1

Universita di Camerino

1336

BP Patterns

Business Process Management and Flexibility
Barbara Re, Phd

Control flow patterns

» Control flow patterns provide a way for expressing process
orchestrations

» Control flow patterns are independent of concrete process
languages, so that each pattern can be expressed in different
process languages

» Control flow patterns can also be used to compare the
expressiveness of process languages

» Basic control flow patterns include sequence, and split, and and
join, as well as exclusive or split and exclusive or join

v

These control flow patterns are supported by virtually any process
meta-model

v

Control flow patterns are defined at the process model level
and their execution semantics is applies at process instances

State transition diagram for activity
instance

initialize enable begin terminate

| : Gosed \

running

-
| N /

M. Weske: Business Process Management
© Springer-Verlag Berlin Heidelberg 2012, 2007

Sequence pattern, with event diagram
process instance

Even ordering induced by sequence

(7
o—>0 >»® o—>0 >®
enable begin terminate enable begin terminate
l I I I
a b

M. Weske: Business Process Management
© Springer-Verlag Berlin Heidelberg 2012, 2007

1002 ‘210z BieqiepieH uieg Bejiep-lebuuds @
‘uswebeue|y $S8001d Ssauisng :8%Sep ‘N

H[

Sequence pattern as part of loop

And-split pattern

)

/
/

terminate(a)

enable(b)

~ = - Even ordering induced
N by and split
\ -
|
o—>0

enable(c)

M. Weske: Business Process Management,
© Springer-Verlag Berlin Heidelberg 2012, 2007

And join pattern

terminate(b)
AN

7

o—>¢

Even ordering induced
/, by and join

27 enable(d)

terminate(c)

M. Weske: Business Process Management,
© Springer-Verlag Berlin Heidelberg 2012, 2007

Xor split p

o w

attern

enable(b)
terminate(a) o—0
\ \ 4
N, /
o—¢ Option 1:
Enable b
Option 2:
*—>Q Enable c
/N
/
/ \‘
terminate(a) o—0
enable(c)

M. Weske: Business Process Management,
© Springer-Verlag Berlin Heidelberg 2012, 2007

terminate(b)
|
|

H’\
“_ enable(d)

Option 1: H

b terminates

Option 2:
c terminates ,._>‘
_ 7 enable(d)
7
o—>0

terminate(c)

M. Weske: Business Process Management
© Springer-Verlag Berlin Heidelberg 2012, 2007

Or split pattern

10

o

enable(b)
terminate(a) o—>0
\ \
N, 7
o—¢ Option 1:
Enable b
Option 2:
*—>Q Enable ¢
/
/ \\
! X
terminate(a) o—>0
enable(c)
enable(b)
|

o—@ Option 3:

p \\ Enable b and ¢

terminate(a) ‘Q—b’
enable(c)

M. Weske: Business Process Management,
© Springer-Verlag Berlin Heidelberg 2012, 2007

11

terminate(b)
|
|

o—>0.
N o enable(d)
A
Option 1: o—»0
b terminates

.~ enable(d)
Ve

o—>0

terminate(c) Option 2:

c terminates

terminate(b)
|
I Option 3:

o—>0. b and c terminate

N
N

A

,Q—>0

_ 7~ enable(d)
Ve

*—>0

terminate(c)

M. Weske: Business Process Management
© Springer-Verlag Berlin Heidelberg 2012, 2007

terminate(b)
I
I

o—>0.
B N _ enable(d1)
When H
b terminates
D
When
c terminates o—0
C N
_ 7 enable(d2)
/7
>0

terminate(c)
The activity following the merge is started for every activation of every incoming branch

12

M. Weske: Business Process Management
© Springer-Verlag Berlin Heidelberg 2012, 2007

Multi-merge example

Process Model

B

And join
Multi-merge synchronizes
Event Diagram spawns d1 thread 1
(thread 1) h
| = = I
! el \ ”
} Il | | | \
| b) a1 M T T T T T T ot
A
a | 1| | ——— _
I C 1 : d2 1 e2 — /_ Ig—zl
|]
: ' f2 "
Multi-merge :
spawns d2 And join
(thread 2) synchronizes
thread 2

13

M. Weske: Business Process Management,
© Springer-Verlag Berlin Heidelberg 2012, 2007

Discriminator pattern

14

terminate(b)
|
|

H.\
"\ _ enable(d)

‘e— o

First b terminates

When now c also terminates, the
discriminator is reset and ready for
the next thread

M. Weske: Business Process Management,
© Springer-Verlag Berlin Heidelberg 2012, 2007

Discriminator Example

Process Model

Discriminator spawns off d1 on termination

] of b1, while c1 is still running
Event Diagram

|
|
| I 1
| | | -
b1 d1 , ,

——
— ' c2 ' d2

c1

Discriminator makes sure that d2
only enabled after c1 of first
iteration completes

15

M. Weske: Business Process Management,
© Springer-Verlag Berlin Heidelberg 2012, 2007

N-out-of-M join pattern

terminate(b)
|
I

*— 0.
N
N o enable(e)

o »0 - »0——>0

Y
@
N

)
@
N—

|
|
E terminate(c)

When any 2 activity instances in {b,c,d} have
terminates, e can be enabled
(in the example b and c terminated)

)
O
|

16

M. Weske: Business Process Management
© Springer-Verlag Berlin Heidelberg 2012, 2007

£00z ‘210z BieqepieH uiieg beep-1ebuuds @
‘Juswebeue|y ss8001d ssauisng :o)sep ‘N

s
9
S
Q,
©
=
o]0
_
-
=
O
)
-
®©
Q,
p)
2
O
P>
O
©
=
R
e,
=
<

representation

N antan® YEn

17

o0
5
%
-
|
3
Q,
<
©
P
>
.
R
O
<
O
©
r
=
O
—
<

multiple merge pattern

£002 ‘210z BieqiepleH ulieg beliep-1ebuuds @
‘luswebeuer|y sS8001d ssauisng :84sep N

18

Example for multiple instances with a
priori design time knowledge

O~ » O

b2 -

c enabled immediately after the
last b has completed
(synchronization)

19

M. Weske: Business Process Management
© Springer-Verlag Berlin Heidelberg 2012, 2007

Example for multiple instances without a
priori run time knowledge pattern

O~ » & H - O

c enabled immediately after the

l I last b has completed
b1 o
| | | P (synchronization)
a b2 | ,
| | | |
g b3
/ | | c
// I/ b4 | | |
/ / d '/ b5 I

/
New b’s can be created while ~
other instances of b are running

20

M. Weske: Business Process Management
© Springer-Verlag Berlin Heidelberg 2012, 2007

Multiple instance without a priori run time
knowledge pattern, including management task

c enabled immediately after the

I 1 last b has completed
b1 2P
| | 7 (synchronization)
I b2 ' /
| | | |
' I b3 c
3 | |
b4 | |
| b5 I
| I
s b ~<
/ ~
/

Termination of multiple instances
management task b marks
completion of multiple instances
activity

Management task b creates 7
activity instances b1, b2,
at run time

21

M. Weske: Business Process Management
© Springer-Verlag Berlin Heidelberg 2012, 2007

Sequential execution without a priori
design time knowlede

4)

w)
—
M. Weske: Business Process Management,
© Springer-Verlag Berlin Heidelberg 2012, 2007

AN ’
Any sequential ordering
of b,c,d is valid

22

Other types of patterns

Resource

Data

)
)
» Exception Handling
» Presentation

)

23

Universita di Camerino

1336

More on pattern

@ Safari Archivio Composizione Vista Cronologia Preferiti Finestra Aiuto QRABLEH=D + « sabl2l3 & 73% Q
®n o Workflow Patterns Home Page
[< 1 [] [+ |9 http: //www.workflowpatterns.com/ =3 C] (Q' Google)
&3 [J] ¥ CINA Wiki - Adapt Norme Marche [LabSEDC Wiki] Gazzetta Ufficiale HowTo.gov Member Cent... Developer Normattiva Agenda Digitalev Sisifo Search Enginev Universitav »
Workflow Patterns Home Page +

WORKFLOW

PATTERNS EVALUATIONS VENDORS ABOUT LINKS YAWL IMPACT DOCUMENTATION CONTACTS

Welcome to the Workflow Patterns home page

The Workflow Patterns initiative is a joint effort of Eindhoven University of Technology (led by Professor Wil van der Aalst) and Queensland University of
Technology (led by Professor Arthur ter Hofstede) which started in 1999. The aim of this initiative is to provide a conceptual basis for process technology. In
particular, the research provides a thorough examination of the various perspectives (control flow, data, resource, and exception handling) that need to be
supported by a workflow language or a business process modelling language. The results can be used for examining the suitability of a particular process
language or workflow system for a particular project, assessing relative strengths and weaknesses of various approaches to process specification, implementing
certain business requirements in a particular process-aware information system, and as a basis for language and tool development.

On this web site you will find detailed descriptions of patterns for the various perspectives relevant for process-aware information systems: control-flow, data,
resource, and exception handling. In addition you will find detailed evaluations of various process languages, (proposed) standards for web service
compositions, and workflow systems in terms of this patterns.

We encourage interactions with interested parties about this research and its applications. For example, vendors can provide self-assessments of evaluations of
their products (see the Vendors Corner). Also, we appreciate any feedback in relation to our evaluations (e.g. errors or inaccuracies).

2010-2011 © Workflow Patterns Initiative

SN PN T e

http://www.workflowpatterns.com/

24

25

o

2

Questions?

