
Syntax Directed Translation Schemes

SDT for L-attributed definitions

Assuming a pre-order traversal of the parse tree we can transform a
L-attributed SDD in a SDT as follows:

1 action computing inherited attributes must be computed before the
occurrence of the non terminal. In case of more inherited
attributes for the same non terminal order them as they are
needed

2 actions for computing synthesized attributes go at the end of the
production

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 29 / 34

Syntax Directed Translation Schemes

Example

Consider the production:

S ! while (C) S1

assuming the “traditional” semantics for this
statement let’s generate the intermediate
code assuming a three-address code where
three control flow statements are generally
used:

I ifFalse x goto L

I ifTrue x goto L

I goto L

Intermediate Code Structure

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 30 / 34

Syntax Directed Translation Schemes

Example

Consider the production:

S ! while (C) S1

assuming the “traditional” semantics for this
statement let’s generate the intermediate
code assuming a three-address code where
three control flow statements are generally
used:

I ifFalse x goto L

I ifTrue x goto L

I goto L

Intermediate Code Structure

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 30 / 34

Syntax Directed Translation Schemes

while statement - rationale

The following attributes can be used to derive the translation:
I S.next : labels the beginning of the code to be executed after S is

finished
I S.code: sequence of intermediate code steps that implements the

statement S and ends with S.next
I C.true: label for the code to be executed if C is evaluated to true
I C.false: label for the code to be executed if C is evaluated to false
I C.code: sequence of intermediate code steps that implements the

condition C and jumps to C.true or to C.false depending on the
evaluation

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 31 / 34

Syntax Directed Translation Schemes

while statement - SDD and SDT

SDD

S ! while (C) S1 L1 = new();
L2 = new();
S1.next = L1;
C.false = S.next ;
C.true = L2
S.code = label||L1||C.code||label||L2||S1.code

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 32 / 34

Syntax Directed Translation Schemes

while statement - SDD and SDT

Note for the translation:

L1 and L2 can be treated as synthesized attributes for dummy nonterminals and
can be assigned to the first action in the production

SDT

S ! while ({L1 = new(); L2 = new(); C.false = S.next ;
C.true = L2; }

C) {S1.next = L1; }
S1 {S.code = label||L1||C.code||label||L2||S1.code}

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 33 / 34

Syntax Directed Translation Schemes

while statement - SDD and SDT

Note for the translation:

L1 and L2 can be treated as synthesized attributes for dummy nonterminals and
can be assigned to the first action in the production

SDT

S ! while ({L1 = new(); L2 = new(); C.false = S.next ;
C.true = L2; }

C) {S1.next = L1; }
S1 {S.code = label||L1||C.code||label||L2||S1.code}

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 33 / 34

Syntax Directed Translation Schemes

Implementing L-attributed SDD
Translation can be performed according to two different strategies:

traversing a parse tree
during parsing

Traversing a parse tree

I Build the parse tree and annotate; if the SDD is not circular there
is at least an order of execution that works

I Build the parse tree, add actions, and execute the actions in
preorder; e.g. L-attributed SDDs translated into SDTs

During parsing

I Use a recursive descent parser
I Generate code on the fly
I Implement an SDT in conjunction with an LL-parser
I Implement an SDT in conjunction with an LR-parser

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 34 / 34

Syntax Directed Translation Schemes

Implementing L-attributed SDD
Translation can be performed according to two different strategies:

traversing a parse tree
during parsing

Traversing a parse tree

I Build the parse tree and annotate; if the SDD is not circular there
is at least an order of execution that works

I Build the parse tree, add actions, and execute the actions in
preorder; e.g. L-attributed SDDs translated into SDTs

During parsing

I Use a recursive descent parser
I Generate code on the fly
I Implement an SDT in conjunction with an LL-parser
I Implement an SDT in conjunction with an LR-parser

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 34 / 34

Syntax Directed Translation Schemes

Implementing L-attributed SDD
Translation can be performed according to two different strategies:

traversing a parse tree
during parsing

Traversing a parse tree

I Build the parse tree and annotate; if the SDD is not circular there
is at least an order of execution that works

I Build the parse tree, add actions, and execute the actions in
preorder; e.g. L-attributed SDDs translated into SDTs

During parsing

I Use a recursive descent parser
I Generate code on the fly
I Implement an SDT in conjunction with an LL-parser
I Implement an SDT in conjunction with an LR-parser

(Formal Languages and Compilers) 4. Semantic Analysis I CS@UNICAM 34 / 34

	Semantic Analysis: the problem
	Syntax Directed Definitions
	Syntax Directed Translation Schemes

