that concern the graphical UI of the app.

Injection points. Not all program points in a test are
suitable locations for injecting events. First, there is no
reason to inject the same events in consecutive instructions
that merely inspect the UI or internal app state. Second, to
ensure that the simulated event sequence with the injected
events is realizable in practice, we should not inject events
in the middle of a sequence of instructions that program-

matically modify the app state. Third, to avoid introducing
nondeterministic outcomes of the tests, we should not inject
events right after sleep instructions. Altogether, this leaves
us with the following design choice, which is also simple
to implement: Injection of events takes place immediately
after test instructions that trigger events, identified by the
use of primitive operations from the test framework. This
corresponds to the program points after each of lines 3–6 in
our example in Figure 3. More precisely, we inject events
after a test has triggered an event and the corresponding
event handlers have completed (i.e. when the event queue be-
comes empty), and we delay execution of the remaining test
instructions until the event handlers of the injected events
have completed.

The basic algorithm. Given a set of test cases T and a
list of neutral event sequences N , we execute each test in T
using a modified testing framework that injects every event
sequence from N (in the given order) at every injection point
(as defined above). In other words, we combine all the event
sequences in N into one neutral event sequence (neutral event
sequences are trivially closed under concatenation) and inject
it aggressively. Naturally, we only consider test cases that
do not fail in ordinary executions.

In the test from Section 2, an injection point is reached after
the clicks on the “Programs”, “Delete”, and “Yes” buttons and
after the long click on the project (lines 3–6 in Figure 3). Our
algorithm injects the neutral event sequences at each of these
injection points, in particular, at the delete confirmation
dialog (Figure 2(iii)), thereby triggering the error caught by
the assertion in line 7 in Figure 3.

Detecting multiple errors with each test. A potential
limitation of the basic algorithm is that a test stops as
soon as an assertion fails or the app crashes, which may
shadow other errors. For example, the basic algorithm never
reaches beyond line 7 in the test in Figure 3, although the
later assertions might potentially fail with another choice
of injections. For this reason, we slightly extend the basic
algorithm: Whenever an assertion fails or the app crashes, we
rerun the test but only perform event injections at program
points after the failed assertion or app crash. We keep
rerunning as long as the test fails.

With the algorithm presented above, and assuming no
assertion failures or app crashes, every test is subjected to a
large number of additional events, but we still only execute
each test once. We choose this approach to minimize the
slowdown compared to ordinary test execution, as restart-
ing tests is likely more time consuming than executing the
injected events [7]. On the other hand, it is possible that
we thereby miss errors that could be detected with a less
aggressive strategy. Some errors may only manifest with very
specific combinations of injections. We hypothesize that this
is mostly a theoretical concern: Few additional errors will be
detected in practice if we inject only a subset of the neutral
event sequences and use only a subset of the injection points.
We test this hypothesis experimentally in Section 5.

Isolating the causes of failures. As stated in Section 1,
we aim not only to detect as many errors as possible and avoid
a significant slowdown compared to ordinary test execution;
we also want useful error messages to help the developer
understand the causes of the errors being found. Although
each failing test execution comes with a concrete trace of the
events involved, the fact that we have chosen an aggressive
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strategy for injecting events means that it may not be clear
which of the injections are the critical ones. Our approach
to address this problem is based on the following small-scope
hypothesis [15]: Most errors that can be detected by injecting
neutral event sequences can be found by injecting only one of
the neutral event sequences and at only one injection point.
We also test this hypothesis in Section 5.

On this basis, we choose to apply a simple variant of delta
debugging [30]. Whenever a test fails (using either the basic
or the extended algorithm presented above), we perform the
following steps that attempt to isolate a single neutral event
sequence and a single injection point to blame:

1. We first perform a binary search through N , in each step
eliminating half of the neutral event sequences, and each
time with the same injection points, until we find a single
neutral event sequence n that leads to the same failure.

2. If such an n exists, we perform a binary search through the
sequence of injection points, repeatedly eliminating half of
them and each time injecting only n, until we find a single
injection point triggering the failure. As relevant injection
points are likely close to the failure, in each iteration we
inject n in the half that is closest to the failure point.

Of course, many heuristic variations can be conceived, for
example, replacing the first binary search with a linear scan
if N is small, or first trying neutral event sequences that are
known to be involved in many errors in prior test executions.

The isolation algorithm may fail to find a single injection to
blame. The small-scope hypothesis might not apply because
a combination of injections is needed to expose the error,
and flakiness of tests (see [21]) may divert the search from
the failure injection point. Still, our approach reduces the
sets of injections to consider during debugging.

Reducing redundancy. The choice of rerunning the tests
to enable detection of multiple errors with each test has two
potential drawbacks. Although more assertion failures or app
crashes may be encountered, and hence more error messages
are emitted, some of these may have the same ultimate cause
and thereby do not reveal any additional bugs in the app.
Also, rerunning tests takes additional time.

As an example, consider the test in Figure 4, which is also
part of the test suite for Pocket Code. The test is checking
a similar use case to that of Figure 3, but deletes another
project than the currently selected one, and also checks that
the project is in fact deleted from the disk. This test fails
for the same reason as the test from our motivating example
when executed using our basic algorithm, resulting in redun-
dant warnings. Furthermore, for the extended algorithm that
aims to detect multiple errors with each test, it also leads to
superfluous test executions, because the technique reruns a
test for every warning being produced.

We propose the following mechanism to heuristically omit
certain injections, for use in situations where the developer
would like to concentrate on the error messages that are likely
caused by distinct bugs and to get the error messages faster.
During execution of the tests, we build a cache of abstract
states. An abstract state is added each time some event e has
been processed and some neutral event sequence n is about
to be injected. Each abstract state consists of an abstraction
of the UI state together with e and n. (Such abstractions
of UI states are common in the literature on model-based
testing of mobile, web, and GUI applications [3, 6, 7, 8, 9,

1 public void testDeleteProject () {
2 createProjects ();
3 clickOnButton("Programs");
4 longClickOnTextInList(PROJECT_1);
5 clickOnText("Delete");
6 assertTrue("Dialog title is wrong!",
7 searchText("Delete this program?"));
8 clickOnText("Yes");
9 assertFalse("project still visible",

10 searchText(PROJECT_1));
11 ArrayList <String > projectList =
12 UtilFile.getProjectNames (...);
13 boolean deleted = true;
14 for (String project : projectList) {
15 if (project.equalsIgnoreCase(PROJECT_1)) {
16 deleted = false;
17 }
18 }
19 assertTrue("project not deleted", deleted);
20 }

Figure 4: Another test from Pocket Code, illustrat-
ing potential redundancy (cf. Figure 3) when inject-
ing neutral event sequences.

11, 24, 29].) Now, we simply skip the injection if the abstract
state already appears in the cache. For the example, this
means that the injection, that cause the redundant warning
from the test in Figure 4 to be triggered, is omitted. The
intuition behind this choice is that any bug that may be
found by that injection would likely have been found already
when the abstract state was added to the cache.

This mechanism may obviously cause some bugs to be
missed. Injecting a single neutral event sequence in some
abstract state may falsify multiple assertions, so a bug can be
missed if an injection is skipped due to the cache mechanism.
In Section 5 we quantify the trade-off between reducing
redundancy and maintaining the ability to detect bugs.

4. IMPLEMENTATION
We have implemented the testing technique in a tool Thor7

designed for Android apps and Robotium test suites. The
tool lets the app developer select the set of tests to run,
the set of neutral event sequences to take into account, and
whether or not to enable the different variations of the al-
gorithm presented in Section 3. During the execution, the
tool provides an interactive visualization of the issues found,
including all the necessary information to reproduce them,
allowing further investigation.

Thor executes the tests on an emulator running Android
KitKat 4.4.3 (from the Android Open Source Project). A
controller component on the host machine guides the exe-
cutions of the tests. The test execution is parallelized by
using multiple Android emulator instances. The controller is
implemented in Node.js8 and is managed via a web interface.
We have manually instrumented the Android framework by
adding hooks that allow the tester component to control the
execution of a test, detect injection points, and perform the
injection of neutral event sequences.

The redundancy reduction strategy requires a way to ab-
stract runtime states. Much like previous work on model-

7
http://brics.dk/thor/, named after the storm god.

8
http://nodejs.org/
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based testing, our implementation abstracts away from data
stored in activities, on disk, and by content providers, pre-
serving only information about the structure of the UI as
represented by the Android view hierarchy. More precisely,
our abstraction consists of the tree of objects, which are all
instances of the View class, represented by their class names
and associated event handlers, while ignoring all concrete
string values, screen coordinates, timestamps, etc. A conve-
nient property of this choice of abstraction is that it can be
computed quickly, which is important for its use in reducing
redundancy.

Selecting neutral event sequences. The Android frame-
work provides ample opportunities for selecting neutral event
sequences. It contains well over 60 different services to man-
age the different resources available on the system (e.g. IAc-
tivityManager, IAudioService, IAlarmManager, IBackup-

Manager, ICameraService, IDropBoxManagerService,
ILocationManager, IMountService, ITelephony, IUsbMan-

ager, IVibratorService, IWifiManager, and IWindowMan-

ager). Most importantly, the activity manager is responsible
for the life-cycle of the activities running on the system,
which includes creating, pausing, resuming, and destroying
activities, depending on external factors (e.g. low memory)
and user interactions (e.g. home button click, screen rota-
tion). As another example, the audio service manages the
speakers and earphones, including granting permission to
emit sounds (also called audio focus). Apps are allowed to
use the functionalities offered by some of the services using
remote procedure calls with a thread-migration program-
ming model. In this way, apps can invoke service methods
as if they were running on a thread of the service process.
Moreover, services can invoke methods of apps. This opens
for many different ways in which apps can be influenced
by events from services, or even of other apps. Any event
that causes the internal state of a service to change may
affect the app as well: the service may call a method on the
app process depending on its state, or the app may call a
method on the service process that depends on the service
state. Hence, internal service state changes can potentially
alter the behavior of an app. Any sequence of events that
should not influence the outcome of a test case is of interest.

For our experiments we focus on events concerning the
activity manager and the audio service as these are widely
used. The activity manager is particularly relevant, as all
apps must interact with it and cannot ignore the life-cycle
events. Many common high-level events (e.g. incoming call,
device rotation, docking) cause life-cycle events. According
to the Android documentation, the activity manager always
issues events to an app as a consequence of the changes of
the activity status. The possible events and the associated
state changes are shown in Figure 5.

Example. For our example in Section 2 the activity manager
triggers a pause event by calling the method schedulePause

on ApplicationThreadProxy, which eventually dispatches
the event to the current activity, whose default implementa-
tion dispatches it further to its contained fragment by calling
onPause on the Fragment class.

Other services, including the audio service, are only rel-
evant for apps that use particular hardware components.
Some of the events that are concerned with the audio service
are audio focus request, which causes a loss event to be sent
to an app whenever another app is requesting to use the

Figure 5: The Android activity lifecycle
(from http://developer.android.com/).

audio, and abandon audio focus, which causes an app to be
notified that the audio is available.

We choose an initial collection of neutral event sequences
for Thor. Concerning the events related to the activity
manager we select the sequences of events in Figure 5 that
cycle back to the Resumed state (assuming an implicit edge
from Destroyed to Created due to the user restarting the app).

Pause–Resume (PR) – issued in some devices when the
screen is turned off and on.

Pause–Stop–Restart (PSR) – issued when the user long-
presses the home button to show the open apps and then
returns to the app.

Pause–Stop–Destroy–Create (PSDC) – issued when
the phone is rotated or docked.

Technically, PSR also contains a Resume event, and PSDC
also contains Start and Resume, but we omit these in the
event sequence names for presentation.

We have excluded other cycles because they are not neutral,
e.g. Pause-Stop-Create. Indeed they cause the app to be
killed by Android, therefore invalidating any expectations on
the outcome of the test.

Concerning the audio service, the following examples illus-
trate neutral event sequences:

Request-Abandon audio focus – an app requesting the
audio focusing and abandoning it.

Request(May duck)-Abandon audio focus – the same
scenario as before, but with the app still being allowed to
play at reduced volume.

Audio becoming noisy–Media key play – pausing the
media due to high volume and resuming.

Notice that all of these event sequences satisfy the definition
of being neutral (Section 3). It is easy to extend Thor with
neutral event sequences that concern other services. However,
since the apps used for the evaluation do not depend on, e.g.,
location services, carrier identification, or the connection
type, we have not implemented such, although they may be
of interest for other apps. For example, the following events
could be taken into account:

GPS precision loss–Recall – issued in case the phone
reaches a zone where the GPS is less precise and then returns.

Carrier change – issued when the phone connects to an-
other GSM cell during roaming.

3G–WiFi–3G – issued when the network connection
switches from 3G to WiFi and back (the converse scenario
may naturally also be included).
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5. EXPERIMENTAL EVALUATION
We evaluate Thor by conducting an empirical study on

real Android apps to investigate whether Thor is capable of
exposing bugs that are undetected by ordinary executions of
existing test suites, and at what extra cost in testing time.
We divide this into five research questions:

Q1 (error detection) Several aspects of the error detec-
tion capability deserve attention. To what extent is it
possible to trigger failures in existing test suites by in-
jecting neutral event sequences? Different failures may
have the same ultimate cause. How many distinct prob-
lems in the apps do the failures identify? How many of
the problems are likely perceived as critical bugs from
the user’s perspective, and how many of these affect
the functional behavior of the app but without causing
it to crash? How many failures are missed if disabling
the rerun of a test at each failure?

Q2 (execution time) What is the slowdown for the dif-
ferent modes of Thor compared to ordinary test ex-
ecution? Specifically, how much extra time is spent
when enabling the rerun of a test at each failure, and
how much time is saved when enabling the redundancy
reduction mechanism?

Q3 (redundancy reduction) When enabling the redun-
dancy reduction mechanism, what is the effect on the
number of test failures and critical bugs being detected?

Q4 (failure isolation) Is the failure isolation mechanism
effective in finding a neutral event sequence and injec-
tion point for each failure?

Q5 (hypotheses) Our design in Section 3 was based on
two hypotheses. Is it correct that few additional errors
will be detected if we inject only a subset of the neutral
event sequences and use only a subset of the injection
points? Also, is it correct that most of the errors can
be found by injecting a single neutral event sequence
in a single injection point?

5.1 Experiments
UI testing frameworks for Android are popular: Robotium9

and Calabash10 each count more than 850 stars and 400 forks
on GitHub, and Espresso11 has recently been added to the
Android Support Library. In addition, several companies
(e.g. Appurify, Xamarin, TestDroid) are offering Android
cloud testing facilities. This gives evidence that UI testing
is widely used in practice. Nevertheless, we regrettably only
have access to a few nontrivial apps with UI test suites, since
most are closed source as also noted by Fard et al. [9]. Our
experiments are therefore based on a case study of 4 open-
source apps. The experiments are performed on a 2.4 GHz
Intel Core i5 laptop with 8 GB RAM using the x86 Android
emulator and a pool of 3 emulator instances.

Table 1 shows some characteristics of our benchmark apps.
AnyMemo12 (AM) is an app designed for learning different
languages, computer related topics, etc. through flashcards.
Car Cast13 (CC) is a simple podcast player that uses the

9
http://code.google.com/p/robotium

10
http://calaba.sh

11
http://developer.android.com/tools/testing-support-

library/index.html#Espresso
12
http://code.google.com/p/anymemo

13
http://github.com/bherrmann7/Car-Cast

media player facilities and reacts to several audio related
external events. Pocket Code (PC) is the app we used in Sec-
tion 2 as motivating example. Finally, Pocket Paint14 (PP)
is a paint program with various tools for editing images.

As evident from the size of the UI test suites, the app
developers have put a considerable effort into writing UI
tests. However, since running all tests can take a considerable
amount of time (e.g. more than 2 hours in the case of PC),
it is not uncommon that parts of a test suite are out of sync
with the app code as the app is being developed. Moreover,
the developers may run the tests in specific environments,
which are unknown to us, for example, with a particular
version and configuration of the Android emulator ecosystem.
For these reasons, it is not surprising that some of the tests
fail when we execute the test suites even without injecting
any new events. We mark those tests as unstable and exclude
them from the evaluation of Thor. When executing the
resulting stable tests with Thor, we encounter no failures
that can be attributed to environment settings.

In order to answer Q1–Q5 we conduct three experiments.

Experiment 1. We run Thor on each test suite, using all
the variations presented in Section 3 (i.e. enabling or disabling
the rerunning of a test when a failure occurs, the failure iso-
lation technique, and the redundancy reduction mechanism).
The configuration uses the neutral event sequences concern-
ing the activity manager and the audio service mentioned in
Section 4. We manually classify each failing test to determine
the root cause, in order to group failures that are caused by
the same bug and identify which bugs are likely critical from
the user’s perspective. As such manual classification is time
consuming, we settle for a large representative subset of the
failures. This experiment allows us to answer Q1–Q3.

Experiment 2. To answer Q4 we measure the success rate
of the failure isolation strategy when applied to all tests that
fail in adverse conditions.

Experiment 3. To test the hypotheses in Q5 we develop
an algorithm that injects a random subset of the neutral
event sequences and use a random subset of the injection
points (using a uniform distribution), and execute it 50 times
per test case. For each test, we compare the failures found
by these random runs with the ones found by the ordinary
execution of Thor in Experiment 1. Next, for each failure
detected by Thor where the failure isolation mechanism was
unable to isolate a single neutral event sequence and a single
injection point, we try every possible single neutral event
sequence and single injection point in turn to check whether
one actually exists. To limit the time for conducting this
experiment, we use a randomly selected subset of the tests.

5.2 Results
Q1. The results from running Thor on the four apps in
Experiment 1 show that as many as 429 tests fail out of a
total of 507 when run in adverse conditions. This amounts
to 1 770 failures counted as distinct failing test assertions or
app crashes, none of which appear in ordinary execution of
the tests. These numbers witness the good weather assump-
tion about the environment in which tests are traditionally
executed, and clearly demonstrate that our technique is able
to trigger failures in existing test suites.

The majority of the failures are due to the PSDC event
sequence (AM: 91%, CC: 100%, PC: 61%, PP: 98%), whereas

14
http://github.com/Catrobat/Paintroid
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Table 1: The apps used in the evaluation of Thor.

LOC Tests Coverage Test time
App Version Rating Downloads Source UI Tests Stable Unstable Stable Stable

Pocket Code (PC) Aug 07, 2014 3.6/5 50K–100K 34K 19.4K 340 142 65% 2h 21m 17s
Pocket Paint (PP) Sep 19, 2014 3.7/5 10K–50K 6.6K 3.8K 121 11 76% 45m 25s
Car Cast (CC) Jul 11, 2014 4.1/5 100K–500K 6K 0.5K 17 1 48% 12m 47s
AnyMemo (AM) Apr 03, 2014 4.5/5 100K–500K 20.1K 1.2K 29 19 31% 12m 17s

For each app, we show its version, the rating on the Android Play Store, and the number of downloads. The LOC column shows the number

lines of code for the app source and the UI tests. The Tests column shows the number of tests that were stable vs. unstable (i.e. consistently or

randomly failing) in our test environment. The last two columns show the code coverage and the time it takes to execute the stable tests.

Table 2: Failures and bug categories.

Logical Critical UI UI Other

App Crash
Silent
fail

Not
persisted

User
setting lost

Operation

ignored
Unexpected

screen
Not

persisted
Element

disappears

Spec.

fail
Brittle

test
Emulator

issue
Pocket Code 1 (9) 7 (42) - 1 (6) - 4 (51) 2 (54) 14 (104) 3 (5) - -
Pocket Paint 2 (45) - 1 (4) 4 (42) 1 (25) - - 9 (131) - 1 (103) 2 (2)
Car Cast 1 (7) - - - - - - 5 (18) - - -
AnyMemo - - - - - - 4 (24) 4 (15) - - -

The number of bugs in each category (with the corresponding number of failures shown in parentheses). Logical. Crash: e.g. NullPointerException

or bad use of Android Support Library. Silent fail: e.g. the example from Section 2. Not persisted: e.g. internal static field savedPictureUri is

reset in PP. User setting lost: e.g. the selected brush size is lost in PP. Critical UI. Operation ignored: e.g. cannot draw in PP. Unexpected

screen: e.g. navigation to unexpected screen, activity, or fragment. UI. Not persisted: e.g. button disabled, text cleared, or checkboxes unchecked.

Element disappears: e.g. menu or dialog disappears, or dropdown closes. Spec. fail: less important assertions, e.g. a wrong text such as “Delete

these programs” instead of “Delete this program”. Other. Brittle test: invalid reference to a View in the test due to app relaunch. Emulator

issue: e.g. emulator unable to perform an action.

PR accounts for the lowest amount of warnings (AM: 5%,
CC: 0%, PC: 16%, PP: 1%). This is expected, since the
three neutral event sequences that consist of life-cycle events
in turn invoke more event handlers in the app. For example,
PSDC is the only one that causes the activity to be destroyed
and recreated (see Figure 5), meaning that, for example,
inadequate persistence is more likely to expose a problem.

In the experiment, no failures originate from audio related
event sequences. Thor is able to dynamically detect the
specific tests that uses the audio so that it only injects audio
related events when relevant (similar to the relevant events
detection by Machiry et al. [22]). Hence, we only inject audio
related events in few tests of CC, which is the only app that
uses audio.

Our manual classification of a random selection of 682
of the 1 770 failures gives the categorization depicted in
Table 2. As discussed, a single bug may cause multiple test
failures. The table presents the number of distinct bugs
and the corresponding number of failures (in parentheses)
in each category that we have identified. The categories
Logical, Critical UI, and UI correspond to real problems,
whereas Other corresponds to technical issues originating
from a specific coding style used in some tests that is brittle
towards app relaunches (this can be avoided with minor
rewriting efforts) or from the flaky nature of UI tests. The
table further divides the different categories and also includes
examples of typical kinds of errors being found.

From the table it follows that we have identified 66 distinct
problems in the apps from the 1 770 generated failures. On
average, each problem is spotted approx. 10 times. This
is not surprising; different tests often visit the same UI
components and will therefore encounter the same failures,
if, for example, one of these components disappears when
the device is rotated. Later in this section, we separately
evaluate how the redundancy reduction mechanism affects
these numbers (cf. Q4).

Table 2 also shows that 22 out of 66 distinct problems
detected by Thor fall into the categories Logical and Critical
UI, which we conservatively classify as being critical bugs
from the user’s perspective.

The bug in PC that we described in Section 2 is among the
ones detected by Thor in the category Silent fail. Another
bug in PC causes the app to navigate to a wrong screen,
because the activity does not persist the active fragment. In
PP, user settings, such as, the currently selected tool and
brush size, are not properly persisted, causing them to be
reset under certain life-cycle events. A list of some other
bugs that Thor has revealed is shown in Table 3.

Overall, the number of errors is dominated by the UI
category, comprising, for example, simple UI widgets that
disappear from the screen. Many of these problems are likely
to be ignored by app developers, since the improvement of
the app does not match the implementation effort needed
to solve the problems. As an example, it is typically not
considered a serious problem that a menu or dialog closes
upon e.g. rotation. On the other hand, some of the bugs in
the UI category involve text fields being reset, which can
result in a negative user experience. In a few cases, the
choice of the neutral event sequences to inject may depend
on the individual test cases. For example, PP has a full-
screen mode, which is closed when the device is rotated. This
situation is detected by Thor. If this behavior is intended,
the PSDC event sequence is not neutral, meaning that the
test failure concerned has revealed a hidden assumption of
the test. We emphasize that all the issues in the UI category
are conservatively counted as non-critical.

The fact that Thor is able to detect functional bugs, such
as, incorrect persistence of user settings, proves that our
approach is capable of exposing bugs that are undetected
by ordinary execution of the tests. Also notice that among
the 22 distinct bugs that damage the user experience, only
4 are crashes. This shows the value of leveraging existing
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Table 3: Examples of errors detected by Thor.

Pocket Code
- Null pointer crash in the copy program dialog.
- The OK button gets disabled on the new program dialog.
- A fragment (Scripts/Looks/Sounds) is randomly opened.
- The user setting Show Details is lost.
- The selected project name disappears from the action bar title.
- The app randomly navigates to the program list screen and opens

the copy program dialog.
- Clicking “OK” on the copy dialog of a script has no effect.
- Clicking on “+” in the bottom bar navigates to a wrong screen.
- Title changes from “Delete this program?” to “Delete these
programs?”.
- The bottom bar appears.
- Created program element disappears when dragged.
- Deletion of various elements fails silently.
- Various dialogs close inadvertently.

Pocket Paint
- The dialogs tool info and tool settings crash due to missing empty

constructors.
- The position of the canvas on the screen is reset.
- When drawing on the canvas, the strokes are not retained.
- The selected tool, color, and brush is not persisted.
- The full-screen mode gets disabled.
- The“Undo”button gets enabled although no drawing actions have

been performed.
- Various dialogs close inadvertently.

Car-Cast
- Crashes when an open dialog (loader) is dismissed.
- Various dialogs close inadvertently.

AnyMemo
- Content of a text field disappears.
- Review dialog closes.
- Buttons (“Forgot”, “Easy”, etc.) disappear.

tests, compared to automated testing techniques that focus
entirely on app-agnostic error conditions.

The use of existing tests also has advantages compared
to the approach by Zaeem et al. [29] (see Section 6). For
example, the bug presented in Section 2 does not cause the
UI to change and is hence unnoticed by their tool. As a
small additional experiment, we run Thor on CC in a mode
where it also raises warnings if the UI changes due to an
injection of a neutral event sequence (based on a comparison
of screenshots). This roughly doubles the number of warnings
but reveals no new bugs.

In order to determine the number of failures that are
missed by disabling the rerun of a test at each failure, we
perform a case study on PP where we manually classify each
failing test (with rerunning disabled) to determine the root
cause. Our results show that the basic algorithm without the
rerunning extension detects only 8 of the 17 distinct bugs.

Q2. Table 4 presents the slowdown for all the variations
of our algorithm compared to ordinary test executions (cf.
Table 1). The slowdown of our basic strategy is 0.99–1.38x,
which is competitive to an ordinary test execution. We note
that there is a small overhead for injecting events during
the test execution, but nonetheless, running test suites in
adverse conditions can be faster (as in the case for PP),
because failures cause test cases to exit early.

When Thor is run with the rerun extension, the execution
time increases significantly (2.11x–4.70x). This increase is
expected, since test suites with many failures will have many
reruns. Such reruns are expensive, especially when the test
cases are long (some tests from our study trigger more than
100 UI events). However, this mode is suited for situations
where the developer is interested in learning all the failures of

Table 4: The slowdown when running in adverse
conditions.

Strategy AM CC PC PP
Basic 1.05x 1.21x 1.38x 0.99x
Enable rerun failing tests 2.11x 3.09x 4.70x 3.70x
Enable redundancy reduction 1.02x 1.30x 1.57x 1.17x
Enable both 1.73x 1.93x 3.46x 2.04x

the test suite in one execution. In many cases the developer
will be satisfied with learning one failure in each test case,
as provided by the basic algorithm. Eventually, when the
initial bugs have been fixed and only few failures remain, the
rerun mode can be used with little overhead.

The redundancy reduction mechanism aims to eliminate
redundant failures. In doing so, it trades part of the bug
detection capability for performance. When few duplicates
are present, the overhead of building the cache of abstract
states outweighs the benefits gained by reduction. From Ta-
ble 4 it follows that the mechanism is successful in improving
the performance when there are many duplicates, thereby
alleviating much of the overhead of the rerun extension.

Q3. According to Experiment 1, the redundancy reduction
mechanism works best when combined with the rerun exten-
sion, which tends to find more failures that have the same
cause. For example, PP suffers from duplication of PSDC-
related failures when executed using this algorithm (recall
that 98% percent of the failures in PP are due to PSDC).
However, when executed using the redundancy reduction
mechanism, the number of PSDC-related failures reduces
from 350 to 75, resulting in significantly fewer reruns. Im-
portantly, a 79% reduction of the number of failures does not
cause a similar degradation in the number of distinct bugs
being detected: 14 of the 17 distinct problems in PP are
detected when redundancy reduction is enabled. In combina-
tion with the results showing the speedup obtained by this
mechanism (as discussed in relation to Q2), we conclude that
the redundancy reduction mechanism provides an effective
compromise between speedup and bug detection capability.

Q4. Our results from conducting Experiment 2 show that
the failure isolation mechanism is capable of successfully
identifying one single neutral event sequence and injection
point for all except 5 failures. Three of the unsuccessful
isolations succeeded in identifying the neutral event sequence,
but was unable to reduce the set of injection points. This
situation occurs when the binary search fails to spot the
error in any iteration. The remaining two attempts also
successfully identified the relevant neutral event sequence,
and was able to reduce the number of injection points from
49 and 27 to 3 and 14, respectively.

Q5. Experiment 3 provides us with the necessary data to
test our two hypotheses. From a total of 13 784 random runs
coming from 144 different test cases and running for a total
of 94 hours (compared to 4 hours and 24 minutes for our
ordinary execution of Thor on all the 507 test cases), we
observe a total of 7 810 failures, 2 783 of which are duplicates.
We here consider two failures to be the same if they have
the same exception and they are raised in the same test case.
Only 56 of the 5 027 distinct failures obtained in random
runs are not already detected by our basic algorithm. This
number reduces to 26 if we consider the total number of
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distinct failures without distinguishing between the test cases
that raise them, but only look at the actual exception. We
point out that this can only give a rough estimate of the
actual number of bugs being detected by the two techniques,
because the same failure may concern distinct problems. Still,
these results support our first hypothesis, namely that only
few more errors would be detected if we inject all the possible
subsets of neutral sequences in all the possible subsets of
injection points.

Concerning the second hypothesis, the results of Exper-
iment 3 show that a high percentage of the failures raised
by the basic algorithm can be eventually reduced to a single
event and a single injection point to blame: only 26 out of
324 failures used in the experiment need a more complex
combination of injected events.

6. RELATED WORK
Numerous techniques and tools have been developed to

support software testing, specifically for mobile apps, and
we here discuss the most closely related work.

The use of existing test suites is a key property of our tech-
nique for guiding exploration and providing test assertions
that specify the intended behavior of the app being tested.
This idea of leveraging existing tests has been applied before.
Xie and Notkin [26] infer operational abstractions from ex-
isting unit tests and then generate new tests that attempt
to violate these abstractions. Fraser and Zeller [10] similarly
infer parameterized tests from ordinary unit tests. These
techniques are not immediately applicable to our setting with
event-driven applications and errors that involve events that
are typically not mentioned in the original tests.

The Testilizer tool for web application testing by Fard
et al. [9] uses a technique more closely related to ours. By
extending human-written test suites with automated crawl-
ing and heuristics for assertion regeneration, they achieve an
improvement in fault detection and code coverage. In com-
parison, our use of neutral event sequences does not require
random crawling and assertion regeneration. Zhang and
Elbaum [31] use test amplification for validating exception
handling, but do not benefit from the existing assertions in
the tests.

Many automated testing techniques aim to explore apps
by variations of random testing, or crawling, without the use
of existing test suites [3, 4, 6, 7, 12, 13, 14, 22, 23, 25, 28, 29].
This has the practical advantage that it is easier to perform
large-scale experiments on 1000s of apps, as these are imme-
diately available, unlike their UI tests. More fundamentally,
since these testing techniques cannot take advantage of the
test-case specific assertions, they often use code coverage
as a proxy for error detection capability and are restricted
to detecting application-agnostic error conditions, such as,
app crashes. Assuming that our preliminary experimental
results generalize – recall that 18 of the 22 critical bugs found
by Thor are not crashes – this means that random testing
techniques can only see the tip of the iceberg regarding app
errors that arise in adverse conditions.

Other error detection techniques use notions of neutral-
ity similar to ours, either implicitly or explicitly. Leak-
Droid [27] repeatedly executes event cycles that should have
a neutral effect on the resource usage, while monitoring the
execution to identify potential leaks. Orion [18] performs
semantics preserving mutations of a program to test the
correctness of optimizing compilers. The Quantum tool by

Zaaem et al. [29] is based on a notion of user-interaction fea-
tures, which are actions that are associated with a common
sense expectation of how the app should respond. Neu-
tral event sequences are related to user-interaction features
where the common sense expectation is that the app behav-
ior should be unaffected by the actions. As discussed in
Section 1, Quantum requires a UI model of the app and
a suitable abstraction of the execution states, instead of
leveraging UI tests.

The fact that life-cycle events are a major source of pro-
gramming errors is also noted by Hu et al. [14]. Their tool,
AppDoctor, performs fast random testing by triggering low-
level event handlers directly and then attempts to eliminate
false positives by faithfully simulating the high-level user
events (e.g. emitting a touch event Down, waiting 3 seconds,
and then emitting a touch event Up, instead of directly in-
voking the Long-press event handler). Thor injects events
via the Android framework, not by invoking event handlers
directly. This may in principle still lead to false positives,
however, we have found no false positives among the 1 770
warnings in our experiments.

Another kind of “adverse conditions” is environment fail-
ures, which are the focus of stress testing tools, such as,
VanarSena [25], Puma [11], and Caiipa [20]. These tools
aim to expose bugs by inducing faults in network response
(e.g. replacing an actual response by HTTP 404), and fuzzing
device configuration, wireless network conditions, etc. Some
of the device specific events triggered by Thor are related
to this approach, for example, the neutral event sequence
3G–WiFi–3G.

Errors in event-driven apps may also be caused by un-
expected nondeterministic ordering of events, as studied in
recent work on race detection [12, 23]. Such techniques
require manual investigation to identify the harmful races
and tend to produce many false positives. None of the bugs
discovered by Thor involve races.

Other techniques use symbolic execution [4, 16], which can
potentially reach the challenging targets in the app, but are
difficult to scale and do not exploit the information present
in UI tests. Finally, existing tools that are based on static
analysis (e.g. [5, 17, 2, 1]) focus on security vulnerabilities,
not on the kinds of errors being detected by Thor.

7. CONCLUSION
We have presented a light-weight methodology for leverag-

ing existing test suites by executing them in adverse condi-
tions, systematically injecting event sequences that should
not affect the outcome of the tests. Our evaluation on a
small collection of Android apps demonstrates that the ap-
proach is effective in finding critical bugs, many of which
are functionality errors that are difficult to detect with other
automated testing techniques.

In addition, our results show that the cost in additional
testing time is low relative to the number of bugs found,
and that the technique is capable of isolating the causes of
failures to support debugging.
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