Master of Science in Computer Science - University of Camerino Compilers A. Y. 2019/2020 Written Test of 19th February 2020 (Session/Appello II) Teacher: Luca Tesei

NOTE: Regular expressions should be written using the usual rules of precedence: the * operator has precedence on concatenation, which has precedence on the | operator. The notation $(r)^+$ can be used with the usual meaning.

EXERCISE 1 (10 points)

Consider the following regular expression:

 $a^{*}(bc^{*} \mid (bc)^{+})$

1. Give a minimal automaton accepting the language denoted by the regular expression. Show all the steps leading to your solution.

SOLUTION

The solution is in the following page.

EX1 $a \neq (b c \neq (b c)^{+})$ An NFA for the Cauguage is $(1)^{C}$ C C D 3 Let's use the subset construction aforithm for obtaining au convolent DFA 6 8 \mathcal{C} $\{1\}$ {oj $f_{0} = A$ $\left\{ \begin{array}{c} L \\ L \end{array} \right\}$ $\left\{ \right\}$ 12,3} $\{\underline{z}\} = B$ 423 {<u>2,3</u>} = ⊆ 24 141 { } 123 $\left\{ \right\}$ {<u>2</u>} = D 1 5 143 = E $\left\{ \right\}$ 237 143 $\left\{ \right\}$ 53]=E $\left\{ \right\}$

The detained DPA, completed with a dead state, is: $A \xrightarrow{b} B \xrightarrow{c} C \xrightarrow{c} D \xrightarrow{c} C \xrightarrow{c} C \xrightarrow{c} D \xrightarrow{c} C \xrightarrow{c}$ 10,63 -P ($a = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} +$ C S (F) Let's try to minimise this DFA. (AE dead) (BCDF) Partition 2 A God dead } D A can be differentiated E D F J dead So dead Partifion 2 (E) (A dead) (BCOF) A D B } = D A and deed one different dead bo dead } = D A and deed one different (E) (A) (dead) (BCDF) Portifion 3 B-DC F con be differentieted $C \xrightarrow{c} D$ D-S D F - b deed

Partition 4 (E) (A) (dead) (BCD) (F) B-D deed ; C b E (=D C can be differentiated D b deed ; Partition 5 (E) (A) (dead) (BD) (C) (F) B-DC } B and D are different D-DD J Partition 6 (E) (A) (dead) (B) (D) (C) (F) The DFA is minimal because no states can be coussdered equivalent.

EXERCISE 2 (12 points)

Consider the following grammar:

$$\begin{array}{rrrr} S & \rightarrow & B \mid Caa \\ B & \rightarrow & bC \\ C & \rightarrow & bbCa \mid \epsilon \end{array}$$

- 1. Write formally the language generated by the grammar as a set of strings.
- 2. Is the grammar LR(1)? If so, give the table of a bottom-up shift-reduce parser and show the parsing of the string *bbba*.

SOLUTION

The language can be expressed as follows:

$$L(S) = \{ b^{2n+1} a^n \mid n \ge 0 \} \cup \{ b^{2n} a^{n+2} \mid n \ge 0 \}$$

Let us start checking if the grammar is SLR(1). If so, it is also LR(1). Let us compute the set of LR(0) items:

$I_{0} = \begin{array}{ccc} S' & \rightarrow & \cdot S \\ S & \rightarrow & \cdot B \\ S & \rightarrow & \cdot Caa \\ B & \rightarrow & \cdot bC \\ C & \rightarrow & \cdot bbCa \\ C & \rightarrow & \cdot \end{array}$	$I_1 = \texttt{goto}(I_0,S) = S' o S \cdot$
$I_2 = \operatorname{goto}(I_0, B) = S \to B \cdot I_3 = \operatorname{goto}(I_0, C) = S \to C \cdot aa$	$I_4 = \texttt{goto}(I_0, b) = \begin{array}{ccc} B & \rightarrow & b \cdot C \\ C & \rightarrow & b \cdot bCa \\ C & \rightarrow & \cdot bbCa \\ C & \rightarrow & \cdot \end{array}$
$I_5 = \texttt{goto}(I_3, a) = S \to Ca \cdot a$ $I_6 = \texttt{goto}(I_4, C) = B \to bC \cdot$	$I_7 = \texttt{goto}(I_4, b) = \begin{array}{ccc} C & \to & bb \cdot Ca \\ C & \to & b \cdot bCa \\ C & \to & \cdot bbCa \\ C & \to & \cdot \end{array}$
$ \begin{matrix} I_8 = \texttt{goto}(I_5, a) = S \to Caa \cdot \\ I_9 = \texttt{goto}(I_7, C) = C \to bbC \cdot a \end{matrix} $	$goto(I_7, b) = I_7$ $I_{10} = goto(I_9, a) = C \rightarrow bbCa$

It holds that $FOLLOW(S') = FOLLOW(S) = FOLLOW(B) = \{\$\}$ and $FOLLOW(C) = \{a, \$\}$. There are no conflicts in the set of LR(0) items, meaning that the grammar is SLR(1) and LR(1). The parsing table for the corresponding bottom-up shift-reduce parser is as follows:

	a	b	\$	S	B	C
0	r5	s4	r5	1	2	3
1			асс			
2			r1			
3	s5					
4	r5	s7	r5			6
5	s8					
6			r3			
7	r5	s7	r5			9
8			r2			
9	s10					
10	r4		r4			

The parsing of the string *bbba* is in the following:

STACK	INPUT	ACTION
\$0	bbba\$	shift 4
0b4	bba\$	shift 7
0b4b7	ba\$	shift 7
0b4b7b7	a\$	reduce 5
0b4b7b7C9	a\$	shift 10
0b4b7b7C9a10	\$	reduce 4
0b4C6	\$	reduce 3
0B2	\$	reduce 1
0S1	\$	accept

EXERCISE 3 (12 points)

Consider a language of expressions defined recursively as follows:

- (i) x is an expression;
- (ii) if e_1, e_2, \ldots, e_n (with n > 0) are expressions then $f(e_1, \ldots, e_n)$ is an expression.

Your tasks are:

- 1. Define a Syntax Directed Translation Scheme suitable to be implemented by a top-down parser and such that it computes, for the starting symbol, an attribute **m** of type int. For a give expression, **m** must give the maximum number of arguments to which the function *f* is applied to. The maximum must be computed considering any possible subexpression, not only the top level *f*. Examples:
 - for the expression x it must result $\mathbf{m} = 0$,
 - for the expression f(x) it must result m = 1,
 - for the expression f(f(x)) it must result $\mathbf{m} = 1$,
 - for the expression f(x, f(x, x)) it must result $\mathbf{m} = 2$,
 - for the expression f(f(x, x)) it must result $\mathbf{m} = 2$,
 - for the expression f(x, f(x, x), f(x, f(x))) it must result $\mathbf{m} = 3$,
 - for the expression f(f(x, x), f(x, f(x), f(f(f(x)))))) it must result $\mathbf{m} = 3$.

SOLUTION

The solution is in the following page.

EX3 Let us give firstan U(1) growwon for the $Z = \{x, f, (,), 'y'\}$ Canquepe : E-> x | f(L) FIRST(E)= 4x, fg= FIRST(L) L-rEA First(A) - { ', E} A-P, L E Follow (E)= {\$, ", ",) } FOLLOW (L) = {) } FOLLOW (A) = {) } The parsing table is 2 $E = \frac{2}{2} \times E = \frac{2}{2} + \frac{2}{2} \times E = \frac{2}{2} + \frac{2}{2} \times E = \frac{2}{2} + \frac{2}{2} \times \frac{2}{2}$) <u>,</u> \$ L->EA L->EA $A \rightarrow \epsilon \quad A \rightarrow , L$ A The table is not multiply defined, so the growwar is LL(2). The SDT is as follow: (for attributes see next pope) $E \rightarrow \chi \qquad \{E, m=0\}$ $E \rightarrow f(L) \ \{E.m = L.m\}$ L-DEA /L.m. A.m.+1, L.m. mox(E.m, L.m) A-D, L 2A. m. L. m, A. m. L. m. A-DE {A.m=0, A.m=0}

