Master of Science in Computer Science - University of Camerino
 Compilers A. Y. 2019/2020
 Written Test of 19th February 2020 (Session/Appello II)
 Teacher: Luca Tesei

NOTE: Regular expressions should be written using the usual rules of precedence: the $*$ operator has precedence on concatenation, which has precedence on the | operator. The notation $(r)^{+}$can be used with the usual meaning.

EXERCISE 1 (10 points)

Consider the following regular expression:

$$
a^{*}\left(b c^{*} \mid(b c)^{+}\right)
$$

1. Give a minimal automaton accepting the language denoted by the regular expression. Show all the steps leading to your solution.

EXERCISE 2 (12 points)

Consider the following grammar:

$$
\begin{aligned}
& S \rightarrow B \mid C a a \\
& B \rightarrow b C \\
& C \rightarrow b b C a \mid \epsilon
\end{aligned}
$$

1. Write formally the language generated by the grammar as a set of strings.
2. Is the grammar $\mathrm{LR}(1)$? If so, give the table of a bottom-up shift-reduce parser and show the parsing of the string $b b b a$.

EXERCISE 3 (12 points)

Consider a language of expressions defined recursively as follows:
(i) x is an expression;
(ii) if $e_{1}, e_{2}, \ldots, e_{n}$ (with $n>0$) are expressions then $f\left(e_{1}, \ldots, e_{n}\right)$ is an expression.

Your tasks are:

1. Define a Syntax Directed Translation Scheme suitable to be implemented by a top-down parser and such that it computes, for the starting symbol, an attribute \mathbf{m} of type int. For a give expression, \mathbf{m} must give the maximum number of arguments to which the function f is applied to. The maximum must be computed considering any possible subexpression, not only the top level f. Examples:

- for the expression x it must result $\mathbf{m}=0$,
- for the expression $f(x)$ it must result $\mathbf{m}=1$,
- for the expression $f(f(x))$ it must result $\mathbf{m}=1$,
- for the expression $f(x, f(x, x))$ it must result $\mathbf{m}=2$,
- for the expression $f(f(x, x))$ it must result $\mathbf{m}=2$,
- for the expression $f(x, f(x, x), f(x, f(x)))$ it must result $\mathbf{m}=3$,
- for the expression $f(f(x, x), f(x, f(x), f(f(f(f(x))))))$ it must result $\mathbf{m}=3$.

