
Master of Science in Computer Science - University of Camerino
Compilers A. Y. 2019/2020

Written Test of 19th February 2020 (Session/Appello II)
Teacher: Luca Tesei

NOTE: Regular expressions should be written using the usual rules of precedence: the ∗ operator has
precedence on concatenation, which has precedence on the | operator. The notation (r)+ can be used
with the usual meaning.

EXERCISE 1 (10 points)
Consider the following regular expression:

a∗(bc∗ | (bc)+)

1. Give a minimal automaton accepting the language denoted by the regular expression. Show all the
steps leading to your solution.

SOLUTION

The solution is in the following page.

Exel a*(bit Cbc)t)

An NFA for the language is

.

③

Let 's use the subset construction algorithms

for obtaining an equivalent DFA

a b
c

do } = A to 's 123 I }

Is't
Is I I 4433

1133-

E
Ll K 's 423121=1211 13 123

143 - E Ll th 233SIKE
4) 143 h }

The obtained DFA
, couplet ed

with a dead slide
,
is :

→ us ,

X. busy c-⑧
↳§O:¥,!r

Let's try to minimise this DFA .

Partition 2 (A E dead) (BCD f)

ftp.deed) as A an be differentiated

deeds deed

Partition 2 CE) (A dead) C B CDF)

AL !deed } =D A and deed on different

Partition 3 CE) CA) (dead) C BC DF)

B 's C

¥!5¥deed) Fan be differentiated

Partition a (E) CA) (deed) C BCD) C F)
b

B → dead

cb→ E } ⇒ Can be differentiatedDls
deed

Partition 5 CE) CA) (dead) C BD) Cc) CF)

BED C

Dios D I
B and D are different

Partition 6 Ce) CA) (dead) CB) CD) C C) C F)

The DFA is minimal because me states car be

cousrdered equivalent .

EXERCISE 2 (12 points)

Consider the following grammar:
S → B | Caa
B → bC
C → bbCa | ε

1. Write formally the language generated by the grammar as a set of strings.

2. Is the grammar LR(1)? If so, give the table of a bottom-up shift-reduce parser and show the parsing
of the string bbba.

SOLUTION

The language can be expressed as follows:

L(S) = {b2n+1 an | n ≥ 0} ∪ {b2n an+2 | n ≥ 0}

Let us start checking if the grammar is SLR(1). If so, it is also LR(1). Let us compute the set of
LR(0) items:

I0 =

S ′ → ·S
S → ·B
S → ·Caa
B → ·bC
C → ·bbCa
C → ·

I1 = goto(I0, S) = S ′ → S·

I2 = goto(I0, B) = S → B·
I3 = goto(I0, C) = S → C · aa I4 = goto(I0, b) =

B → b · C
C → b · bCa
C → ·bbCa
C → ·

I5 = goto(I3, a) = S → Ca · a
I6 = goto(I4, C) = B → bC· I7 = goto(I4, b) =

C → bb · Ca
C → b · bCa
C → ·bbCa
C → ·

I8 = goto(I5, a) = S → Caa·
I9 = goto(I7, C) = C → bbC · a

goto(I7, b) = I7
I10 = goto(I9, a) = C → bbCa·

It holds that FOLLOW(S ′) = FOLLOW(S) = FOLLOW(B) = {$} and FOLLOW(C) = {a, $}. There
are no conflicts in the set of LR(0) items, meaning that the grammar is SLR(1) and LR(1). The parsing
table for the corresponding bottom-up shift-reduce parser is as follows:

a b $ S B C
0 r5 s4 r5 1 2 3
1 acc
2 r1
3 s5
4 r5 s7 r5 6
5 s8
6 r3
7 r5 s7 r5 9
8 r2
9 s10
10 r4 r4

The parsing of the string bbba is in the following:

STACK INPUT ACTION
$0 bbba$ shift 4
$0b4 bba$ shift 7
$0b4b7 ba$ shift 7
$0b4b7b7 a$ reduce 5
$0b4b7b7C9 a$ shift 10
$0b4b7b7C9a10 $ reduce 4
$0b4C6 $ reduce 3
$0B2 $ reduce 1
$0S1 $ accept

EXERCISE 3 (12 points)

Consider a language of expressions defined recursively as follows:

(i) x is an expression;

(ii) if e1, e2, . . . , en (with n > 0) are expressions then f(e1, . . . , en) is an expression.

Your tasks are:

1. Define a Syntax Directed Translation Scheme suitable to be implemented by a top-down parser and
such that it computes, for the starting symbol, an attribute m of type int. For a give expression, m
must give the maximum number of arguments to which the function f is applied to. The maximum
must be computed considering any possible subexpression, not only the top level f . Examples:

• for the expression x it must result m = 0,

• for the expression f(x) it must result m = 1,

• for the expression f(f(x)) it must result m = 1,

• for the expression f(x, f(x, x)) it must result m = 2,

• for the expression f(f(x, x)) it must result m = 2,

• for the expression f(x, f(x, x), f(x, f(x))) it must result m = 3,

• for the expression f(f(x, x), f(x, f(x), f(f(f(f(x)))))) it must result m = 3.

SOLUTION

The solution is in the following page.

E I let
us give fintan Uk) grammar for the

Cengage : 2=4 Kif ,
(

,
)
,
y

' ')

Ens a
I f (L) First I EF ha

, f-f- First)

L → E A First 't
) -

- fj ,
El

AN
,
L I E Follow CEkh$

,

"

,
"

,
) }

The parsing table is Follow CD

=L) }
↳

follow (A) =L) }
u f C) , $

E Enn E→fC4

L Ln EA Ln EA

A Are Ar
,
L

The table is not multiply defined ,
se the grammar

is UCD
.

The SDT is es fellow : (for attributes see next page)

E → n I E. m -

- o }

Em f C L) l E . m .
L

.
m }

L → E A

4L
.mn .

A. mtl
,
L

.
m . her (E . m

,
L

-
m) }

AN ,
L h A. n =L . m

,
A. m .

.
L

.
m }

AN E I A. ma o
,
A. m

-

-

o }

Emr

flu , flare))
Emo

K

f T
'

a

E-

11Am:L
Mr - 0 m=2 #

I
I \ fca)

n ,

Lin:} Em
. '

II \ me

f #

¥-1
Em

, 2
A mo ma

I A no

f
E EmoAm .

. om=2) / I

N E

El

\Am=2
MID Mel

I /) na

n g L

Miz
¥.¥

ii.:/'of
Emu

ffffn))

Attributes

of symbols

f
m of type int

Ella no
Synthesized

ma

TE
for symbols E ,L ,

A

f y

m is the hneximumn number

e÷ii÷ fi::i::m-I I synthesized
K E

for symbols LIA

mis the length of the current

list

Em
. 2 ffffn ,

a))

t 9

E

Aei
t

9¥
,

'

MIZ

El \ met

M =L M = I

1

,

I l

Ln
'

N m =L

InEm.
. oAmnI

I

x E

