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Control flow patterns

» Control flow patterns provide a way for expressing process
orchestrations

» Control flow patterns are independent of concrete process
languages, so that each pattern can be expressed in different
process languages

» Control flow patterns can also be used to compare the
expressiveness of process languages

» Basic control flow patterns include sequence, and split, and and
join, as well as exclusive or split and exclusive or join

v

These control flow patterns are supported by virtually any process
meta-model

v

Control flow patterns are defined at the process model level
and their execution semantics is applies at process instances
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Sequence pattern, with event diagram
process instance

Even ordering induced by sequence
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Sequence pattern as part of loop




And-split pattern
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And join pattern
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terminate(b)
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Or split pattern
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terminate(b)
I
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D
When
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The activity following the merge is started for every activation of every incoming branch
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Multi-merge example

Process Model

B

And join
Multi-merge synchronizes
Event Diagram spawns d1 thread 1
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Discriminator pattern
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First b terminates

When now c also terminates, the
discriminator is reset and ready for
the next thread
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Discriminator Example

Process Model

Discriminator spawns off d1 on termination

] of b1, while c1 is still running
Event Diagram
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Discriminator makes sure that d2
only enabled after c1 of first
iteration completes
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N-out-of-M join pattern
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When any 2 activity instances in {b,c,d} have
terminates, e can be enabled
(in the example b and c terminated)
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Example for multiple instances with a
priori design time knowledge

O~ » O

b2 -

c enabled immediately after the
last b has completed
(synchronization)
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Example for multiple instances without a
priori run time knowledge pattern

O~ » & H - O

c enabled immediately after the
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New b’s can be created while ~
other instances of b are running
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Multiple instance without a priori run time
knowledge pattern, including management task

c enabled immediately after the

I 1 last b has completed
b1 2P
| | 7 (synchronization)
I b2 ' /
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Termination of multiple instances
management task b marks
completion of multiple instances
activity

Management task b creates 7
activity instances b1, b2,
at run time
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Sequential execution without a priori
design time knowlede
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Any sequential ordering
of b,c,d is valid
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Other types of patterns

Resource

Data

)
)
» Exception Handling
» Presentation

)
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More on pattern
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Welcome to the Workflow Patterns home page

The Workflow Patterns initiative is a joint effort of Eindhoven University of Technology (led by Professor Wil van der Aalst) and Queensland University of
Technology (led by Professor Arthur ter Hofstede) which started in 1999. The aim of this initiative is to provide a conceptual basis for process technology. In
particular, the research provides a thorough examination of the various perspectives (control flow, data, resource, and exception handling) that need to be
supported by a workflow language or a business process modelling language. The results can be used for examining the suitability of a particular process
language or workflow system for a particular project, assessing relative strengths and weaknesses of various approaches to process specification, implementing
certain business requirements in a particular process-aware information system, and as a basis for language and tool development.

On this web site you will find detailed descriptions of patterns for the various perspectives relevant for process-aware information systems: control-flow, data,
resource, and exception handling. In addition you will find detailed evaluations of various process languages, (proposed) standards for web service
compositions, and workflow systems in terms of this patterns.

We encourage interactions with interested parties about this research and its applications. For example, vendors can provide self-assessments of evaluations of
their products (see the Vendors Corner). Also, we appreciate any feedback in relation to our evaluations (e.g. errors or inaccuracies).

2010-2011 © Workflow Patterns Initiative
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Questions?



