

Project

Barbara Re, Phd

1

Steps …
} Motivation
} Objective
} Requirements Analysis
} Model and Abstraction
} Implementation
} Test and Validation

2

3P
} Effective SW project management focuses on 3 P’s:

} People
• must be organized into effective teams
• motivated to do high-quality work
• coordinated to achieve effective communication and results

} Problem
• must be communicated from customer to developer
• decomposed into its parts
• positioned for work by SW team

} Process
} must be adapted to the people and problem

4

The waterfall model

5

The spiral model

Choosing and Appling
} From the waterfall model:

} Incorporate the notion of stages.
} From the phased-release model:

} Incorporate the notion of doing some initial high-level analysis, and
then dividing the project into releases.

} From the spiral model:
} Incorporate prototyping and risk analysis.

} From the evolutionary model:
} Incorporate the notion of varying amounts of time and work, with

overlapping releases.
} From concurrent engineering:

} Incorporate the notion of breaking the system down into
components and developing them in parallel.

6

7

Project Scheduling and Tracking
} Scheduling is the process of deciding:

} In what sequence a set of activities will be performed.
} When they should start and be completed.

} Tracking is the process of determining how well you are
sticking to the cost estimate and schedule.

8

PERT charts
} A PERT chart shows the sequence in which tasks must be

completed.
} In each node of a PERT chart, you typically show the elapsed

time and effort estimates.
} The critical path indicates the minimum time in which it is

possible to complete the project.

9

Example of a PERT chart

10

Gantt charts
} A Gantt chart is used to graphically present the start and

end dates of each software engineering task
} One axis shows time.
} The other axis shows the activities that will be performed.
} The black bars are the top-level tasks.
} The white bars are subtasks
} The diamonds are milestones:

} Important deadline dates, at which specific events may occur

11

Example of a Gantt chart

Focus Group Vs. Individual Interview
} A focus group is a small group

discussion guided by a trained
leader, used to learn more about
opinions on a designated topic,
and then guide future action.

} Individual Interview

12

How to Conduct a Focus Group:

Before the meeting:
} Decide on the meeting particulars.
} Prepare your questions.
} Recruit your members.
} Review the arrangements.

How to Conduct a Focus Group:

When the group meets:
} Thank people for coming.
} Review the group's purpose and goals.
} Explain how the meeting will proceed and how

members can contribute.
} Set the tone by asking an opening question and

making sure all opinions on that question are heard.

How to Conduct a Focus Group:

When the group meets:
} Ask further questions in the same general

manner.
} When all your questions have been asked, ask if

anyone has any other comments to make.
} Tell the group about any next steps that will

occur and what they can expect to happen now.
} Thank the group for coming!

How to Conduct a Focus Group:

After the meeting meets:
} Make a transcript or written summary of the meeting.
} Examine the data for patterns, themes, new questions,

and conclusions.
} Share the results with the group.
} Use the results.

Requirements Analysis [1]
} What is it?

} The process by which customer needs are understood and
documented.

} Expresses “what” is to be built and NOT “how” it is to be
built.

} Example 1:
} The system shall allow users to withdraw cash. [What?]

} Example 2:
} A sale item’s name and other attributes will be stored in a hash table

and updated each time any attribute changes. [How?]

9/3/01CS 406 Fall 2001 Requirements
Analysis

17

Requirements Engineering Processes

Agreed
requirements

System
specification

System
models

Requirements
engineering process

Stakeholder
needs

Organisational
standards

Domain
information

Regulations

Existing
systems

information

Requirements Analysis [2]
} C- and D-Requirements

} C-: Customer wants and needs; expressed in language
understood by the customer.

} D-: For the developers; may be more formal.

19

Requirements Analysis [3]
} Roadmap:

} Identify the customer.
} Interview customer representatives.
} Write C-requirements, review with customer, and update

when necessary.
} Write D-requirements; check to make sure that there is no

inconsistency between the C- and the D-requirements.

20

Requirements Analysis [4]
} C-requirements:

} Use cases expressed individually and with a use case diagram. A use case
specifies a collection of scenarios.
} Sample use case: Process sale.

} Data flow diagram:
} Explains the flow of data items across various functions. Useful for explaining

system functions. [Example on the next slide.]

} State transition diagram:
} Explains the change of system state in response to one or more operations.

[Example two slides later.]

} User interface: Generally not a part of requirements analysis though may be
included. [Read section 3.5 from Braude.]

21

Requirements Analysis [5]

1. Organize the D-requirements.
(a) Functional requirements

The blood pressure monitor will measure the blood pressure and display it on the
in-built screen

(b) Non-functional requirements
(i) Performance
The blood pressure monitor will complete a reading within 10 seconds.
(i) Reliability
The blood pressure monitor must have a failure probability of less than 0.01

during the first 500 readings.

22

Requirements Analysis [6]
(c) Interface requirements: interaction with the users and other

applications
The blood pressure monitor will have a display screen and push buttons. The

display screen will….
(d) Constraints: timing, accuracy
The blood pressure monitor will take readings with an error less than 2%.

23

Modelling

Model and Abstraction from
semiformal to formal

24

Model
} A model is an abstraction of a

system
} A system that no longer exists
} An existing system
} A future system to be built.

We use Models to describe Software
Systems

} Object model:What is the structure of the
system?

} Functional model:What are the functions of
the system?

} Dynamic model: How does the system react
to external events?

} System Model: Object model + functional
model + dynamic model

UML first pass: Use case diagrams

Use case diagrams represent the functionality of the system
from user’s point of view

Actor.

Use Case

System boundary

Classifier

UML first pass: Class diagrams

1
2

push()
release()

1

1

blinkIdx
blinkSeconds()
blinkMinutes()
blinkHours()
stopBlinking()
referesh()

LCDDisplay Battery
Load

1

2

1

Time
Now

1

Watch

Operations

state
PushButton

Attribute

Class diagrams represent the structure of the system

Class
Association

Multiplicity

Message
UML first pass: Sequence diagram

:Time:Watch:WatchUser

Object

Activation

Sequence diagrams represent the behavior of a system
as messages (“interactions”) between different objects

Actor

pressButton1()

Lifeline

blinkHours()

pressButton2()
incrementMinutes()

:LCDDisplay

pressButton1and2()
commitNewTime()

stopBlinking()

refresh()

pressButton1()
blinkMinutes()

What are Formal Methods?

§ Formal methods can
§ Be a foundation for designing safety critical systems
§ Be a foundation for describing complex systems
§ Provide support for program development

§ Techniques and tools based on mathematics and formal logic
§ Can assume various forms and levels of rigor

§ Informal
§ Low
§ Medium
§ High

Why Consider Formal Methods?

§ The development of a formal specification provides insights and an
understanding of the software requirements and software design
§ Clarify customers’ requirements
§ Reveal and remove ambiguity, inconsistency and incompleteness
§ Facilitate communication of requirement or design
§ Provides a basis for an elegant software design
§ Traceability

§ System-level requirements should be traceable to subsystems
or components

Formal Methods Concepts
Formal Specification Methods

Formal

specification

Formal

Proofs

Model
checking

Abstraction

Formal Specification
§ The translation of non-mathematical description (diagrams, table,

natural language) into a formal specification language
§ It represents a concise description of high-level behavior and

properties of a system
§ Well-defined language semantics support formal deduction about the

specification

Type of Formal Specifications
§ Model Oriented: Construct a model of the system behavior using

mathematical objects like sets, sequences etc.
§ Statecharts, SCR, VDM, Z
§ Petri Nets, CCS, CSP, Automata theoretic models

§ Property Oriented: Use a set of necessary properties to describe
system behavior, such as axioms, rules etc.
§ Algebraic semantics
§ Temporal logic models.

Formal Proofs
§ Proof is an essential part of specification
§ Proofs are constructed as a series of small steps, each of which is

justified using a small set of rules
§ Proofs can be done manually, but usually constructed with some

automated assistance

Model Checking
§ A technique relies on building a finite model of a system and

checking that a desired property holds in that model
§ Two general approaches

§ temporal model checking
§ automaton model checking

§ Use model checkers
§ SMV

Abstraction
§ Representation of the program using a smaller model
§ Allows you to focus on the most important central properties and

characteristics
§ Getting the right level of abstraction is very important in a

specification.

Validation
} In the early validation we decided to perform an assessment aiming at examining

the overall status of the platform

} Used Methodology
} The quantitative validation
} Focus Group

} The platform validation involved people with different expertise considering
different scenarios

} Validation Scenarios

38

