
ANTLR Basics

Andrea Polini, Luca Tesei

Formal Languages and Compilers
MSc in Computer Science

University of Camerino

(Formal Languages and Compilers) ANTLR Basics CS@UNICAM 1 / 26



Compiler Phases in ANTLR4

Phases
ANTLR4 follows the usual conceptual structure of a generic compiler
that we have seen in this course

(Formal Languages and Compilers) ANTLR Basics CS@UNICAM 2 / 26



Grammars and Parsers in ANTLR4

Grammar Definitions
Rules defines non-terminal symbols starting with lower-case letters

Grammar Implementation
ANTLR4 essentially creates a Recursive Descent Parser for the given
grammar

(Formal Languages and Compilers) ANTLR Basics CS@UNICAM 3 / 26



Lookaheads

Lookaheads
ANTLR4 autonomously decide how many lookaheads are needed to
take parsing decision (even the whole text!)

Left Recursion
ANTLR4 accepts left recursive grammars and handles them
transparently!

(Formal Languages and Compilers) ANTLR Basics CS@UNICAM 4 / 26



Ambiguity

Ambiguity
ANTLR4 accepts ambiguous grammars, but it cannot decide alone on
which parse tree to generate for ambiguous sentences

(Formal Languages and Compilers) ANTLR Basics CS@UNICAM 5 / 26



Ambiguity

ANTLR4 will create, for an ambiguous sentence, the first parse
tree that can be generated
The order in which the rules are written in the .g4 file matters!
In case of multiple choices the first rule is applied
In case of fail, backtrack!

This resolves also possible ambiguities in LEXER (rules defining
symbols starting with upper-case letters):

(Formal Languages and Compilers) ANTLR Basics CS@UNICAM 6 / 26



Semantic Analysis and Code Generation

ANTLR4 permits the definition of Syntax Directed Translation
Schemes
However, the main and preferred way to implement actions
associated to parsing is through walking or visiting the generated
parse tree
This has a lot of advantages in modularity and re-usability

(Formal Languages and Compilers) ANTLR Basics CS@UNICAM 7 / 26



ANTLR4 Java Classes

ANTLR4 creates by default Java code for a given .g4 file
Some ANTLR4 classes are CharStream, Lexer, Token,
Parser and ParseTree

(Formal Languages and Compilers) ANTLR Basics CS@UNICAM 8 / 26



ANTLR4 Java Classes for Rules

ANTLR4 creates specific subclasses for each symbol
This facilitates accessing to the subtrees

(Formal Languages and Compilers) ANTLR Basics CS@UNICAM 9 / 26



Run-time tree walking

By default ANTLR4 generates a parse tree listener interface
This responds to events triggered by the built-in tree walker
The built-in tree walker performs a dept-first left-to-right visit of the
parse tree
For each node rule name two methods enterName() and
exitName() are created:

(Formal Languages and Compilers) ANTLR Basics CS@UNICAM 10 / 26



Run-time tree walking

(Formal Languages and Compilers) ANTLR Basics CS@UNICAM 11 / 26



Run-time tree visitors

We can also decide a particular order in which the tree is visited,
different from the standard one
Call ANTLR4 with -visitor option
It generates a visit method for each rule name
Inside the code we have to make explicit calls to the other visit
methods

(Formal Languages and Compilers) ANTLR Basics CS@UNICAM 12 / 26



Starter Project

Let’s create the first application
We want to parse integer lists inside possibly nested curly braces:
{1, 2, 3} or {1, {2, 3}, 4 }
We want to produce corresponding strings of Unicode characters
E.g., {1, 2, 3} is translated to "\u0001\u0002\u0003"

(Formal Languages and Compilers) ANTLR Basics CS@UNICAM 13 / 26



Starter Project

Let’s run ANTLR4 and produce the stub code:

(Formal Languages and Compilers) ANTLR Basics CS@UNICAM 14 / 26



Starter Project

Analyse the code
Create simple Test class
Create a subclass to define actions at enter and exit of the rules
Create a class for realising the translation

(Formal Languages and Compilers) ANTLR Basics CS@UNICAM 15 / 26



Expressions Project

Let’s create an ANTLR4 project for a desk calculator
It will parse sequences of expressions and will print the
corresponding value

(Formal Languages and Compilers) ANTLR Basics CS@UNICAM 16 / 26



Importing grammars

ANTLR4 permits to import grammars
Very useful for modularity

(Formal Languages and Compilers) ANTLR Basics CS@UNICAM 17 / 26



Handling Errors

ANTLR4 automatically handles errors
The standard behaviour can be customised (advanced topic)

(Formal Languages and Compilers) ANTLR Basics CS@UNICAM 18 / 26



Rule labeling

When rules have alternatives it is better to give names to them

(Formal Languages and Compilers) ANTLR Basics CS@UNICAM 19 / 26



Calculator Implementation with Visitor

Let’s implement the calculator using the Visitor Pattern

(Formal Languages and Compilers) ANTLR Basics CS@UNICAM 20 / 26



Calculator Implementation with Visitor

Subclass LabeledExprBaseVisitor<T> with T as Integer
Redefine the behaviour of the visit methods
Create a class with a main that creates a visitor object and visits a
parse tree
See Code...

(Formal Languages and Compilers) ANTLR Basics CS@UNICAM 21 / 26



Translator from Java classes to Java interfaces

Let’s implement a translator that can parse Java files!
We are given a Java grammar specification Java.g4
The translator has to transform the code of a Java class into a
code for a Java interface containing the same methods without
implementation
Any comment appearing within the method signature must be
retained

(Formal Languages and Compilers) ANTLR Basics CS@UNICAM 22 / 26



Translator from Java classes to Java interfaces

must produce (see code):

(Formal Languages and Compilers) ANTLR Basics CS@UNICAM 23 / 26



Implementing an SDT in ANTLR4

Let’s implement a translator that parses a csv text file with tab as
separator
We want to select the data values of a particular column

Base grammar:

(Formal Languages and Compilers) ANTLR Basics CS@UNICAM 24 / 26



Implementing an SDT in ANTLR4

Enriched grammar with code

(Formal Languages and Compilers) ANTLR Basics CS@UNICAM 25 / 26



Implementing an SDT in ANTLR4

Running the parser (see code)

(Formal Languages and Compilers) ANTLR Basics CS@UNICAM 26 / 26


