Master of Science in Computer Science - University of Camerino
Formal Languages and Compilers A. Y. 2018/2019
Written Test of 6th February 2019 (Appello I)
Teacher: Luca Tesei

NOTE: Regular expressions are written and should be written using the usual rules of precedence: the
« operator has precedence on concatenation, which has precedence on the | operator. The notation (r)"
can be used with the usual meaning.

EXERCISE 1 (10 points)

Consider a lexical analyser designed for recognising the tokens p;, ps and ps of the following regular

definition.
p1 — ba

py — ab

ps — b(alb)*a
Assume that the lexical analyser is designed following the classical two rules for matching tokens, i.e.
at each step the token with the longest possible lexeme is selected and, if more than one lexemes are
the longest ones and have the same length, the token that is defined in a higher position in the regular
definition is selected.

1. List the sequence of tokens (and the relative lexemes) that will be emitted by the lexical analyser
if the following input string is given: abbabaa$. Justify your answer carefully possibly showing the
sequence of steps made by the lexical analyser.

SOLUTION

Let's follow the procedure for constructing the lexical analyser that we have seen during the lectures.
We will not need to follow the procedure until the last step in which there is a determinisation, a non-
deterministic automaton will be sufficient for the purposes of this exercise. An NFA suitable for representing

the three patterns is the following
(D)

{a.b}

Note that we did not used the exact NFAs that would result from the application of Thompson's algorithm.
We made a simplification to avoid too much states. The fundamental fact is that there is one and only
one final state for each pattern.

Let us now simulate the steps of the lexical analyser on the input string, i.e. we simulate the NFA on the
string:



R I SN

Before the simulation blocked pattern p, was recognised after having read the string ab. So the first token
that is emitted by the lexical analyser is the number 2 with lexeme ab.
Now we restart the simulation with the remaining input, i.e. babaa:

pl e p3 p3 p3
b
0 LIS 2| |3 2 2 —» fine_input
1 8 8
4 9
7

The blocking is due to the end of input and the last recognised pattern is p;. Before, patterns p; and p3
were recognised together and pattern p3 was recognised on a shorter string, but following the rules of the
lexical analyser we must consider the longest match. So the second (and last) token that is emitted by
the lexical analyser is the number 3 with lexeme babaa.

EXERCISE 2 (10 points)

Consider the following language:
L={a"bt"c"|n>0,m>0}U{c*bac”|n>0}

1. Is the language LL(1)? Justify your answer and, if the answer is yes, provide the table for a top-down
predictive parser for the language.

2. Is the language LR(1)? Justify your answer.

SOLUTION

Let's try to write directly a grammar that is LL(1). Firstly note that the strings of the two parts of the
language start with different terminal symbols for most of all the cases. However, there is an overlapping
of the starting symbols for the strings {b™ | m > 0} belonging to the first part and for the unique string
ba belonging to the second part. To avoid a conflict in the table for the predictive parser we need to isolate
these special cases and treat them using a left-factoring solution. A possible grammar is the following:

aAc | bB | ccCc
aAc | bD

bD | €

bD | a

ccCe | ba

We have FIRST(S) = {a,b,c}, FIRST(A) = {a,b}, FIRST(D) = {b,e}, FIRST(B) = {b,a} and
FIRST(C) = {c,b}. Moreover, we have that FOLLOW(S) = FOLLOW(B) = {$}. FOLLOW(A) =
FOLLOW(C) = {c}. FOLLOW(D) = {c, $}.

AWO =N
L4l



The resulting parsing table for the predictive parser is:

a b c $
S—aAc | S—>bB | S — ccCc
A— aAc | A— bD
D—bD|D—e¢ D — ¢
B —a B — bD
C—=ba | C—ccCe

Q| T | @

Thus, we have given an LL(1) grammar for the language, so the language is LL(1) itself.

Moreover, since any LL(1) grammar is also LR(1), the same grammar shows that the language is also
LR(1).

EXERCISE 3 (12 points)
Consider a language of lists defined recursively in the following way:
e () is a list and is the empty list;

o (x1,...,xy) is a list where each z; can be an atom, i.e. a or b, or a list itself.

1. Give a Syntax Directed Translation Scheme for the language that is suitable for being implemented
during bottom-up parsing (you don't need to show that the grammar is LR(1)). The SDT must

calculate an attribute for each list that gives the number of elements of the longest sub-list in the
list, considering the list itself.

For instance, the value for the attribute of the list (a, (a,b), a,b) must be 4, the value for () must be 0,

the value for (()) must be 1 (the list is not empty, and the empty list that is a sub-list must be considered
just like an atom) and the value for the list (a, (a, b, a)) must be 3.

SOLUTION

In the following pages.



@ L)\’,{M Mn{ o Ow'i'@lo& jzmww ﬁoL d/]w

S )| ()

[+ A AL

Ao oo L] S

We defie Ll ga@& Wiy Mcbites

-l fwfepu, synthenzed , afauds fnmox @v{,w/ Atfioed
3?9\ symbels S, L aud A

<L ntegen  Sythesized | gfads Pn G| defimel o
Ayl ol [

The AAH?/LQAACL Letween € oud ol An tneeded ]ﬁﬂ

Q\M&(\ﬂg ~H,w_ (e (m WL)\‘C/!A Q_ f)j— e\cuu o MLGD+
w D Jongtn J(qu/w s Q’/ﬂgﬂ"-

Shecoll ottskon meeds e oudy GT wloy  Qurhhd
Eno



The SDT Mol we s oo piomf D057 Fraudibinn
Scw) re T com be ganily t‘mlp@mwi'w{ Am,wj ‘ooﬁow—u’o
g

S— () S ml-0

S = (L) Smes/[ mb

[ - A Lesst, [ o= aorls,A )

[+ A L, Le-L.a+t
anﬂ = WKCA.MQ)Li.‘W‘Q) [4_@ 7‘-1>

A o A wl = 4 X
fa — J; A.me =4
A~i> S B ol = Sl

£ \We  hae Yo countdny publiofe ad  His Guf
A wl o be 4 i e A o o it be
Y1 U A S o bl codoining o pblit o Gughe >2.
Liiont o Ha et Laghe of awy ot in Ly 2
Just P Bagth o8 Ly if it does it gutiim publisle
ole 0 e a0 P cumed @V%Hn of His (st L
ool &MS\OMN\S b ste .
Lok ao appty the SDT o Y ET N T
P J(@XA(:



Cavectly &



-



