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NOTE: Regular expressions should be written using the usual rules of precedence: the ∗ operator has
precedence on concatenation, which has precedence on the | operator. The notation (r)+ can be used
with the usual meaning.

EXERCISE 1 (10 points)
Consider the following regular expression:

a∗(bc∗ | (bc)+)

1. Give a minimal automaton accepting the language denoted by the regular expression. Show all the
steps leading to your solution.

SOLUTION

The solution is in the following page.
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EXERCISE 2 (12 points)

Consider the following grammar:
S → B | Caa
B → bC
C → bbCa | ε

1. Write formally the language generated by the grammar as a set of strings.

2. Is the grammar LR(1)? If so, give the table of a bottom-up shift-reduce parser and show the parsing
of the string bbba.

SOLUTION

The language can be expressed as follows:

L(S) = {b2n+1 an | n ≥ 0} ∪ {b2n an+2 | n ≥ 0}

Let us start checking if the grammar is SLR(1). If so, it is also LR(1). Let us compute the set of
LR(0) items:

I0 =

S ′ → ·S
S → ·B
S → ·Caa
B → ·bC
C → ·bbCa
C → ·

I1 = goto(I0, S) = S ′ → S·

I2 = goto(I0, B) = S → B·
I3 = goto(I0, C) = S → C · aa I4 = goto(I0, b) =

B → b · C
C → b · bCa
C → ·bbCa
C → ·

I5 = goto(I3, a) = S → Ca · a
I6 = goto(I4, C) = B → bC· I7 = goto(I4, b) =

C → bb · Ca
C → b · bCa
C → ·bbCa
C → ·

I8 = goto(I5, a) = S → Caa·
I9 = goto(I7, C) = C → bbC · a

goto(I7, b) = I7
I10 = goto(I9, a) = C → bbCa·

It holds that FOLLOW(S ′) = FOLLOW(S) = FOLLOW(B) = {$} and FOLLOW(C) = {a, $}. There
are no conflicts in the set of LR(0) items, meaning that the grammar is SLR(1) and LR(1). The parsing
table for the corresponding bottom-up shift-reduce parser is as follows:

a b $ S B C
0 r5 s4 r5 1 2 3
1 acc
2 r1
3 s5
4 r5 s7 r5 6
5 s8
6 r3
7 r5 s7 r5 9
8 r2
9 s10
10 r4 r4



The parsing of the string bbba is in the following:

STACK INPUT ACTION
$0 bbba$ shift 4
$0b4 bba$ shift 7
$0b4b7 ba$ shift 7
$0b4b7b7 a$ reduce 5
$0b4b7b7C9 a$ shift 10
$0b4b7b7C9a10 $ reduce 4
$0b4C6 $ reduce 3
$0B2 $ reduce 1
$0S1 $ accept

EXERCISE 3 (12 points)

Consider a language of expressions defined recursively as follows:

(i) x is an expression;

(ii) if e1, e2, . . . , en (with n > 0) are expressions then f(e1, . . . , en) is an expression.

Your tasks are:

1. Define a Syntax Directed Translation Scheme suitable to be implemented by a top-down parser and
such that it computes, for the starting symbol, an attribute m of type int. For a give expression, m
must give the maximum number of arguments to which the function f is applied to. The maximum
must be computed considering any possible subexpression, not only the top level f . Examples:

• for the expression x it must result m = 0,

• for the expression f(x) it must result m = 1,

• for the expression f(f(x)) it must result m = 1,

• for the expression f(x, f(x, x)) it must result m = 2,

• for the expression f(f(x, x)) it must result m = 2,

• for the expression f(x, f(x, x), f(x, f(x))) it must result m = 3,

• for the expression f(f(x, x), f(x, f(x), f(f(f(f(x)))))) it must result m = 3.

SOLUTION

The solution is in the following page.
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