

Business Process compliance

Business Process Management and Flexibility Barbara Re, Phd

Table of Content

- Motivation
- Modeling Compliance Rules
- ▶ BPC along the Process Life Cycle
- References

Motivation

Medical Guidline § 3: After the Motivations examination, the patient has to be information about the risks of **Outpatient Department** Admit Patient the planned surgery Inform about Physician Anesthesia Discharge Letter Perform Exami Make Checkup Patient Decision Inform about **Process** Risks correct? Physician ✓ Write Check Discharge Patient Discharge Letter Patient Record Surgical Ward Send Patient § 3 is Provide Admit Prepare to Surgical Suite Postsurgical Care Patient Patient violated! \sim Create Surgery Report Surgical Suite Transport Perform Patient to Ward Surgery Make Lab Rest

Motivation – Layers of Correctness

Compliance (semantic correctness)

"Business Process
Compliance means
the execution of
business processes
in compliance with
imposed rules."

Soundness (behavioral correctness)

Syntax Conformance (structural correctness)

Compliance Rule

(Business Process) Compliance Rule: "A Compliance Rule is a semantic condition on the execution of business processes."

Let $\Sigma = \{a_1, a_2, a_3, ...\}$ be the set of activities/tasks and Σ^* the set of all execution traces (i.e. sequences) of activities of A, then a compliance rule c can be considered as a function:

c: $\Sigma * \mapsto \mathbb{B}$

Examples for Medical Compliance Rules

§ 1	Before a surgery may be performed, first the patient has to be prepared for it and then be sent to the surgical suite.
§ 2	After examining the patient a decision has to be made. However, this must not be done before the examination.
§ 3	After the examination, the patient has to be informed about the risks of the planned surgery.
§ 4	Before scheduling the surgery the patient has to be informed about anesthesia.
§ 5	If a surgery has not been scheduled it must not be perfomed.
§ 6	After a patient is discharged a discharge letter has to be written.
§ 7	After performing the surgery and before writing the discharge letter, a surgery report must be created and a lab test made.

Plain Text Logical Graphical Formalisms Models

Plain Text

Logical
Formalisms

Graphical
Models

§ 1	Before a surgery may be performed, first the patient has to be prepared for it and then be sent to the surgical suite.
§ 2	After examining the patient a decision has to be made. However, this must not be done before the examination.
§ 3	After the examination, the patient has to be informed about the risks of the planned surgery.
§ 4	Before scheduling the surgery the patient has to be informed about anesthesia.
§ 5	If a surgery has not been scheduled it must not be performed.
§ 6	After a patient is discharged a discharge letter has to be written.
§ 7	After performing the surgery and before writing the discharge letter, a surgery report must be created and a lab test made.

Usefulness?

Plain Text

Logical

Formalisms

Graphical

Models

Linear Temporal Logic – LTL

LTL enriches propositional logic with the temporal operators:

X (next)

F (finally)

G (global)

U (until)

W (weak until)

Le $\Sigma = \{a_1, a_2, a_3, ...\}$ be a of propositions/activities; the syntax of LTL is:

Plain Text

Logical Formalisms

Graphical Models

Semantic of LTL

$$\Sigma = \{a_1, a_2, a_3, \ldots\} - \text{a set of activities}$$

$$\sigma = \langle \sigma_1, \sigma_2, \sigma_3, \ldots \rangle \in \Sigma^* - \text{a trace of activities}$$

$$\phi, \psi - \text{LTL -Formulas over P}$$

$$\langle a, \ldots \rangle \models a$$

$$\langle \sigma_1, \sigma_2, \sigma_3, \ldots \rangle \models \mathbf{X} \, \phi \, \longleftrightarrow \langle \sigma_2, \sigma_3, \ldots \rangle \models \phi$$

$$\sigma \models \mathbf{F} \, \phi \, \longleftrightarrow \sigma \models \phi \, \forall \, \mathbf{X} \, \mathbf{F} \, \phi$$

$$\sigma \models \mathbf{G} \, \phi \, \longleftrightarrow \sigma \models \phi \, \forall \, \mathbf{X} \, \mathbf{G} \, \phi$$

$$\sigma \models \psi \, \mathbf{U} \, \phi \, \longleftrightarrow \sigma \models \phi \, \forall \, (\psi \, \wedge \, \mathbf{X} \, (\psi \, \mathbf{U} \, \phi) \, \wedge \, \mathbf{F} \, \phi)$$

$$\sigma \models \psi \, \mathbf{W} \, \phi \, \longleftrightarrow \sigma \models \phi \, \forall \, (\psi \, \wedge \, \mathbf{X} \, (\psi \, \mathbf{W} \, \phi))$$

	Plain Text Logical Formalisms Graphical Models
§ 1	<pre>(¬Perform_surgery W Prepare_patient) Λ (¬Perform_surgery W Send_patient_to_surgical_suite)</pre>
§ 2	(G (Examine_patient ⇒ F Make_decision)) Λ (¬Make_decision U Examine_patient)
§ 3	G (Examine_patient ⇒ F Inform_about_risks)
§ 4	¬Schedule_Surgery W Inform_about_anesthesia
§ 5	(G ¬Schedule_surgery) ⇒ (G ¬Perform_surgery)
§ 6	G (Discharge_Patient ⇒ F Write_discharge_letter)
§	G (¬Perform_surgery ⇒ (F Write_discharge_letter ⇒((¬ Write_discharge_letter U Create_surgery_report)

Pros and cons?

Plain Text Logical Graphical Models

Alternative Logical Formalisms

- Predicate Logic
- Deontic Logic, Abduktive Logic
- μ-Calculus, π-Calculus, Event-Calculus
- CTL, PLTL, CTL*
- Grammars, FCL
- •
- → But the problems remain the same

Plain Text

Logical
Formalisms

Graphical
Models

Compliance Rule Graphs - CRG

CRGs consist of an antecedent and a consequence pattern.

The basic building bricks are the following elements:

Antecedent occurrence

Consequence occurrence

Antecedent absence

Consequence absence

sequential order (⇒ cycle-free)

Plain Text Logical Graphical Formalisms Models

Example 1/4

Example 2/4

If there is no "A" before any occurrence of "B", than "C" is not allowed after that "B".

Plain Text

Logical
Formalisms

Graphical
Models

Example 2/4

If there is no "A" before any occurrence of "B", than "C" is not allowed after that "B".

Plain Text

Logical
Formalisms

Graphical
Models

Example 3/4

If an occurrence of "A" is followed by a "D" without a "B" lying inbetween, then an "C" is required to occur after that "A" and before that "D".

If a "B" occurs but no "A", then a "D" has to occur, without an occurrence of "C" in front of that "D".

Plain Text

Logical
Formalisms

Graphical
Models

M. Reichert, B.Weber: Enabling Flexibility in Process-Aware Information Systems, @ Springer-Verlag Berlin Heidelberg 2012

Plain Text Logical Graphical Formalisms Models

Alternative Graphical Models

- Automata
- BPMN-Q
- G-CTL

Ensure Business Process Compliance

- ▶ A Prioir Compliance Checking
- ▶ Run Time Compliance Checking
- Change Time Compliance Checking
- A Posteriori Compliance Checking

A Priori Compliance

all traces comply

M complies with § 5

at least one trace complies

M partially complies with § 3

all traces violate

M violates § 1

at least one trace violates

M partially violates § 4

Run Time Compliance

Compliance Checking

Compliance Checking - Model Checking

References

- A.Awad, G. Decker, and M.Weske (2008): Efficient Compliance Checking Using BPMN- Q and Temporal Logic. In: Proceedings of the 6th International Conference on Business Process Management (BPM'08), Milan, Italy.
- Ly, L.T. and Rinderle-Ma, S. and Dadam P. (2008): Integration and verification of semantic constraints in adaptive process management systems. Data & Knowledge Engineering, 64(1):3-23, Elsevier.
- Nuplesch, D. and Reichert, M. (2011): Ensuring Business Process Compliance Along the Process Life Cycle, Ulmer Informatik-Berichte (2011-06).
- Huth, M. and Ryan, M. (2004): Logic in Computer Science: Modelling and reasoning about systems. Cambridge University Press.
- Van der Aalst, W.M.P. and de Beer, H. and van Dongen, B. (2005): Process mining and verification of properties: An approach based on temporal logic. In: Proceedings of the 13th Conference on Cooperative Information Systems (CoopIS'05), Agia Napa, Cyprus.