
Business Process Digitalization and Cloud

Computing

7. Design Service Interface

Andrea Morichetta, Phd

October 17, 2016

Computer Science Division

Table of contents

1. Service Integration

2. Design model interface

3. WSDL

4. SOAP

5. UDDI

1

Services

• A service provides capabilities that are accessed through its

interface.

• The interface describes how those capabilities are presented

and the rules and protocols for using them.

A service is a combination of:

• its interface: the public view of the service,

• its implementation: the private view of the service

The service interface:

• hides the details of the implementation.

• expresses the services functions (operations) that it provides.

• provide the schema of the information (parameters of the

service operations) derived from a common semantic model. 2

Service Characteristics

3

Service Integration

Interaction Style

Interaction style describes the pattern of the service’s operation

signature, specifically how the information is passed into and

out of the service. The interaction style is described in a

Message Exchange Pattern (MEP).

There are two separate concerns of MEP:

• how the information is passed

• type of message and synchronization.

4

How the information is passed

Parameter Passing

• The operation signature contains one or more individual

parameters.

Example:

Response = service operation (param1, param2, ...);

• The inputs are passed as parameters, which are typed by

standard or custom data types.

• The output can be simple type or a complex type.

• Works well with well-defined and constrained inputs and

with small granularity services

5

How the information is passed

Document Passing

• The operation signature contains one request (input)

document and one response (output) document.

Example:

Response document = service operation (request doc.);

• The inputs and outputs are passed as documents.

• Works well with larger granularity services where the input

and output may contain a lot of data

• Service might decompose the request into individual

documents that are passed separately to the services 6

How the information is passed

Data Passing

• The operation signature contains one or more request

parameters and one response (output) document or

dataset

Example:

Response data = get operation (entityID);

• The service usually supports an operation that returns the

entire data set about a specific entity ID.

• common variation on the data-passing interface allows the

requestor to pass in a specific query or to ask for a

customized subset of information

7

Invocation Style

Request/Reply Synchronous case

• The consumer sends a request to a service and waits.

• When the service has processed the request, it sends a reply.

• The consumer receives the reply and resumes processing.

Request/Reply Asynchronous case (store-and-forward)

• The consumer sends an asynchronous request to a service

and continue to processing other tasks.

• Some times later the consumer look for the reply and then

processes it. (e.g. email)

• Issues:

• no answer

• correlation between request and response (Identifier)
8

Invocation Style

One-way messages

• The consumer send a message to a service but don’t expect

any response

• One-way message is often associated with a guaranteed

delivery messaging infrastructure.

Events

• Event-driven architectures rely on an intermediary, or an

”event broker” to receive notification from event sources

(publish) and inform (invoke) all interested parties

(subscribers).

9

Invocation Style

Mixed Style

• Mixed paradigm is given by a combination of styles.

• The data provider publishes data change events

• Consumers that are interested in data changes subscribe to

these events, most consumer are subscribed with only a

subset of all the data changes and ignore most events

• When the event is about data they are interested, the

consumer (subscriber) then makes a request/response

invocation to the data provider to get the specific data that

they care about.

10

Stateless Interface

• Service interface should be stateless as possible.

• Service does not maintain state on behalf of its consumer

between requests.

• State:

• Execution state: represents the state of the service during

its execution. It includes internal variables created during

service execution for keeping track of partial results during the

execution or storing parameters between multiple components

of a service implementation

• Invocation state: is a shared context between the service

consumer and service provider.

A service may participate in multiple conversations and keep

track of each conversation separately

11

Design model interface

Design model

To summarize the information model answer the following

questions:

• What information is shared between services?

• What information must be passed into and out of each

service?

• What information needs to be common across services?

One goal of the information model is to identify information that

must be common and shared among services. It follows then that

the information passed through the service interface should

conform to the information model.

12

Document-passing interface

Interface document contains the shared information that is

passed between services, and that the definition of that document

is described in a document schema.

The schema must be based on the shared information model (in

fact, it is a subset of the model).

Every element of the schema must exist in the information model.
13

WSDL

WSDL Document

An WSDL document describes a web service. It specifies the

location of the service, and the methods of the service, using

these major elements:

Element Description

<types> Defines the (XML Schema) data types used by the web service

<message> Defines the data elements for each operation

<portType>
Describes the operations that can be performed and the

messages involved.

<binding> Defines the protocol and data format for each port type

14

How the WSDL look like?

<definitions>

<types>

data type definitions........

</types>

<message>

definition of the data being communicated....

</message>

<portType>

set of operations......

</portType>

<binding>

protocol and data format specification....

</binding>

</definitions>

15

WSDL example

<message name="getTermRequest">

<part name="term" type="xs:string"/>

</message>

<message name="getTermResponse">

<part name="value" type="xs:string"/>

</message>

<portType name="glossaryTerms">

<operation name="getTerm">

<input message="getTermRequest"/>

<output message="getTermResponse"/>

</operation>

</portType>

16

The <portType> Element

The <portType> element defines:

• a web service

• the operations that can be performed

• the messages that are involved

Type Definition

One-way The operation can receive a message but will not return a response

Request-response The operation can receive a request and will return a response

Solicit-response The operation can send a request and will wait for a response

Notification The operation can send a message but will not wait for a response

17

One-way Operation

<message name="newTermValues">

<part name="term" type="xs:string"/>

<part name="value" type="xs:string"/>

</message>

<portType name="glossaryTerms">

<operation name="setTerm">

<input name="newTerm" message="newTermValues"/>

</operation>

</portType >

18

WSDL Request-Response Operation

<message name="getTermRequest">

<part name="term" type="xs:string"/>

</message>

<message name="getTermResponse">

<part name="value" type="xs:string"/>

</message>

<portType name="glossaryTerms">

<operation name="getTerm">

<input message="getTermRequest"/>

<output message="getTermResponse"/>

</operation>

</portType>

19

WSDL Binding to SOAP

<message name="getTermRequest">

<part name="term" type="xs:string"/>

</message>

<message name="getTermResponse">

<part name="value" type="xs:string"/>

</message>

<portType name="glossaryTerms">

<operation name="getTerm">

<input message="getTermRequest"/>

<output message="getTermResponse"/>

</operation>

</portType>

<binding type="glossaryTerms" name="b1">

<soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http" />

<operation>

<soap:operation soapAction="http://example.com/getTerm"/>

<input><soap:body use="literal"/></input>

<output><soap:body use="literal"/></output>

</operation>

</binding>

20

WSDL Binding to SOAP

The binding element has two attributes:

• Name: defines the name of the binding

• Type: is an attribute that points the port for the binding

The soap:binding element has two attributes:

• Style: can be ”rpc” or ”document”.

• Transport: defines the SOAP protocol to use.

The operation element in the binding defines each operation that

the portType exposes.

• For each operation the corresponding SOAP action has to be

defined.

• It is al necessary to specify how the input and output are

encoded using the use keyword.
21

SOAP

Why SOAP?

SOAP provides a way to communicate between applications

running on different operating systems, with different technologies

and programming languages.

https://www.w3.org/TR/soap12/

The communications are encoded with soap but transported by

HTTP. 22

https://www.w3.org/TR/soap12/

Beyond Client-Server

• SOAP assumes messages have an originator, one or more

ultimate receivers, and zero or more intermediaries.

• The reason is to support distributed message processing.

• Implementing this message routing is out of scope for SOAP.

• Assume each node is a Tomcat server or JMS broker. That is,

we can go beyond client-server messaging.

23

SOAP Key factors

• SOAP is just a message format.

• Must transport with HTTP, TCP, etc.

• SOAP is independent of but can be connected to WSDL.

• SOAP provides rules for processing the message as it passes

through multiple steps.

• SOAP payloads

• SOAP carries arbitrary XML payloads as a body.

• SOAP headers contain any additional information

• These are encoded using optional conventions

24

Web services messaging requirements?

• Define a message format

• Define a messaging XML schema

• Allow the message to contain arbitrary XML from other

schemas.

• Keep It Simple and Extensible

• Messages may require advanced features like security,

reliability, conversational state, etc.

• Tell the message originator is something goes wrong.

• Define data encodings

• the message recipient should be informed about the types of

each piece of data.

25

Web services messaging requirements

• Define some RPC conventions that match WSDL

• Decide how to transport the message.

• Generalize it, since messages may pass through many entities.

• Decide what to do about non-XML payloads (movies,

images, arbitrary documents).

26

SOAP Structure

A SOAP message is an ordinary XML document containing the

following elements:

• An Envelope element that identifies the XML document as a

SOAP message

• A Header element that contains header information

• A Body element that contains call and response information

• A Fault element containing errors and status information

27

The SOAP Envelope Element

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2003/05/soap-envelope/"

soap:encodingStyle="http://www.w3.org/2003/05/soap-encoding">

...

Message information goes here

...

</soap:Envelope>

• The envelop is the root container of the SOAP message

• The namespace defines the Envelope as a SOAP Envelope.

If a different namespace is used, the application generates an

error and discards the message.

• The encodingStyle attribute is used to define the data types

used in the document.

28

The SOAP Header Element

<?xml version="1.0"?>

<soap:Envelope...........>

<soap:Header>

<m:Trans xmlns:m="http://www.w3schools.com/transaction/"

soap:mustUnderstand="1">234

</m:Trans>

</soap:Header>

...

...

</soap:Envelope>

• The SOAP Header element contains application-specific

information (like authentication, payment, etc) about the

SOAP message.

• The attributes defined in the SOAP Header defines how a

recipient should process the SOAP message.

29

Header Possible attributes

• The mustUnderstand attribute can be used to indicate
whether a header entry is mandatory or optional for the
recipient to process.

• If it is =1 the receiver processing the Header must recognize

the element otherwise it will fail.

• The actor attribute is used to address the Header element to

a specific endpoint.

• The encodingStyle attribute is used to define the data types

used in the document.

30

The SOAP Body Element

The Body element contains the actual SOAP message intended
for the ultimate endpoint of the message.

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2003/05/soap-envelope/"

soap:encodingStyle="http://www.w3.org/2003/05/soap-encoding">

<soap:Body>

<m:GetPrice xmlns:m="http://www.w3schools.com/prices">

<m:Item>Apples</m:Item>

</m:GetPrice>

</soap:Body>

</soap:Envelope>

• The example above requests the price of apples

31

The SOAP Body Element Response

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2003/05/soap-envelope/"

soap:encodingStyle="http://www.w3.org/2003/05/soap-encoding">

<soap:Body>

<m:GetPriceResponse xmlns:m="http://www.w3schools.com/prices">

<m:Price>1.90</m:Price>

</m:GetPriceResponse>

</soap:Body>

</soap:Envelope>

32

The SOAP Fault Element

The optional SOAP Fault element is used to indicate error

messages.

Sub Element Description

faultcode A code for identifying the fault

faultstring A human readable explanation of the fault

faultactor Information about who caused the fault to happen

detail
Holds application specific error information related

to the Body element

33

SOAP Fault Codes

Error Description

VersionMismatch
Found an invalid namespace for the SOAP

Envelope element

MustUnderstand

An immediate child element of the Header

element, with the mustUnderstand attribute

set to ”1”, was not understood

Client
The message was incorrectly formed

or contained incorrect information

Server
There was a problem with the server so

the message could not proceed

34

The HTTP Protocol

A HTTP request message send to the server:

POST /item HTTP/1.1

Host: 189.123.255.239

Content-Type: text/plain

Content-Length: 200

The server sends an HTTP response back to the client:

200 OK

Content-Type: text/plain

Content-Length: 200

Server could not decode the request:

400 Bad Request

Content-Length: 0

35

EXAMPLE

Web Server WSDL

SOAP test UI

WSDL Validator

36

http://www.webservicex.net/globalweather.asmx?wsdl
http://www.soapclient.com/soaptest.html
http://validwsdl.com/

UDDI

UDDI

• UDDI stands for Universal Description, Discovery, and

Integration

• Represent a technical specification for publishing and finding

businesses and Web services

• UDDI 1.0 was originally announced by Microsoft, IBM and

Ariba in September 2000

• In May 2001, Microsoft and IBM launched the first UDDI

operator sites

• UDDI 2.0 was announced in June 2001

• Approved by the Organization for the Advancement of

Structured Information Standards (OASIS) as a formal

standard in April 2003

• Currently UDDI 3.0 has been published as OASIS committee

specifications
37

UDDI Goals

Consist of two parts:

• A technical specification for building distributed directory

of businesses and web services

• business registry: is a sophisticated naming and directory

services.

UDDI defines data structures and APIs for publishing service

descriptions in the registry and for querying the registry to look for

published descriptions.

38

Goals of UDDI

Two main goals with respect to service discovery:

• to support developers in finding information about services

• to enable dynamic binding, by allowing clients to query the

registry and obtain references to services of interest

The data captured within UDDI is divided into three main

categories:

• White pages:

• Contain general info about a specific company

• E.g. Business name, business description, contact info, address

and phone numbers.

39

Information in UDDI

• Yellow pages

• Extend the ability to locate a business or service.

• Support classification using various taxonomy systems for

categorization

• Green pages

• Provide information on how and where to programmatically

invoke a service

• Contain technical info about a Web service

• Provide address for invoking service

• Not necessary SOAP-based service

• Can provide references to a Web page, email address or services

using other component technologies, CORBA, RMI, etc.

40

UDDI Data structures

• Businessinformation: Describe the organization that

provides web services.

• BusinessService: Typically correspond to one kind of

services, but provided at different addresses, in multiple

versions, and through different technologies

41

UDDI Data structures

• bindingTemplate: This element describes the technical

information necessary to use a particular Web service(address,

tModel).

• tModel: Is a technical model and is a container for any kind

of specification (service interface, interaction protocol).

42

UDDI API

• There are two ways to search or publish a business/service

• Using the Web pages provided by the UDDI implementation

(UDDI cloud service), such as uddi.microsoft.com (Need

human intervention)

• Using the APIs provided by UDDI

Can be made automatic by calling the APIs with computer

programs

43

UDDI API

UDDI APIs can be divided into three parts:

• Inquiry APIs: includes operations to find registry entries

that satisfy search criteria and to get overview information

about those entities. (find business, find service, find binding,

find tModel)

• Publishing APIs: permit the service providers to add, modify,

delete entries in the registry. Operations are (save business,

save service, save binding, save tModel)

• Security APIs: used to get and discard authentication tokens

(get authToken, discard authToken).

44

Interaction between UDDI registry

45

Example: find business request

<envelope xmlns=

"http://schemas.xmlsoap.org/soap/envelope/">

<body>

| <find_business generic="1.0" xmlns=urn:uddi-org:api>

| <name>XMethods</name>

| </find_business>

</body>

</envelope>

• UDDI api find-business

• look for Xmethod

46

Example: find business response

<envelope xmlns=

http://schemas.xmlsoap.org/soap/envelope/>

<body>

<businessList generic=1.0 operator=Microsoft

Corporation truncated=false xmlns=urn:uddi-org:api>

<businessInfos>

| <businessInfo businessKey=

| ba744ed0-3aaf-11d5-80dc-002035229c64>

| <name>XMethods</name>

| <description> ... </description>

| <serviceInfos>

| <serviceInfo> ... </serviceInfo>

| </serviceInfos>

| </businessInfo>

</businessInfos>

</businessList>

</body>

</envelope>

47

Example: get businessDetail request

<envelope xmlns=

"http://schemas.xmlsoap.org/soap/envelope/">

<body>

| <get_businessDetail generic=1.0

| xmlns=urn:uddi-org:api>

| <businessKey>

| ba744ed0-3aaf-11d5-80dc-002035229c64

| </businessKey>

| </get_businessDetail>

</body>

</envelope>

• Query for a businessEntity record based on its key

48

Example: get businessDetail response

<envelope xmlns=

http://schemas.xmlsoap.org/soap/envelope/>

<body>

<businessDetail generic=1.0 operator=Microsoft Corporation

truncated=false xmlns=urn:uddi-org:api>

| <businessEntity businessKey=

| ba744ed0-3aaf-11d5-80dc-002035229c64>

| <name>XMethods</name>

| <description> ... </description>

| <contacts>

| <contact> ... </contact>

| </contacts>

| <businessServices>

| :

| </businessServices>

| </businessEntity>

</businessDetail>

</body>

</envelope> 49

Pubblication of a process

• The objective of publishing business is to allow the clients to
know the details of the business

• such as the name of the company, the contact person, address

and phone number etc.

• By publishing the service, the clients would know where and
how to contact the service provider

• such as the access point (or URL) of the service, transport

protocol used (HTTP, FTP or else)

• Publishing the tModel allows the clients to invoke the service
provided by the business

• based on the WSDL document of the service

50

Questions?

50

	Service Integration
	Design model interface
	WSDL
	SOAP
	UDDI

