Master of Science in Computer Science - University of Camerino Compilers A. Y. 2019/2020
 Written Test of 19th February 2020 (Session/Appello II)
 Teacher: Luca Tesei

NOTE: Regular expressions should be written using the usual rules of precedence: the $*$ operator has precedence on concatenation, which has precedence on the | operator. The notation $(r)^{+}$can be used with the usual meaning.

EXERCISE 1 (10 points)

Consider the following regular expression:

$$
a^{*}\left(b c^{*} \mid(b c)^{+}\right)
$$

1. Give a minimal automaton accepting the language denoted by the regular expression. Show all the steps leading to your solution.

SOLUTION

The solution is in the following page.

EX1 $\mid a^{*}\left(b c^{*} \mid(b c)^{+}\right)$
An NTA for the Canguge is

Let's use the subset construction alfori ithm for obtaining an cpuivalent DFA

	a	b	c
$\{0\}=A$	$\{0\}$	$\{1\}$	$\}$
$\{2\}=B$	$\}$	$\}$	$\{2,3\}$
$\{2,3\}=C$	$\}$	$\{4\}$	$\{2\}$
$\{2\}=D$	$\}$	$\}$	$\{2\}$
$\{4\}=E$	$\}$	$\}$	$\{3\}$
$\{3\}=E$	$\}$	$\{4\}$	$\}$

The detained DPA, completed with a dead state, is:

Let's try to minimise this DFA.
Partition 2 (A dead) (BCDF)
$\left.\begin{array}{l}A \xrightarrow[C]{C} \text { dead } \\ E \rightarrow F\end{array}\right\} \Rightarrow A$ con be differentiated $\operatorname{deod} S$ deed
Partition $2(E)(A$ dead $)(B C D F)$
$\left.\begin{array}{l}\begin{array}{l}\text { b } \\ \operatorname{deed} \rightarrow \\ \rightarrow\end{array} \\ \text { deed }\end{array}\right\} \Rightarrow A$ and deed ore different
Partition 3 (E) (A) (deed) (BCDF)

$$
\left.\begin{array}{l}
B \xrightarrow{c} C \\
C \xrightarrow{c} D \\
D \rightarrow D \\
f \xrightarrow[\rightarrow]{c} \text { deed }
\end{array}\right\}
$$

F con be differentiated

Partition $4(E)(A)($ dead) (BCD) (F)

Partition 5 (E) (A) (dead) (BD) (C) (F)
$\left.\begin{array}{l}B \xrightarrow{C} C \\ D \rightarrow D\end{array}\right\} \quad B$ and D are different
Partition 6 (E) (A) (deed) (B) (D) (C) (F) The DFA is minimal because mo states car be cousdered equivalent.

EXERCISE 2 (12 points)

Consider the following grammar:

$$
\begin{aligned}
& S \rightarrow B \mid C a a \\
& B \rightarrow b C \\
& C \rightarrow b b C a \mid \epsilon
\end{aligned}
$$

1. Write formally the language generated by the grammar as a set of strings.
2. Is the grammar $\operatorname{LR}(1)$? If so, give the table of a bottom-up shift-reduce parser and show the parsing of the string $b b b a$.

SOLUTION

The language can be expressed as follows:

$$
L(S)=\left\{b^{2 n+1} a^{n} \mid n \geq 0\right\} \cup\left\{b^{2 n} a^{n+2} \mid n \geq 0\right\}
$$

Let us start checking if the grammar is $\operatorname{SLR}(1)$. If so, it is also $\operatorname{LR}(1)$. Let us compute the set of LR(0) items:

$I_{0}=\begin{array}{lll} S^{\prime} & \rightarrow & \cdot S \\ S & \rightarrow & \cdot B \\ S & \rightarrow & \cdot C a a \\ B & \rightarrow & \cdot b C \\ C & \rightarrow & \cdot b b C a \\ C & \rightarrow & \cdot \end{array}$	$I_{1}=\operatorname{goto}\left(I_{0}, S\right)=S^{\prime} \rightarrow S$.
$\begin{aligned} & I_{2}=\operatorname{goto}\left(I_{0}, B\right)=S \rightarrow B . \\ & I_{3}=\operatorname{goto}\left(I_{0}, C\right)=S \rightarrow C \cdot a a \end{aligned}$	$I_{4}=\operatorname{goto}\left(I_{0}, b\right)=\begin{aligned} & B \rightarrow b \cdot C \\ & C \rightarrow b \cdot b C a \\ & C \rightarrow \cdot b b C a \\ & C \rightarrow \cdot \end{aligned}$
$\begin{aligned} & I_{5}=\operatorname{goto}\left(I_{3}, a\right)=S \rightarrow C a \cdot a \\ & I_{6}=\operatorname{goto}\left(I_{4}, C\right)=B \rightarrow b C . \end{aligned}$	$I_{7}=\operatorname{goto}\left(I_{4}, b\right)=\begin{array}{lll} C & \rightarrow b b \cdot C a \\ C & \rightarrow b \cdot b C a \\ C & \rightarrow \cdot b b C a \\ C & \rightarrow . \end{array}$
$\begin{aligned} & I_{8}=\operatorname{goto}\left(I_{5}, a\right)=S \rightarrow C a a . \\ & I_{9}=\operatorname{goto}\left(I_{7}, C\right)=C \rightarrow b b C \cdot a \end{aligned}$	$\begin{aligned} & \operatorname{goto}\left(I_{7}, b\right)=I_{7} \\ & I_{10}=\operatorname{goto}\left(I_{9}, a\right)=C \rightarrow b b C a \end{aligned}$

It holds that $\operatorname{FOLLOW}\left(S^{\prime}\right)=\operatorname{FOLLOW}(S)=\operatorname{FOLLOW}(B)=\{\$\}$ and $\operatorname{FOLLOW}(C)=\{a, \$\}$. There are no conflicts in the set of $\operatorname{LR}(0)$ items, meaning that the grammar is $\operatorname{SLR}(1)$ and $\operatorname{LR}(1)$. The parsing table for the corresponding bottom-up shift-reduce parser is as follows:

	a	b	$\$$	S	B	C
0	r 5	s 4	r 5	1	2	3
1			acc			
2			r 1			
3	s 5					
4	r 5	s 7	r 5			6
5	s 8					
6			r 3			
7	r 5	s 7	r 5			9
8			r 2			
9	s 10					
10	r 4		r 4			

The parsing of the string $b b b a$ is in the following:

STACK	INPUT	ACTION
$\$ 0$	$b b b a \$$	shift 4
$\$ 0 b 4$	$b b a \$$	shift 7
$\$ 0 b 4 b 7$	$b a \$$	shift 7
$\$ 0 b 4 b 7 b 7$	$a \$$	reduce 5
$\$ 0 b 4 b 7 b 7 C 9$	$a \$$	shift 10
$\$ 0 b 4 b 7 b 7 C 9 a 10$	$\$$	reduce 4
$\$ 0 b 4 C 6$	$\$$	reduce 3
$\$ 0 B 2$	$\$$	reduce 1
$\$ 0 S 1$	$\$ \$$	accept

EXERCISE 3 (12 points)

Consider a language of expressions defined recursively as follows:
(i) x is an expression;
(ii) if $e_{1}, e_{2}, \ldots, e_{n}$ (with $n>0$) are expressions then $f\left(e_{1}, \ldots, e_{n}\right)$ is an expression.

Your tasks are:

1. Define a Syntax Directed Translation Scheme suitable to be implemented by a top-down parser and such that it computes, for the starting symbol, an attribute \mathbf{m} of type int. For a give expression, \mathbf{m} must give the maximum number of arguments to which the function f is applied to. The maximum must be computed considering any possible subexpression, not only the top level f. Examples:

- for the expression x it must result $\mathbf{m}=0$,
- for the expression $f(x)$ it must result $\mathbf{m}=1$,
- for the expression $f(f(x))$ it must result $\mathbf{m}=1$,
- for the expression $f(x, f(x, x))$ it must result $\mathbf{m}=2$,
- for the expression $f(f(x, x))$ it must result $\mathbf{m}=2$,
- for the expression $f(x, f(x, x), f(x, f(x)))$ it must result $\mathbf{m}=3$,
- for the expression $f(f(x, x), f(x, f(x), f(f(f(f(x))))))$ it must result $\mathbf{m}=3$.

SOLUTION

The solution is in the following page.

Ex 3| Let us give first an $U(1)$ gramuior for the Canguage:

$$
\left.\Sigma=\{x, f,(,),)^{\prime \prime}\right\}
$$

$$
\begin{array}{ll}
E \rightarrow x \mid f(L) & \operatorname{First}(E)=\{x, f\}=\operatorname{First}(L) \\
L \rightarrow E A & \operatorname{First}(A)=\{\because, n, \varepsilon\} \\
A \rightarrow, L \mid \varepsilon & \left.\operatorname{FolLow}(E)=\left\{\$,{ }^{\prime}, n,\right)\right\}
\end{array}
$$

The parsing tole is?

$$
\operatorname{Folww}(L)=\{)\}
$$

$$
\text { follow }(A)=\{)\}
$$

	x	f	$($	$)$	$)$	$\$$
E	$E \rightarrow x$	$E \rightarrow f(L)$				
L	$L \rightarrow E A$	$L \rightarrow E A$				
A				$A \rightarrow \varepsilon$	$A \rightarrow, L$	

The table is not multiply defined, se the grammar is $L C(1)$. The SDT is es follow: (for attributes see next page)

$$
\begin{aligned}
& E \rightarrow x \quad\{E . m=0\} \\
& E \rightarrow f(L) \quad\{E \cdot m=L . m\} \\
& L \rightarrow E A \quad\{L . m=A . m+1, L . m=\max (E . m, L . m)\} \\
& A \rightarrow, L \quad\{A . m=L . m, A . m=L . m\} \\
& A \rightarrow \varepsilon \quad\{A . m=0, A . m=0\}
\end{aligned}
$$

