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Steps …
} Motivation
} Objective
} Requirements Analysis
} Model and Abstraction
} Implementation
} Test and Validation
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3P
} Effective SW project management focuses on 3 P’s:

} People
• must be organized into effective teams
• motivated to do high-quality work
• coordinated to achieve effective communication and results

} Problem
• must be communicated from customer to developer
• decomposed into its parts
• positioned for work by SW team

} Process
} must be adapted to the people and problem
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The waterfall model
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The spiral model



 

Choosing  and Appling
} From the waterfall model:

} Incorporate the notion of stages.
} From the phased-release model:

} Incorporate the notion of doing some initial high-level analysis, and
then dividing the project into releases.

} From the spiral model:
} Incorporate prototyping and risk analysis.

} From the evolutionary model:
} Incorporate the notion of varying amounts of time and work, with 

overlapping releases. 
} From concurrent engineering:

} Incorporate the notion of breaking the system down into 
components and developing them in parallel.
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Project Scheduling and Tracking
} Scheduling is the process of deciding:

} In what sequence a set of activities will be performed.
} When they should start and be completed. 

} Tracking is the process of determining how well you are 
sticking to the cost estimate and schedule.
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PERT charts
} A PERT chart shows the sequence in which tasks must be 

completed.
} In each node of a PERT chart, you typically show the elapsed 

time and effort estimates.
} The critical path indicates the minimum time in which it is 

possible to complete the project.
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Example of a PERT chart
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Gantt charts
} A Gantt chart is used to graphically present the start and 

end dates of each software engineering task
} One axis shows time.
} The other axis shows the activities that will be performed.
} The black bars are the top-level tasks. 
} The white bars are subtasks
} The diamonds are milestones:

} Important deadline dates, at which specific events may occur
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Example of a Gantt chart



 

Focus Group Vs. Individual Interview
} A focus group is a small group 

discussion guided by a trained 
leader, used to learn more about 
opinions on a designated topic, 
and then guide future action.

} Individual Interview
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How to Conduct a Focus Group: 

Before the meeting:
} Decide on the meeting particulars.
} Prepare your questions.
} Recruit your members.
} Review the arrangements.



 

How to Conduct a Focus Group: 

When the group meets:
} Thank people for coming.
} Review the group's purpose and goals.
} Explain how the meeting will proceed and how 

members can contribute.
} Set the tone by asking an opening question and 

making sure all opinions on that question are heard.



 

How to Conduct a Focus Group: 

When the group meets:
} Ask further questions in the same general 

manner.
} When all your questions have been asked, ask if 

anyone has any other comments to make.
} Tell the group about any next steps that will 

occur and what they can expect to happen now.
} Thank the group for coming!



 

How to Conduct a Focus Group: 

After the meeting meets:
} Make a transcript or written summary of the meeting.
} Examine the data for patterns, themes, new questions, 

and conclusions.
} Share the results with the group.
} Use the results.



 

Requirements Analysis [1]
} What is it?

} The process by which customer needs are understood and 
documented.

} Expresses “what” is to be built and NOT “how” it is to be 
built.

} Example 1:
} The system shall allow users to withdraw cash. [What?]

} Example 2:
} A sale item’s name and other attributes will be stored in a  hash table 

and updated each time any attribute changes. [How?]

9/3/01CS 406 Fall 2001 Requirements 
Analysis
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Requirements Engineering Processes

Agreed
requirements

System
specification

System
models

Requirements
engineering process

Stakeholder
needs

Organisational
standards

Domain
information

Regulations

Existing
systems

information



 

Requirements Analysis [2]
} C- and D-Requirements

} C-: Customer wants and needs; expressed in language 
understood by the customer.

} D-: For the developers; may be more formal.
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Requirements Analysis [3]
} Roadmap:

} Identify the customer.
} Interview customer representatives.
} Write C-requirements, review with customer, and update 

when necessary.
} Write D-requirements; check to make sure that there is no 

inconsistency between the C- and the D-requirements.
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Requirements Analysis [4]
} C-requirements:

} Use cases expressed individually and with a use case diagram. A use case 
specifies a collection of scenarios.
} Sample use case: Process sale.

} Data flow diagram:
} Explains the flow of data items across various functions. Useful for explaining 

system functions. [Example on the next slide.]

} State transition diagram:
} Explains the change of system state in response to one or more operations. 

[Example two slides later.]

} User interface: Generally not a part of requirements analysis though may be 
included. [Read section 3.5 from Braude.]

21



 

Requirements Analysis [5]

1. Organize the D-requirements.
(a) Functional requirements

The blood pressure monitor will measure the blood pressure and display it on the 
in-built screen

(b) Non-functional requirements
(i) Performance
The blood pressure monitor will complete a reading within 10 seconds.
(i) Reliability
The blood pressure monitor must have a failure probability of less than 0.01 

during the first 500 readings.
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Requirements Analysis [6]
(c) Interface requirements: interaction with the users and other 

applications
The blood pressure monitor will have a display screen and push buttons. The 

display screen will….
(d) Constraints: timing, accuracy
The blood pressure monitor will take readings with an error less than 2%.
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Modelling

Model and Abstraction from 
semiformal to formal
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Model
} A model is an abstraction of a 

system
} A system that no longer exists
} An existing system
} A future system to be built.



 

We use Models to describe Software 
Systems

} Object model:What is the structure of the 
system?

} Functional model:What are the functions of 
the system? 

} Dynamic model: How does the system react 
to external events?

} System Model: Object model + functional 
model + dynamic model



 

UML first pass: Use case diagrams

Use case diagrams represent the functionality of the system
from user’s point of view

Actor.

Use Case

System boundary

Classifier



 

UML first pass: Class diagrams
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Message
UML first pass: Sequence diagram

:Time:Watch:WatchUser

Object

Activation

Sequence diagrams represent the behavior of a system 
as messages (“interactions”) between different objects
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What are Formal Methods?

§ Formal methods can
§ Be a foundation for designing safety critical systems
§ Be a foundation for describing complex systems
§ Provide support for program development

§ Techniques and tools based on mathematics and formal logic
§ Can assume various forms and levels of rigor

§ Informal
§ Low
§ Medium
§ High



 

Why Consider Formal Methods?

§ The development of a formal specification provides insights and an 
understanding of the software requirements and software design
§ Clarify customers’ requirements
§ Reveal and remove ambiguity, inconsistency and incompleteness
§ Facilitate communication of requirement or design
§ Provides a basis for an elegant software design
§ Traceability 

§ System-level requirements should be traceable to subsystems 
or components



 

Formal Methods Concepts
Formal Specification Methods

Formal 

specification

Formal

Proofs

Model 
checking

Abstraction



 

Formal Specification
§ The translation of non-mathematical description (diagrams, table, 

natural language) into a formal specification language
§ It represents a concise description of high-level behavior and 

properties of a system
§ Well-defined language semantics support formal deduction about the 

specification



 

Type of Formal Specifications
§ Model Oriented: Construct a model of the system behavior using 

mathematical objects like sets, sequences etc.
§ Statecharts, SCR, VDM, Z
§ Petri Nets, CCS, CSP, Automata theoretic models

§ Property Oriented: Use a set of necessary properties to describe 
system behavior, such as axioms, rules etc.
§ Algebraic semantics
§ Temporal logic models.



 

Formal Proofs
§ Proof is an essential part of specification
§ Proofs are constructed as a series of small steps, each of which is 

justified using a small set of rules
§ Proofs can be done manually, but usually constructed with some 

automated assistance



 

Model Checking
§ A technique  relies on building a finite model of a system and 

checking that a desired property holds in that model 
§ Two general approaches 

§ temporal model checking 
§ automaton model  checking

§ Use model checkers
§ SMV



 

Abstraction
§ Representation of the program using a smaller model 
§ Allows you to focus on the most important central properties and 

characteristics
§ Getting the right level of abstraction is very important in a 

specification. 



 

Validation
} In the early validation we decided to perform an assessment aiming at examining 

the overall status of the platform 

} Used Methodology 
} The quantitative validation  
} Focus Group

} The platform validation involved people with different expertise considering 
different scenarios

} Validation Scenarios
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