
Syntax Directed Definitions

SDD with acyclic topological sort

S-attributed

If every attribute is synthesized the SDD is said S-attributed, in such a
case an LR parser could even avoid the explicit derivation of the parse
tree

L-attributed

Each attribute in the SDD satisfies one of the following conditions:
I it is synthesized
I it is inherited but it depends only from attributes on siblings on the

left or inherited attributes associated to the parent symbol
I it is inherited or synthesized from attributes from the same symbol

in a way that cycles are not generated

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 13 / 34

Syntax Directed Definitions

Semantic rules with controlled side effects

Side effects

A side effect consists of program fragment contained with semantic
rules. It is necessary to control side effects is SDD in two possible
ways:

I Permit incidental side effects
I Constraint admissible evaluation orders so to have the same

translation with any admissible order.

Why to use them?

I to associate actions to carry on with specific steps of the compiler
I to print messages for the user useful during compilation
I to check correctness related aspects (e.g. types)

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 14 / 34

Syntax Directed Definitions

Semantic rules with controlled side effects

Side effects

A side effect consists of program fragment contained with semantic
rules. It is necessary to control side effects is SDD in two possible
ways:

I Permit incidental side effects
I Constraint admissible evaluation orders so to have the same

translation with any admissible order.

Why to use them?

I to associate actions to carry on with specific steps of the compiler
I to print messages for the user useful during compilation
I to check correctness related aspects (e.g. types)

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 14 / 34

Syntax Directed Definitions

Semantic Rules with side effects
Example

Let’s consider the following grammar:
D ! TL; T ! int|float L ! L1, id|id
Let’s add sematic rules to successively permit type checking

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 15 / 34

Syntax Directed Definitions

Semantic Rules with side effects
Exercise

Let’s consider the following grammar that generates binary numbers
with a decimal point:
S ! L.L|L L ! LB|B B ! 0|1
Design an L-attributed and an S-attributed SDD to make the translation
in decimal numbers

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 16 / 34

Syntax Directed Definitions

Abstract Syntax Tree

Abstract Syntax Tree

Abstract Syntax Tree (AST), or just syntax tree, is a tree representation of the abstract
syntactic structure of source code written in a programming language. Each node of
the tree denotes a construct occurring in the source code. The syntax is “abstract” in
not representing every detail appearing in the real syntax. For instance, grouping
parentheses are implicit in the tree structure, and a syntactic construct like an
if-condition-then expression may be denoted by means of a single node with three
branches.
Syntax trees are useful for translation purpose making the phase much easier.

Let’s consider the sentence (a + b) ⇤ 5 over the grammar:
E ! TE 0 E 0 ! +TE 0|✏ T ! FT 0 T 0 ! ⇤FT 0|✏ F ! (E)|id|num

Let’s build the parse tree and the AST

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 17 / 34

Syntax Directed Definitions

Using SDDs to build AST

To build a syntax tree two different kind of nodes need to be created, the leaves
(Leaf (op, val)) and the internal nodes (Node(op, c1, . . . , cn)). In the following consider
the sentence a � 4 + c.

1 Let’s built an SDD with actions permitting to derive the syntax tree for
expressions grammar in the form suitable for LR parsing.
E ! E1 + T , E ! E1 � T , E ! T , T ! (E), T ! id, T ! num

2 Let’s repeat the exercise for an expression grammar parsable by LL parsers.
E ! TE 0, E 0 ! +TE 0

1, E 0 ! �TE 0
1, E 0 ! ✏, T ! (E), T ! id, T ! num

Towards type checking

Let’s now consider the case of a grammar for type definition:
T ! BC, B ! int, B ! float, C ! [num]C, C ! ✏
Define sematics rules to assign a type to an expression and try it on the sentence:

int[2][3]

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 18 / 34

	Semantic Analysis: the problem
	Syntax Directed Definitions
	Syntax Directed Translation Schemes

