
Business Process Digitalization and Cloud

Computing

4. Architecture fundamentals

Andrea Morichetta, Phd

October 4, 2016

Computer Science Division



Table of contents

1. The general principles of architectures

2. The basic of SOA

3. Business-Driven SOA

1



The general principles of

architectures



What is Architecture

Software architecture is a description of a software system in

terms of its major components, their relationships, and the

information that passes among them.

In essence, architecture is a plan for building systems that meet

well-defined requirements.

A fundamental purpose of software architecture is to help manage

the complexity of software systems and the changes in the

business, organizational, and technical environments.

2



Architectural style

An architectural style is a family of architectures related by

common principles and attributes. It contains a well-defined set of

patterns that constitute a common way for enterprise solution

components to interact with one another

For example, an n-tier architectural style is designed to meet

requirements of distribution, scalability, interface flexibility,

device independence, business service reuse, application

integration, and so on.

3



Architectural Principles and Practice

Separation of concerns

reduce the complexity of the architecture simply separating

elements. The benefit is that a change in one part of the system

does not adversely affect other parts. An example of this principle

is the separation of interface from implementation.

Architectural views

describe the inclusion or exclusion of specific details and the

presentation of information to different stakeholders. Typical

software views are logical, deployment, process, and network.

Typical enterprise architectural views (concerns) are business,

information, application, technology, and implementation.

Accommodation of changes

Flexible architecture are more prone to satisfy future application

requirements (e.g. using trends). 4



Architectural Principles and Practice

Abstraction

is the key method for decoupling, accommodating change and

separating concerns

Pattern

is a template for a solution to a specific set of requirements.

”Each pattern describes a problem which occurs over and over

again in our environment, and then describes the core of the

solution to that problem, in such a way that you can use the same

solution a million times over, without ever doing it the same way

twice.”

Communication

is the mechanism for people to communicate and reach a

common understanding.
5



Service Oriented Architecture

The real value of

SOA comes when

reusable services are

combined to create

agile, flexible,

business processes.

The architecture of

SOA is responsible

for creating the

environment

necessary to

create and use

composable

services
6



Architectural element of SOA

Enterprise Resources

Consists of existing applications, legacy, and COTS systems,

including CRM and ERP packaged applications, and older

object-oriented implementations.

The execution of an operation will typically cause one or more

persistent data records to be read, written, or modified in a

System of Record (SOR)

Data at this layer resides in existing applications or databases.

Integration services

Provide integration between and access to existing applications.

Involves the transformation of data and functions from whats

desired at the business service level to what is actually possible

in the existing systems.
7



Architectural element of SOA

Business services

provide high-level business functionality throughout the Pnterprise.

Provides a service interface abstraction and integration of the

layer below, breaking the direct dependence between processes and

existing systems

Describe the information that should be passed and shared

between services.

Business Process

Consists of a series of operations that are executed in an ordered

sequence according to a set of business rules

Business processes provide long-running sets of actions or activities

described using BPMN and executed by BPMS.

8



The basic of SOA



How services should be built and used?

• Granularity The appropriate size of the service.

• Type or style of interface Guidelines for interface design.

• Configuration mechanisms Standard mechanisms for

configuring services should be defined.

• Other artifacts support the service with design models and

specifications, documentation, test plans, and so on.

• Associated information Additional information that should be

part of a service to support run-time and design-time

inspection, such as the version, author, date, keywords,

and so on.

• Dependency management and other patterns Specific design

patterns that should be followed to keep services independent

and reusable.

9



Perispective of SOA

10



Enterprise Architecture and SOA

11



Business-Driven SOA



Business-Driven SOA

Web Services provide a convenient technology for the

infrastructure of services. Business services designed to exchange

business documents written in Extensible Markup Language

(XML).

Business Process Management (BPM) provides a perfect solution

and complement to the implementation of services and SOA

Business Process Execution Language (BPEL) is designed to work

explicitly with Web Services and provide coordination and

integration of Web Services into higher-level business services.

The ”LEGO” analogy is often used to describe the service-oriented

enterprise.

12



What is a web services?

Discrete unit of business functionality that is made available

through a service contract.

13



Data in business process

14



Services characteristics

Granularity

business processes are decomposed into modular services that are

self-contained

Coarse-grained services provide a greater level of functionality

within a single service operation (reduce network overhead)

Fine-grained service operations provide the exchange of small

amounts of information to complete a specific discrete task

Encapsulation

hides the service’s internal implementation details and data

structures from the published interface operations and semantic

model. Service interface (what a service does); service

implementation (how it is done)

15



Services characteristics

Loose coupling

describes the number of dependencies between a service

consumer and provider

The degree of coupling directly affects the flexibility and

extensibility of a system

Isolation of responsibilities

Services are responsible for discrete tasks or the management of

specific resources.

Autonomy

Is the characteristic that allows services to be deployed, modified,

and maintained independently from each other. An autonomous

services life cycle is independent of other services.

16



Services characteristics

Reuse

In other words, services are shared and reused as building blocks

in the construction of processes or composite services.

Dynamic discovery and binding

Services can be discovered at design time through the use of a

design-time service repository or at run-time using the same

repository and binding dynamically.

Stateless

The service neither remember the last thing they were asked to

do nor care what the next is.

Stateless services provide better flexibility, scalability, and reliability.

17



Services characteristics

Self-describing

The service contract provides a complete description of the service

interface, its operations, the input and output parameters,and

schema

Composable

Services can be composed from other services in order to create

new services or new business process.

Governed by policy

Policies and service level agreements (SLAs) describe how different

consumers are allowed to interact with the service.

Independent of location, language, and protocol

Designed to be location-transparent and protocol/platform

independent. They are accessible to any authorized user, on any

platform, from any location 18



Granularity

Granularity describes the size of a service. This doesnt mean size

in terms of kilobytes of code. It means the amount of business

function that is performed in a single request/response

exchange of messages.

19



Granularity an example

20



Service dimension

Size is not the only important characteristic that determines how a

service is used.

21



Service dimension

Scope

defines the organizational boundaries that the service is expected

to operate (limit the scope of service increase the liability)

Ownership

defines the organizational unit that is responsible for support a

services

Granularity

amount of business function performed in a single

request/response session.

Construction

refer how the service has been implemented (composite, atomic,

foundation, business, domain).

22



Metrics for loose coupling

Independent systems (low coupling) but concentration of

responsibilities on the same class (high cohesion)

• Location transparency: service registry

• Interface and implementation: decoupling of interface and

implementation

• Data: public view of the data (the semantic data); the

internal view (the domain data)

• Versioning: minor enhancement and major enhancement;

backward compatibility

• Interoperability and platform

independence:communication mechanism cross-plattform

• Usage, assumptions, and knowledge: no assumptions on

the purpose, or technical or business characteristics, of the

service consumer.
23



Service Patterns

Orchestration is used to define how these different services are

combined to form the business service

24



Service Patterns

the systems do not already conveniently provide their

functionality as services, so they are wrapped by an integration

service. 25



Questions?

25


	The general principles of architectures
	The basic of SOA
	Business-Driven SOA

