
Business Process Digitalization and Cloud Computing
6. Service Context and Common Semantics

Andrea Morichetta, Phd

Computer Science Division

October 11, 2018

Andrea Morichetta, Phd (Computer Science Division)Business Process Digitalization and Cloud Computing October 11, 2018 1 / 48

Table of contents

1. The importance of semantics in SOA

2. Documents based on the information model

3. XSD Data type

Andrea Morichetta, Phd (Computer Science Division)Business Process Digitalization and Cloud Computing October 11, 2018 2 / 48

Semantics overview

Message semantics is the most important requirement for service
interoperability.

This ensures that service consumers and providers exchange data in a
consistent way

What we are going to see?

How to synthesize a model by exposing details about a problem

How to model a domain in terms of objects, attributes, and
associations

How to partition large models

The usage of XML for representing these models

Andrea Morichetta, Phd (Computer Science Division)Business Process Digitalization and Cloud Computing October 11, 2018 3 / 48

Semantics interoperability levels

Project-specific interoperability lowest level of interoperability.
Involves specific data formats creation for a particular SOA projects.
Communication with other projects is possible only by means of
transformation.

Business domain-specific interoperability Involves reuse of data
standards within a business domain. Projects can reuse message
formats and can, therefore, interoperate with other services and
consumers within that business domain.

Business domain-independent interoperability data formats use
standards from multiple business domains

Andrea Morichetta, Phd (Computer Science Division)Business Process Digitalization and Cloud Computing October 11, 2018 4 / 48

Component of information modeling

Information model defines the data and domain concepts that must be
shared between services.

To understand a domain, you need to understand the things in the
domain (the objects) and their semantics (their meaning, rules, and
policies).

Andrea Morichetta, Phd (Computer Science Division)Business Process Digitalization and Cloud Computing October 11, 2018 5 / 48

Objects

An object is defined as an abstraction of a set of things in a domain such
that:

All the things in the set have the same characteristics

All the instances are subject to and conform to the same behavior,
rules, and policies.

Andrea Morichetta, Phd (Computer Science Division)Business Process Digitalization and Cloud Computing October 11, 2018 6 / 48

Objects and Attributes

Class incorporate things with common characteristics and common
behavior.
Attributes abstract the common characteristics of a class. Each attribute
is:

relevant for every instance of the class

expected to have at most one value per instance

An Association is a relation between things. Classes can have more than
one association with different meaning

Andrea Morichetta, Phd (Computer Science Division)Business Process Digitalization and Cloud Computing October 11, 2018 7 / 48

Association Multiplicities

Association Multiplicities specify for a given instance how many related
instances of the other class can exist given the fact that the two classes
are related. (zero, one, many)

Andrea Morichetta, Phd (Computer Science Division)Business Process Digitalization and Cloud Computing October 11, 2018 8 / 48

Types

Every data consumed or produced by a services are formalized as data
types.
Defining a data type it is possible to ensure the overall accuracy and
consistency of the information model.
Domain specific data types represent the data types that typically
compose the core concepts of a particular domain. There are three main
basic categories:

1 simple: types that represent a single value

2 composite: single value that can be meaningfully subdivided into
component

3 document: sophisticated data built of simple and composite types,
typically organized into hierarchy.

Andrea Morichetta, Phd (Computer Science Division)Business Process Digitalization and Cloud Computing October 11, 2018 9 / 48

Simple Types

Single atomic values that can be classified in:

Numeric: can be defined as unit of measure, quantities, values, times,
dates.
The definition of a type includes both the structure of the type and
the sets of operations that are permitted between values of that type
and other types.

Type A is 10..20 by 1

Type B is 0..max by 1

Type C is 32..212 by 0.01

Type D is -100..100 by 10

Andrea Morichetta, Phd (Computer Science Division)Business Process Digitalization and Cloud Computing October 11, 2018 10 / 48

Simple Types

Symbolic Types: represent labels and descriptive text.
Typical operations supported for symbolic types include combining
(concatenation), splitting (substring), and parsing (splitting
according to patterns or grammars).

NameString is any text

ZipCode is exactly 5 characters

PostalCode is between 3 and 12 characters

Password is at least 10 characters

ContainerCode is up to 6 characters

CommentString is up to 200 characters and can be null

["+" digit+] ["(" digit+ ")"] digit+ [space digit+]*

Andrea Morichetta, Phd (Computer Science Division)Business Process Digitalization and Cloud Computing October 11, 2018 11 / 48

Simple Types

Enumeration represent discrete value taken from some defined set.

ContainerCondition is (Clean, Dirty, Damaged)

OrderState is (Unpaid, Paid, Packed, Delivered)

Andrea Morichetta, Phd (Computer Science Division)Business Process Digitalization and Cloud Computing October 11, 2018 12 / 48

Composite Types

Composite type are single atomic value that can contain several
individual component.

Type Address is

Street: string

City: string

State: UNSubdivisionCode

PostalCode: PostalCode

Country: ISOCountryCode

End Type

Andrea Morichetta, Phd (Computer Science Division)Business Process Digitalization and Cloud Computing October 11, 2018 13 / 48

Identifiers

An identifier is a collection of attributes that uniquely identifies an
instance of an object (similar to the primary keys, defined in the
entity/relational modeling, ISBN in the books context).

A class is not required to have an identifier in the information model;
identifiers serve to refer an object.

Objects do not have natural identifiers, but it is still important to be
able to identify instances. An attribute like ChargeID is a contrived
identifier

Subpopulation Identifiers: some attributes are unique but only in the
context of an association to another class

Andrea Morichetta, Phd (Computer Science Division)Business Process Digitalization and Cloud Computing October 11, 2018 14 / 48

Specialization

Specialization permit to model common attributes, associations, and
behaviors in a superclass and then to model the different attributes,
associations, and behaviors in separate subclasses.

Andrea Morichetta, Phd (Computer Science Division)Business Process Digitalization and Cloud Computing October 11, 2018 15 / 48

Derived Attributes

The values of derived attributes are originated from the values of
other attributes in the model

The semantic information model contains the information, including
derived attributes, but not the rules or formulas that calculate them.

Andrea Morichetta, Phd (Computer Science Division)Business Process Digitalization and Cloud Computing October 11, 2018 16 / 48

Defining documents

Documents are typically containers of information, specific for a given
service
Documents enclose together multiple domain objects to provide
input/output for a given service operation.
To define a document, is important to draw the structure of the
document on top of the information model.

Andrea Morichetta, Phd (Computer Science Division)Business Process Digitalization and Cloud Computing October 11, 2018 17 / 48

Documents

Order

OrderNumber 2217843

Date 12/15/2007

ProductTotal $ 684.85

SalesTax $ 56.50

OrderTotal $ 741.35

Selection

UPC 0785357834163

UnitPrice $45.99

Quantity 2

Selection

UPC 9780201748048

UnitPrice $44.99

Quantity 5

Customer

Name Samuel L. Clemens

BillingAddress 1234 Tom Sawyer ...

CreditCardAccount

AccountNumber 9823-2132-7983

ExpirationDate 2/2004

CardValidationNumber 999

Andrea Morichetta, Phd (Computer Science Division)Business Process Digitalization and Cloud Computing October 11, 2018 18 / 48

XML

In the majority of SOA implementations, the objects and documents that
are exchanged in XML, that is the standard de facto for data messaging
in service implementations.

Is a standard syntax for metadata and a standard structure for
documents.

It is independent of programming languages and operating
environment

Programming language provides good support for
marshaling/unmarshaling XML payloads.

It is, extensible, and its extensibility makes it easier to support
changes

it is an open standard, accepted by industry and the major vendors

Andrea Morichetta, Phd (Computer Science Division)Business Process Digitalization and Cloud Computing October 11, 2018 19 / 48

XML

<Order>

<OrderNumber>2217843</OrderNumber>

<Date>12/15/2007</Date>

<ProductTotal>684.85</ProductTotal>

<SalesTax>56.50</SalesTax>

<OrderTotal>741.35</OrderTotal>

<Selection>

<UPC>0785357834163</UPC>

<UnitPrice>45.99</UnitPrice>

<Quantity>2</Quantity>

</Selection>

<Selection>

<UPC>9780201748048</UPC>

<UnitPrice>44.99</UnitPrice>

<Quantity>5</Quantity>

</Selection>

<Customer>

<Name>

<FirstName>Samuel</FirstName>

<MiddleInitial>L</MiddleInitial>

<LastName>Clemens</LastName>

</Name>

<BillingAddress>

<Street>1234 Tom Sawyer Drive</Street>

<City>Hannibal</City>

<State>MO</State>

<Zip>63401</Zip>

</BillingAddress>

<CreditCardAccount>

<AccountNumber>9823-2132-7983</AccountNumber>

<ExpirationDate>2/2004</ExpirationDate>

<CardValidationNumber>999</CardValidationNumber>

</CreditCardAccount>

</Customer>

</Order>

Andrea Morichetta, Phd (Computer Science Division)Business Process Digitalization and Cloud Computing October 11, 2018 20 / 48

XML Schema

XML schema is a definition language that enables to constrain XML
documents to a specific vocabulary and hierarchical structure.

XML documents can be validated against a schema, and this
validation process can catch many structural and semantic errors in
the document.

The purpose of an XML Schema is to define the legal building blocks of
an XML document:

the elements and attributes that can appear in a document

the number of (and order of) child elements

data types for elements and attributes

default and fixed values for elements and attributes

Andrea Morichetta, Phd (Computer Science Division)Business Process Digitalization and Cloud Computing October 11, 2018 21 / 48

XML Schema example

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="Order">

<xs:complexType>

<xs:sequence>

<xs:element name="OrderNumber" type="xs:int"/>

<xs:element name="Date" type="xs:date"/>

<xs:element name="ProductTotal" type="xs:decimal"/>

<xs:element name="SalesTax" type="xs:decimal"/>

<xs:element name="OrderTotal" type="xs:decimal"/>

<xs:element name="Selection" maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:element name="UPC" type="xs:long"/>

<xs:element name="UnitPrice" type="xs:decimal"/>

<xs:element name="Quantity" type="xs:int"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="Customer">

<xs:complexType>

<xs:sequence>

<xs:element name="Name">

<xs:complexType>

<xs:sequence>

<xs:element name="FirstName" type="xs:string"/>

<xs:element name="MiddleInitial" type="xs:string"/>

<xs:element name="LastName" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="BillingAddress">

<xs:complexType>

<xs:sequence>

<xs:element name="Street" type="xs:string"/>

<xs:element name="City" type="xs:string"/>

<xs:element name="State" type="xs:string"/>

<xs:element name="Zip" type="xs:int"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="CreditCardAccount">

<xs:complexType>

<xs:sequence>

<xs:element name="AccountNumber"

type="xs:string"/>

<xs:element name="ExpirationDate"

type="xs:gYearMonth"/>

<xs:element name="CardValidationNumber"

type="xs:short"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

Andrea Morichetta, Phd (Computer Science Division)Business Process Digitalization and Cloud Computing October 11, 2018 22 / 48

The XSD Document

Since the XSD is written in XML, it can get confusing which we are
talking about

The file extension is .xsd

The root element is <schema>

The XSD starts like this:

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> targetNamespace="http://www.w3schools.com"

xmlns="http://www.w3schools.com"

elementFormDefault="qualified">

Andrea Morichetta, Phd (Computer Science Division)Business Process Digitalization and Cloud Computing October 11, 2018 23 / 48

The XSD details

xmlns:xs=”http://www.w3.org/2001/XMLSchema”

indicates that the elements and data types used in the schema come
from the www.w3.org... namespace.
The namespace should be prefixed with xs:

xmlns=”http://www.w3schools.com”

indicates that the default namespace

elementFormDefault=”qualified”

indicates that any elements used by the XML instance document which
were declared in this schema must be namespace qualified.

Andrea Morichetta, Phd (Computer Science Division)Business Process Digitalization and Cloud Computing October 11, 2018 24 / 48

Referencing a schema

To refer to an XML Schema in an XML document, the reference goes in
the root element:

***.xml

<?xml version="1.0"?>

<rootElement

<!--The XML Schema Instance reference is required-->

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

<!-- XML Schema path-->

xsi:noNamespaceSchemaLocation="url.xsd">

...

</rootElement>

Andrea Morichetta, Phd (Computer Science Division)Business Process Digitalization and Cloud Computing October 11, 2018 25 / 48

Simple and Complex elements

A simple element is one that contains text and nothing else
I A simple element cannot have attributes
I A simple element cannot contain other elements
I A simple element cannot be empty
I However, the text can be of many different types, and may have

various restrictions applied to it

If an element isn’t simple, it’s complex
I A complex element may have attributes
I A complex element may be empty, or it may contain text, other

elements, or both text and other elements

Andrea Morichetta, Phd (Computer Science Division)Business Process Digitalization and Cloud Computing October 11, 2018 26 / 48

Defining Simple element

A simple element is defined as

<xs:element name="name" type="type" />

Where:
I name is the name of the element
I the most common values for type are:

xs:boolean
xs:date
xs:decimal

xs:integer
xs:string
xs:time

Other attributes a simple element may have:
I default=”default value” if no other value is specified
I fixed=”value” no other value may be specified

Andrea Morichetta, Phd (Computer Science Division)Business Process Digitalization and Cloud Computing October 11, 2018 27 / 48

Restrictions on contents

Restrictions are used to define acceptable values for XML elements or
attributes.

The general form for putting a restriction on a text value is:

<xs:element name="name">

<xs:restriction base="type">

... the restrictions ...

</xs:restriction>

</xs:element>

For example:

<xs:element name="age">

<xs:restriction base="xs:integer">

<xs:minInclusive value="0">

<xs:maxInclusive value="140">

</xs:restriction>

</xs:element>

Andrea Morichetta, Phd (Computer Science Division)Business Process Digitalization and Cloud Computing October 11, 2018 28 / 48

Restrictions on numbers

minInclusive – number must be ≥ the given value

minExclusive – number must be > the given value

maxInclusive – number must be ≤ the given value

maxExclusive – number must be < the given value

totalDigits – number must have exactly value digits

fractionDigits – number must have no more than value digits after
the decimal point

Andrea Morichetta, Phd (Computer Science Division)Business Process Digitalization and Cloud Computing October 11, 2018 29 / 48

Restrictions on strings

length – the string must contain exactly value characters

minLength – the string must contain at least value characters

maxLength – the string must contain no more than value characters

pattern – the value is a regular expression that the string must match

<xs:pattern value="[a-zA-Z][a-zA-Z][a-zA-Z]"/>

whiteSpace – not really a restriction–tells what to do with
whitespace

I value=”preserve” Keep all whitespace
I value=”replace” Change all whitespace characters to spaces
I value=”collapse” Remove leading and trailing whitespace, and replace

all sequences of whitespace with a single space

Andrea Morichetta, Phd (Computer Science Division)Business Process Digitalization and Cloud Computing October 11, 2018 30 / 48

Enumeration

An enumeration restricts the value to be one of a fixed set of values

Example:

<xs:element name="season">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="Spring"/>

<xs:enumeration value="Summer"/>

<xs:enumeration value="Autumn"/>

<xs:enumeration value="Winter"/>

</xs:restriction>

</xs:simpleType>

</xs:element>

Andrea Morichetta, Phd (Computer Science Division)Business Process Digitalization and Cloud Computing October 11, 2018 31 / 48

Complex Elements

A complex element is an XML element that contains other elements
and/or attributes.
There are four kinds of complex elements:

empty elements

elements that contain only other elements

elements that contain only text

elements that contain both other elements and text

Andrea Morichetta, Phd (Computer Science Division)Business Process Digitalization and Cloud Computing October 11, 2018 32 / 48

Defining an attribute

If an element has attributes, it is considered to be of a complex type

Attributes themselves are always declared as simple types

An attribute is defined as:

<xs:attribute name="name" type="type" />

where:
name and type are the same as for xs:element

Other attributes a simple element may have:
I default=”default value” if no other value is specified
I fixed=”value” no other value may be specified
I use=”optional” the attribute is not required (default)
I use=”required” the attribute is mandatory

<xs:attribute name="lang" type="xs:string"

default="EN" use="required"/>

Andrea Morichetta, Phd (Computer Science Division)Business Process Digitalization and Cloud Computing October 11, 2018 33 / 48

Complex Element definition 1

Schema

<xs:element name="employee">

<xs:complexType>

<xs:sequence>

<xs:element name="firstname" type="xs:string"/>

<xs:element name="lastname" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

Definition

<employee>

<firstname>John</firstname>

<lastname>Smith</lastname>

</employee>

Andrea Morichetta, Phd (Computer Science Division)Business Process Digitalization and Cloud Computing October 11, 2018 34 / 48

Complex Element definition 2

Schema

<xs:element name="employee" type="personinfo"/>

<xs:element name="student" type="personinfo"/>

<xs:element name="member" type="personinfo"/>

<xs:complexType name="personinfo">

<xs:sequence>

<xs:element name="firstname" type="xs:string"/>

<xs:element name="lastname" type="xs:string"/>

</xs:sequence>

</xs:complexType>

ComplexType element can have name, and other elements can refers to
the name of this complexType (using this method, several elements can
refer to the same complex type):

Andrea Morichetta, Phd (Computer Science Division)Business Process Digitalization and Cloud Computing October 11, 2018 35 / 48

Sequence Indicator

<xs:element name="person">

<xs:complexType>

<xs:sequence>

<xs:element name="firstname" type="xs:string"/>

<xs:element name="lastname" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

The <xs:sequence> tag means that the elements defined (”firstname”
and ”lastname”) must appear in that order inside an element.

Andrea Morichetta, Phd (Computer Science Division)Business Process Digitalization and Cloud Computing October 11, 2018 36 / 48

All indicator

<xs:element name="person">

<xs:complexType>

<xs:all>

<xs:element name="firstName" type="xs:string" />

<xs:element name="lastName" type="xs:string" />

</xs:all>

</xs:complexType>

</xs:element>

<xs:all> allows elements to appear in any order

Despite the name, the members of an xs:all group can occur once or
not at all

You can use minOccurs=”0” to specify that an element is optional
(default value is 1)

Andrea Morichetta, Phd (Computer Science Division)Business Process Digitalization and Cloud Computing October 11, 2018 37 / 48

Choice Indicator

The <choice> indicator specifies that either one child element or another
can occur

<xs:element name="person">

<xs:complexType>

<xs:choice>

<xs:element name="employee" type="employee"/>

<xs:element name="member" type="member"/>

</xs:choice>

</xs:complexType>

</xs:element>

Andrea Morichetta, Phd (Computer Science Division)Business Process Digitalization and Cloud Computing October 11, 2018 38 / 48

minOccurs/maxOccurs Indicator

The minOccurs indicator specifies the minimum number of times an
element can occur

The maxOccurs indicator specifies the maximum number of times an
element can occur:

<xs:element name="person">

<xs:complexType>

<xs:sequence>

<xs:element name="full_name" type="xs:string"/>

<xs:element name="child_name" type="xs:string"

maxOccurs="10" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

</xs:element>

Andrea Morichetta, Phd (Computer Science Division)Business Process Digitalization and Cloud Computing October 11, 2018 39 / 48

Empty element

An empty complex element cannot have contents, only attributes

Schema

<xs:element name="product">

<xs:complexType>

<xs:attribute name="prodid" type="xs:int"/>

</xs:complexType>

</xs:element>

Definition

<product prodid="1345" />

Andrea Morichetta, Phd (Computer Science Division)Business Process Digitalization and Cloud Computing October 11, 2018 40 / 48

Mixed element

Mixed elements may contain both text and elements

We add mixed=”true” to the xs:complexType element

The text itself is not mentioned in the element, and may go anywhere
(it is basically ignored)

<xs:element name="letter">

<xs:complexType mixed="true">

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="orderid" type="xs:positiveInt"/>

<xs:element name="shipdate" type="xs:date"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<letter>

Dear Mr.<name>John Smith</name>.

Your order <orderid>1032</orderid>

will be shipped on <shipdate>2001-07-13</shipdate>.

</letter>

Andrea Morichetta, Phd (Computer Science Division)Business Process Digitalization and Cloud Computing October 11, 2018 41 / 48

Extensions

XML file can contains components from two different schemas

<persons xmlns="http://www.microsoft.com"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.microsoft.com family.xsd

http://www.w3schools.com children.xsd">

The any and anyAttribute elements are used to make EXTENSIBLE
documents! They allow documents to contain additional elements
that are not declared in the main XML schema.

<xs:any minOccurs="0"/>

or

<xs:anyAttribute/>

Andrea Morichetta, Phd (Computer Science Division)Business Process Digitalization and Cloud Computing October 11, 2018 42 / 48

XSD String

Recall that a simple element is defined as:

<xs:element name="name" type="type" />

Here are a few of the possible string types:
I xs:string – a string
I xs:normalizedString – a string that doesn’t contain tabs, newlines, or

carriage returns
I xs:token – a string that doesn’t contain any whitespace other than

single spaces

Allowable restrictions on strings: enumeration, length, maxLength,
minLength, pattern, whiteSpace

Andrea Morichetta, Phd (Computer Science Division)Business Process Digitalization and Cloud Computing October 11, 2018 43 / 48

XSD Date

xs:date – A date in the format CCYY-MM-DD, for example,
2002-11-05

xs:time – A date in the format hh:mm:ss (hours, minutes, seconds)

xs:dateTime – Format is CCYY-MM-DDThh:mm:ss The T is part
of the syntax

Allowable restrictions on dates and times: enumeration, minInclusive,
minExclusive, maxInclusive, maxExclusive, pattern, whiteSpace

Andrea Morichetta, Phd (Computer Science Division)Business Process Digitalization and Cloud Computing October 11, 2018 44 / 48

XSD Numeric

Predefined numeric data types:

xs:decimal
xs:byte
xs:short
xs:int
xs:long

xs:positiveInteger
xs:negativeInteger
xs:nonPositiveInteger
xs:nonNegativeInteger

Allowable restrictions on numeric types: enumeration, minInclusive,
minExclusive, maxInclusive, maxExclusive, fractionDigits, totalDigits,
pattern, whiteSpace

Andrea Morichetta, Phd (Computer Science Division)Business Process Digitalization and Cloud Computing October 11, 2018 45 / 48

XSD Misc

Boolean Data Type

<xs:attribute name="disabled" type="xs:boolean"/>

Binary Data Types:
base64Binary (Base64-encoded binary data)
hexBinary (hexadecimal-encoded binary data)

<xs:element name="blobsrc" type="xs:hexBinary"/>

AnyURI Data Type

<xs:attribute name="src" type="xs:anyURI"/>

<pic src="http://www.google.com" />

Allowable restrictions on Miscellaneous Data Types:
enumeration (a Boolean data type cannot use this constraint) length,
maxLength, minLength (a Boolean data type cannot use this
constraints), pattern, whiteSpace

Andrea Morichetta, Phd (Computer Science Division)Business Process Digitalization and Cloud Computing October 11, 2018 46 / 48

XML Validator
XML Generator
XSD Generator

Andrea Morichetta, Phd (Computer Science Division)Business Process Digitalization and Cloud Computing October 11, 2018 47 / 48

https://www.freeformatter.com/xml-validator-xsd.html
http://xsd2xml.com/
http://xml.mherman.org/

Questions?

Andrea Morichetta, Phd (Computer Science Division)Business Process Digitalization and Cloud Computing October 11, 2018 48 / 48

	The importance of semantics in SOA
	Documents based on the information model
	XSD Data type

