
Business Process Digitalization and Cloud

Computing

10. Composing Services

Andrea Morichetta, Phd

October 25, 2016

Computer Science Division



Table of contents

1. Service composition

2. SCA

3. Business Rules vs Business Process

1



Service composition



Composing Service

• Return of investment?

• Provide business value and solve real-world problems.

• Services are reusable components and are meant to be

combined to meet business needs for enterprise applications.

• In this part we focus on:

• service layer interaction, choreography, orchestration

• Business process execution language (BPEL)

• Strategies in service composition

2



Understanding composition

Services are able to interact by means of collaboration

dependencies defined in conversation rules.

• loosely coupled services involves loosely coupled interaction

processes between services.

3



Service Interaction

• Orchestration: The point of reference for orchestration is a
single controller

• how service interact

• business logic

• order of interactions

• BPEL is an orchestrator script, can be executed by an

orchestrator based on rules and sequence.

• Choreography:
• describe the sequence of messages between services (public

exchange of messages and conversational state)

• focused on exchange of messages from the perspective of a

third party observer

• WS-CDL describe the peer-to-peer collaborations.

• is used when an appropriate path of a composition cannot be

determined without an additional input from a service

consumer.
4



Orchestration versus choreography

5



Orchestration and choreography recap

• Orchestration is based on an executable business process

from the perspective of one controller

• Choreography is based on the messaging interactions, from

the perspective of a third party (multi-party collaboration)

• Orchestration takes place with a central engine controlling

an execution flow

• Choreography allows for multiple parties, permitting a more

peer-to-peer approach.

6



Business process and composition

• Business process and rules for combining them should be

implemented separately

• Decoupled composition can change configuration as the

business process change.

• Hard-coded rules and business process logic into the logic

of services that aggregate other services, require code changes

if requirements are modified.

7



Hierarchical and conversational composition

• Hierarchical composition: the implementation of the
composition is completely hidden from its consumer (black
box).

• is optimum for implementing solutions that do not require

human or any other interaction from the solution invoker.

• Conversational composition: the implementation of the
composition is hidden from the service consumer, but selected
intermediate execution results are exposed (gray box).

• is used for executing composition that that cannot be

determined without an additional input from a service

consumer, based on intermediate execution results

8



Architectural model in service compositions

9



Conductor-based and Peer-to-peer composition

• Conductor-based: consists in a specialized service (mediator)
that interacts with a consumer and controls the execution
of other component services participating to the
orchestration.

• The mediator implements a sequence of service invocations

to reach the final goal.

• The transitions undertaken are based on the input received by

the coordinator.

• Peer-to-peer: each participant is responsible for partial
orchestration, based on its individual rules without a central
coordinator.

• The final behavior is specified as a family of permitted

message exchange sequence

• Typically this implementation lead to hierarchical solutions

10



Programmatic composition

Simplest way to implement a service composition is to use

general-purpose programming language.

• The logic for combining services is statically written and

compiled in the programming language.

Main drawbacks:

1. Hard-coding of composition logic, which makes it harder to

modify and maintain

2. Implementation requires some form of transactional support

to ensure correct behavior in case of failures.

3. Potential introduction of a significant amount of

infrastructure code required to manage synchronous and

asynchronous interactions (DB).

11



SCA



Service Component Architecture (SCA)

• Language-neutral, technology-neutral set of specifications

aimed at simplifying the composition of services by hiding

many of the infrastructure elements of the service invocation.

• SCA specifies how to create components, combine them,

and expose the component assembly as a service

• SCA-defined programming models, components can be built

with Java or another programming language

• Communication itself is actually technology-neutral (SCA,

JMS, REST)

12



Connecting SCA components

• Components are connected to each other using wires.

• Wire is an abstract representation of the relationship between

a reference and some service that meets the needs of that

reference.

• Used for bottom-up composition: selecting a set of deployed

components (services), configuring them, connecting them,

and deploying the resulting composite service.
13



Event-base composition

• Service consumers publish events to a publish/subscribe

intermediary, which delivers them to the actual service

providers.

• Event-based composition decouples layers between service

consumers and the service provider.

• Extremely flexible implementation of composite solutions.

• The sequence of events effectively creates a composite

solution

• By changing a set of services subscribed o a particular topic,

it is possible to completely change an implementation.
• Drawbacks:

• Not provide the notion of service composite solution instance,

which makes very difficult to coordinate events

• It is very difficult to ensure corrective behaviour if the

service fail 14



Event-base composition

15



Orchestration-based Composition

• Use an orchestration engine to control the execution flow of

a process (WS-BPEL).

• Orchestration uses centralized process implementation and

execution, this lead to a simpler process maintainability.

• The executable process specifies the details and rules of the

business process, abstracting the details from the services

involved.

• Orchestration provide recursive aggregation: composite

service can be created to compose new processes involving

interactions with services

16



Orchestration-base composition

17



Orchestration engine

Features:

• Asynchronous service invocation and the use of correlation

tokens for matching between messages

• Management of concurrent execution of process instances.

• Management of the execution context containing the

information that determines the state of the business process

• Management of the data flow, including data flowing into

services

• Support for manual activities

• Collection and processing of business events and key

performance indicators

• Support scalability and availability.

18



Advantages of an orchestration engine

• Orchestration languages directly support the majority of

orchestration concepts

• Equipped of a visual editor

• WS-BPEL, are portable from any programming language

platform, and they can be run on an orchestration server

regardless of whether it is J2EE-based,

19



Centralization and decentralization of Orchestrations

The main advantages of a centralized approach are:

• Business decision are hard-coded at design time or at

compiling time.

• Simple to manage

• Event auditing

• Easy to store the business process in one place

The main disadvantages are:

• Processing bottleneck

• Performance and availability

• Single point failure

20



Scalability on centralized coordination

Engineers can decide how to split

up services giving them

21



Business Rules vs Business Process



Business Rules

• Business rules: describe the sequence of invocations of a
particular service participating to a business process.

• Help the organization to better achieve goals, manage the

communication between organization, operate more efficiently,

automate operations.

• Busienss Process: Describe how to achieve a specific goal.

22



Rules vs business process

• Synchronicity:
• Rule engine evaluate rules in a synchronous way.

• Process engine are asynchronous and invocation are based on

request/response

• Statefulness:
• Rules are stateless, once fired take in input parameters and

send back the output

• Business engine holds the states of each business process

• Determinism
• Rules are fired simultaneously, however the order is not

deterministic

• Business process are deterministic except with parallel activity

• Granularity:
• Rules provide a smaller granularity and offer a higher level of

flexibility

• Processes are more stable but less incline to changes
23



Incorporating Human Activities

• Human activities are composed by activities that are too

expensive (not-cost effective) or too complex to automate.

• Main Issues:

• The interaction is based on interface that are different from

the ones of software systems

• The interactions are exclusively asynchronous

• Slow response time

• Low throughput

• Poor availability

24



Human Activity Manager

A typical approach to support human activity is to use the human

activity manager in collaboration with the orchestration engine.

25



Questions?

25


	Service composition
	SCA
	Business Rules vs Business Process

