
Test Generation – Domain Partitioning

Andrea Polini

Advanced Topics on Software Engineering – Software Testing
MSc in Computer Science

University of Camerino

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 1 / 33

Equivalence Partitioning

ToC

1 Equivalence Partitioning

2 Boundary Value Analysis

3 Category Partition

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 2 / 33

Equivalence Partitioning

Software Requirements

Requirements Specification
I informal
I semi-formal
I formal

Depending on the degree of formality more or less automated
strategies can be applied

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 3 / 33

Equivalence Partitioning

The test selection problem

Challenge
Construct a test set T ⊆ D that will reveal as many errors in p as
possible (where D is the input domain and T is the set of tests)

To give an idea. . .
Consider a procedure that has to manage data of an employee defined as follows:

ID:int – three digit long from 001 to 999

name:string – name is a 20 character long. Each characters belong to the set
of 26 letters and space

rate:float – rate varies from $5 to $10 per hour and in multiple of a quarter

hoursWorked:int – hoursWorked varies from 0 to 60

Therefore:

999 × 2720 × 21 × 61 ≈ 5.42 × 1034

If time to execute a test is equal to 1ns total time to execute all test will be
≈ 1, 75 × 1018 years

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 4 / 33

Equivalence Partitioning

The test selection problem

Challenge
Construct a test set T ⊆ D that will reveal as many errors in p as
possible (where D is the input domain and T is the set of tests)

To give an idea. . .
Consider a procedure that has to manage data of an employee defined as follows:

ID:int – three digit long from 001 to 999

name:string – name is a 20 character long. Each characters belong to the set
of 26 letters and space

rate:float – rate varies from $5 to $10 per hour and in multiple of a quarter

hoursWorked:int – hoursWorked varies from 0 to 60

Therefore:

999 × 2720 × 21 × 61 ≈ 5.42 × 1034

If time to execute a test is equal to 1ns total time to execute all test will be
≈ 1, 75 × 1018 years

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 4 / 33

Equivalence Partitioning

Equivalence partitioning

How to . . .
using the equivalence partitioning strategy a tester should subdivide
the input domain into “small numbers” of subdomains, which can be
disjoint

Assumption
Equivalence classes are built assuming that the program under test
exhibits the same behaviour on all elements of the same subset. One
element for each subset is selected to form T

Results?
Quality of T depends from experience, familiarity with requirements,
access and familiarity with the code

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 5 / 33

Equivalence Partitioning

Equivalence partitioning

How to . . .
using the equivalence partitioning strategy a tester should subdivide
the input domain into “small numbers” of subdomains, which can be
disjoint

Assumption
Equivalence classes are built assuming that the program under test
exhibits the same behaviour on all elements of the same subset. One
element for each subset is selected to form T

Results?
Quality of T depends from experience, familiarity with requirements,
access and familiarity with the code

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 5 / 33

Equivalence Partitioning

Equivalence partitioning

How to . . .
using the equivalence partitioning strategy a tester should subdivide
the input domain into “small numbers” of subdomains, which can be
disjoint

Assumption
Equivalence classes are built assuming that the program under test
exhibits the same behaviour on all elements of the same subset. One
element for each subset is selected to form T

Results?
Quality of T depends from experience, familiarity with requirements,
access and familiarity with the code

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 5 / 33

Equivalence Partitioning

Faults targeted

Simple partitioning:
set of legal and not legal input
try to identify requirements explicitely referring to different sets

Consider an application related to the management of pensions
and retirements – (Req1:i ∈ [1, ..,15], Req2:i ∈ [16, ..,65] and
Req3:i ∈ [65, ..,120])

above and below

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 6 / 33

Equivalence Partitioning

Formalizing the approach

Relations helping a tester in partitioning are of the form:

R ⊆ I ×P(I)

where the union of the subset in the relation could constitute a partition
of the input domain

Ri : I → {0,1}

The grocery (simple one)
Consider a method getPrice that takes the name of a grocery item
consults a database of prices and return the unit price for the item.
How would you partion the input?

pFound : I → {0,1}

Elements in the database pF and elements not in the database pNF .
They constitute a partion of I

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 7 / 33

Equivalence Partitioning

Formalizing the approach

Relations helping a tester in partitioning are of the form:

R ⊆ I ×P(I)

where the union of the subset in the relation could constitute a partition
of the input domain

Ri : I → {0,1}

The grocery (simple one)
Consider a method getPrice that takes the name of a grocery item
consults a database of prices and return the unit price for the item.
How would you partion the input?

pFound : I → {0,1}

Elements in the database pF and elements not in the database pNF .
They constitute a partion of I

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 7 / 33

Equivalence Partitioning

Formalizing the approach

Relations helping a tester in partitioning are of the form:

R ⊆ I ×P(I)

where the union of the subset in the relation could constitute a partition
of the input domain

Ri : I → {0,1}

The grocery (simple one)
Consider a method getPrice that takes the name of a grocery item
consults a database of prices and return the unit price for the item.
How would you partion the input?

pFound : I → {0,1}

Elements in the database pF and elements not in the database pNF .
They constitute a partion of I

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 7 / 33

Equivalence Partitioning

Formalizing the approach

Relations helping a tester in partitioning are of the form:

R ⊆ I ×P(I)

where the union of the subset in the relation could constitute a partition
of the input domain

Ri : I → {0,1}

The grocery (simple one)
Consider a method getPrice that takes the name of a grocery item
consults a database of prices and return the unit price for the item.
How would you partion the input?

pFound : I → {0,1}

Elements in the database pF and elements not in the database pNF .
They constitute a partion of I

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 7 / 33

Equivalence Partitioning

Examples

Printers
Consider an automatic printer testing application named pTest. The application takes
the manufacturer name and the model of a printer as input and selects a test script
from a list. The script is then executed to test the printer. Our goal is to test if the script
selection part of the application is implemented correctly. Different types of printers
available (B/W Inkjet, Color Inkjet, Color laserjet, Color multifunction).
How would you partion the input?

It is possible to have overlapping among equivalence classes

Words Count I
The wordCount method takes a word w and a file name f and returns the number of
occurrences of w in the text contained in the file. An exception is raised if there is no
file with name f .
How would you partion the input?

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 8 / 33

Equivalence Partitioning

Examples

Printers
Consider an automatic printer testing application named pTest. The application takes
the manufacturer name and the model of a printer as input and selects a test script
from a list. The script is then executed to test the printer. Our goal is to test if the script
selection part of the application is implemented correctly. Different types of printers
available (B/W Inkjet, Color Inkjet, Color laserjet, Color multifunction).
How would you partion the input?

It is possible to have overlapping among equivalence classes

Words Count I
The wordCount method takes a word w and a file name f and returns the number of
occurrences of w in the text contained in the file. An exception is raised if there is no
file with name f .
How would you partion the input?

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 8 / 33

Equivalence Partitioning

Examples

Printers
Consider an automatic printer testing application named pTest. The application takes
the manufacturer name and the model of a printer as input and selects a test script
from a list. The script is then executed to test the printer. Our goal is to test if the script
selection part of the application is implemented correctly. Different types of printers
available (B/W Inkjet, Color Inkjet, Color laserjet, Color multifunction).
How would you partion the input?

It is possible to have overlapping among equivalence classes

Words Count I
The wordCount method takes a word w and a file name f and returns the number of
occurrences of w in the text contained in the file. An exception is raised if there is no
file with name f .
How would you partion the input?

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 8 / 33

Equivalence Partitioning

Examples

Words Count II
Now suppose to have access to the code of wordCount:

1 begin
2 string w,f;
3 input (w,f);
4 if (!exists(f)) {raise exception; return(0)};
5 if (length(w)==0) return (0);
6 if (empty(f)) return (0);
7 return (getCount(w,f));
8 end

How would you partion the input, now?
Combination of w : null/non-null, f : esists/does not exist, empty/non empty

In some cases the equivalence classes are based on the output
generated by the program

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 9 / 33

Equivalence Partitioning

Examples

Words Count II
Now suppose to have access to the code of wordCount:

1 begin
2 string w,f;
3 input (w,f);
4 if (!exists(f)) {raise exception; return(0)};
5 if (length(w)==0) return (0);
6 if (empty(f)) return (0);
7 return (getCount(w,f));
8 end

How would you partion the input, now?
Combination of w : null/non-null, f : esists/does not exist, empty/non empty

In some cases the equivalence classes are based on the output
generated by the program

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 9 / 33

Equivalence Partitioning

Examples

Words Count II
Now suppose to have access to the code of wordCount:

1 begin
2 string w,f;
3 input (w,f);
4 if (!exists(f)) {raise exception; return(0)};
5 if (length(w)==0) return (0);
6 if (empty(f)) return (0);
7 return (getCount(w,f));
8 end

How would you partion the input, now?
Combination of w : null/non-null, f : esists/does not exist, empty/non empty

In some cases the equivalence classes are based on the output
generated by the program

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 9 / 33

Equivalence Partitioning

The triangle software

The function checkTriangle(s1,s2,s3) takes in input three
values representing possible sides of a triangle and it returns the
classification of the triangle:
I side based classification:

isosceles
equilateral
scalene

I angle based classification:
right
equiangular
obtuse
acute

Provide the test cases for such function according to the domain
partitioning method

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 10 / 33

Equivalence Partitioning

Equivalence classes for variables

There are some guidelines to define equivalence classes on the base of variables
domains and defined requirements. They reflect possible implementation choices
related to explicit knowledge or implicit one:

Range (implicitly or explicitly defined): one class with values inside the range
and two with values outside the range

Strings: at least one containing all legal strings and one containing all illegal
strings

Enumerations: each value in a separate class

Arrays: one class containing all legal arrays, one the empty array, and one larger
than the expected size

Compound Data Types (e.g. age and name): combine the classes composing
the compound type

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 11 / 33

Equivalence Partitioning

Unidimensional vs. Multidimensional partitioning

Unidimensional
Each input variable is considered per-se and classes are combined to
cover all the possible equivalence classes

Multidimensional
The Cartesian product of equivalence classes is considered and test
derived accordingly.

Example
Consider a software taking in input two parameters according to the
following constraints:

3 ≤ x ≤ 7, 5 ≤ y ≤ 9

Partitions?

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 12 / 33

Equivalence Partitioning

Unidimensional vs. Multidimensional partitioning

Unidimensional
Each input variable is considered per-se and classes are combined to
cover all the possible equivalence classes

Multidimensional
The Cartesian product of equivalence classes is considered and test
derived accordingly.

Example
Consider a software taking in input two parameters according to the
following constraints:

3 ≤ x ≤ 7, 5 ≤ y ≤ 9

Partitions?

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 12 / 33

Equivalence Partitioning

Partitioning

A Systematic Procedure
I Identify input domains – read requirements carefully, identify input

and output variables and their types, as well as conditions related
to them.

I Equivalence classing – partition the set of values of each variable
into disjoint subsets

I Combine equivalence classes – combine equivalence classes
I Identify infeasible equivalence classes – combination of data that

cannot be input to the application under test

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 13 / 33

Equivalence Partitioning

The Boiler Control System (BCS)

BCS
The control system takes in input:
I A command: cmd = (temp|shut |cancel)
I When temp is selected tempch = −10| − 5|5|10

Input can be provided via a GUI or via a configuration file.
How would you partition the input domain?

BCS input domain

Variable Type Value(s)
V Enumerated {GUI, file}
F String A file name
cmd Enumerated {temp, cancel , shut}
tempch Enumerated {−10,−5,5,10}

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 14 / 33

Equivalence Partitioning

The Boiler Control System (BCS)

BCS
The control system takes in input:
I A command: cmd = (temp|shut |cancel)
I When temp is selected tempch = −10| − 5|5|10

Input can be provided via a GUI or via a configuration file.
How would you partition the input domain?

BCS input domain

Variable Type Value(s)
V Enumerated {GUI, file}
F String A file name
cmd Enumerated {temp, cancel , shut}
tempch Enumerated {−10,−5,5,10}

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 14 / 33

Equivalence Partitioning

The Boiler Control System (BCS)

BCS Equivalence Classes

Variable Type Value(s)
V Enumerated {{GUI}, {file}, {undefined}}
F String f_valid, f_invalid
cmd Enumerated {{temp}, {cancel}, {shut}, {c_invalid}}
tempch Enumerated {{−10}, {−5}, {5}, {10}, {c_invalid}}

Some considerations on the impact of GUI on testing activities

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 15 / 33

Equivalence Partitioning

The Boiler Control System (BCS)

BCS Equivalence Classes

Variable Type Value(s)
V Enumerated {{GUI}, {file}, {undefined}}
F String f_valid, f_invalid
cmd Enumerated {{temp}, {cancel}, {shut}, {c_invalid}}
tempch Enumerated {{−10}, {−5}, {5}, {10}, {c_invalid}}

Some considerations on the impact of GUI on testing activities

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 15 / 33

Boundary Value Analysis

ToC

1 Equivalence Partitioning

2 Boundary Value Analysis

3 Category Partition

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 16 / 33

Boundary Value Analysis

Boundary-value analysis

Experience indicates that programmers make mistakes in processing
values at and near the boundaries of equivalence classes

Boundary-value analysis
test-selection techniques that targets faults in applications at the
boundaries of equivalence classes.

Once the input domain has been identified:
Partition the input domain using unidimensional partitioning
Identify the boundaries of each partition
Select test data such that each boundary value occurs in at least
one test input

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 17 / 33

Boundary Value Analysis

Boundary-value analysis

Experience indicates that programmers make mistakes in processing
values at and near the boundaries of equivalence classes

Boundary-value analysis
test-selection techniques that targets faults in applications at the
boundaries of equivalence classes.

Once the input domain has been identified:
Partition the input domain using unidimensional partitioning
Identify the boundaries of each partition
Select test data such that each boundary value occurs in at least
one test input

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 17 / 33

Boundary Value Analysis

Boundary-value analysis

Experience indicates that programmers make mistakes in processing
values at and near the boundaries of equivalence classes

Boundary-value analysis
test-selection techniques that targets faults in applications at the
boundaries of equivalence classes.

Once the input domain has been identified:
Partition the input domain using unidimensional partitioning
Identify the boundaries of each partition
Select test data such that each boundary value occurs in at least
one test input

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 17 / 33

Boundary Value Analysis

BA Example

The findPrice procedure
Two integer parameter code and quantity with the following input
domain:

99 ≤ code ≤ 999
1 ≤ quantity ≤ 100

Which are the relevant partitions?
Which are the relevant boundary values?

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 18 / 33

Boundary Value Analysis

BA Example

The findPrice procedure
Two integer parameter code and quantity with the following input
domain:

99 ≤ code ≤ 999
1 ≤ quantity ≤ 100

Which are the relevant partitions?
Which are the relevant boundary values?

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 18 / 33

Boundary Value Analysis

BA Example

Consider the following test set:

T = { t1 : (code = 98, quantity = 0),
t2 : (code = 99, quantity = 1),
t3 : (code = 100, quantity = 2),
t4 : (code = 998, quantity = 99),
t5 : (code = 999, quantity = 100),
t6 : (code = 1000, quantity = 101),

}

Minimal but:

public void fP(int code, int quantity) {
if (code < 99 && code > 999)
{display_error("invalid code"); return;}
// Validity check for quantity is missing!
// Begin processing code and quantity

...
}

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 19 / 33

Boundary Value Analysis

BA Example

Consider the following test set:

T = { t1 : (code = 98, quantity = 0),
t2 : (code = 99, quantity = 1),
t3 : (code = 100, quantity = 2),
t4 : (code = 998, quantity = 99),
t5 : (code = 999, quantity = 100),
t6 : (code = 1000, quantity = 101),

}

Minimal but:

public void fP(int code, int quantity) {
if (code < 99 && code > 999)
{display_error("invalid code"); return;}
// Validity check for quantity is missing!
// Begin processing code and quantity

...
}

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 19 / 33

Boundary Value Analysis

Boundary Values Analysis Example

textSearch
Consider the method textsearch that takes in input a string s and a text txt and
checks if the string is a substring of the text. In such a case it returns in p the position
of the first character, -1 otherwise.

I For strings empty string and non empty string classes could be the most natural
partitions if no other information are available.

I use of partitions from output variables

“Voilà! In view, a humble vaudevillian veteran, cast vicariously as both
victim and villain by the vicissitudes of Fate. This visage, no mere
veneer of vanity, is it vestige of the vox populi, now vacant, vanished,
as the once vital voice of the verisimilitude now venerates what they
once vilified . . . ”

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 20 / 33

Boundary Value Analysis

On Combining Boundary Values

Combining Boundary Values
Boundary values for an input set should be tested in isolation avoiding interferences
from other input sets

Relationship among input variables
I Relationships amongst the input variables must be examined carefully while

identifying boundaries along the input domain.
I Additional tests may be obtained when using a partition of the input domain

obtained by taking the product of equivalence classes created using individual
variables

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 21 / 33

Category Partition

ToC

1 Equivalence Partitioning

2 Boundary Value Analysis

3 Category Partition

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 22 / 33

Category Partition

Category Partition Method

CP Method
Mixed manual/automatic approach consisting of eight successive steps
based approach to go from requirements to test scripts

Analyze specification
Identify Categories
Partition Categories
Identify Constraints
(Re)write test specification
Process Specification
Evaluate Generator Output
Generate Test Scripts

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 23 / 33

Category Partition

Category Partition Method

the findPrice procedure (2nd version)
findPrice(code,quantity,weight)

I code: string of eight digits
I qty: quantity purchased
I weight: weight of the purchased item

The procedure accesses a database to find and display the unit price,
the description, and the total price of the item corresponding to code.

Leftmost digit Interpretation
0 Ordinary grocery items such as bread, magazines soup
2 Variable-weight items such as meats, fruits, and vegetables
3 Health-related items such as tylenol, bandaids, and tampons
5 Coupon; digit 2(dollars), 3 and 4 (cents) specify the discounts
1, 6-9 unused

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 24 / 33

Category Partition

Analyze Specification

The tester identify each functional unit that can be tested separately

E.g. it could be the case that the findPrice procedures implements
in a single component the functionalities related to the retrieval of
information from the database

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 25 / 33

Category Partition

Identify categories

For each testable unit the specification is analyzed and inputs isolated.
Also objects in the environment are considered. Then the relevant
characteristics (category) of each parameter are identified

findPrice
Categories:

code: length, leftmost digits, remaining digits
quantity : integer quantity
weight : float quantity
database: contents

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 26 / 33

Category Partition

Partition Categories

For each category different cases (choices) against which to test the
functional units are identified.

Parameters
code:

Length: Valid (8 digits), Invalid (< or > 8)
leftmost digit: 0,2,3,5,others
remaining digits: valid string, invalid string

quantity : valid, invalid
weight : valid, invalid

Environments
Database: item exists, item does not exist

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 27 / 33

Category Partition

Identify Constraints

In this step constraints among choices are specified and used to
exclude infeasible tests

if property . . .

A computer readable format permits to automate the activity

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 28 / 33

Category Partition

(Re)write test specification

The tester write a complete test specification using a Test Specification
Language (TSL), and taking into account the information derived in the
previous steps

Note: The TSL is suitable for being automatically parsed in the next
step

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 29 / 33

Category Partition

Process Specification

TSL specification are processed to derive test frames (test template).

Note: The strategy has been conceived as a BB approach. Code is not
available while you work on defining the tests

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 30 / 33

Category Partition

Evaluate Generator Output

Generated tests are analyzed for redundancy of missing cases

Note: Identification of errors or missing cases can send back the
procedure to a previous step

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 31 / 33

Category Partition

Generate Test Scripts

Test frames are finally grouped into test scripts

CP is mainly a systematization of the equivalence partitioning and
boundary value analysis

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 32 / 33

Category Partition

Generate Test Scripts

Test frames are finally grouped into test scripts

CP is mainly a systematization of the equivalence partitioning and
boundary value analysis

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 32 / 33

Category Partition

In Summary

Test derivation strategies based on characteristics of the input sets
Partitioning
Boundary analysis
Category Partition

(ATSE) 3. Test Generation – Domain Partitioning CS@UNICAM 33 / 33

	Equivalence Partitioning
	Boundary Value Analysis
	Category Partition

