
Lexical Analysis: How can we do it? Finite State Automata

Recall of Implementation of LA: Example

Let R be :
d1 = a {TOKEN1}
d2 = abb {TOKEN2}
d3 = a⇤b+ {TOKEN3}

The combined NFA of the three NFAs obtained from d1, d2 and d3
is the following (the NFA for d3 is simplified, actually made
deterministic):

a
1 2

a b b
43 5 6

8
b

7

a b

start

ε

ε

ε

0

(Compilers) 2. Lexical Analysis CS@UNICAM 58 / 65



Lexical Analysis: How can we do it? Finite State Automata

Implementation of LA: Optimisation

The behaviour of the LA can be optimised by determinizing the
NFA and then by minimising the states
The DFA obtained from the combined NFA for R is:

(Compilers) 2. Lexical Analysis CS@UNICAM 59 / 65



Lexical Analysis: How can we do it? Finite State Automata

Implementation of LA: Optimisation

By performing a standard minimisation the following minimal DFA
is obtained:

(Compilers) 2. Lexical Analysis CS@UNICAM 60 / 65



Lexical Analysis: How can we do it? Finite State Automata

Implementation of LA: Optimisation

Let’s scan the input aaba

A
a

��! B, Last_Final = {2}, Input_Pos_at_Last_Final = 1

B
a

��! D

D
b

��! (C,E ,F ), Last_Final = {6, 8},
Input_Pos_at_Last_Final = 3

(C,E ,F ) 6
a

��!
The LA cannot decide which token to output! Final state 6 would
call for TOKEN 2 (incorrect!) and final state 8 would call for
TOKEN 3!

We need to retain the information on the final states!

(Compilers) 2. Lexical Analysis CS@UNICAM 61 / 65



Lexical Analysis: How can we do it? Finite State Automata

Implementation of LA: Optimisation

We must start the minimisation of the DFA by initially splitting the
group of final states into subgroups
A subgroup for each set of reached final states must be created
subgroup 1 = {B} for TOKEN 1 - only final state 2
subgroup 2 = {C,E} for TOKEN 3 - only final state 8
subgroup 3 = {F} for TOKEN 2 and TOKEN 3 - final states {6, 8}
The other non-final states can be grouped together as usual

⇧1 = {(A,D), (B), (C,E), (F )}

(Compilers) 2. Lexical Analysis CS@UNICAM 62 / 65



Lexical Analysis: How can we do it? Finite State Automata

Implementation of LA: Optimisation

The group (A,D) can be refined: A
a

��! B and D
a

��! D

⇧2 = {(A), (D), (B), (C,E), (F )}

The group (C,E) can be refined: C
b

��! C and E
b

��! F

⇧3 = {(A), (D), (B), (C), (E), (F )}
⇧3 cannot be refined further!
The minimal DFA to use for the LA scanning is just the same DFA

(Compilers) 2. Lexical Analysis CS@UNICAM 63 / 65



Lexical Analysis: How can we do it? Finite State Automata

Implementation of LA: Optimisation

Let’s scan the input aaba

A
a

��! B, Last_Final = {2}, Input_Pos_at_Last_Final = 1

B
a

��! D

D
b

��! C, Last_Final = {8}, Input_Pos_at_Last_Final = 3

C 6
a

��!
The LA outputs TOKEN 3 with lexeme aab, then clear the
recognised input and restart

A
a

��! B, Last_Final = {2}, Input_Pos_at_Last_Final = 1
B 6��! end of input
The LA outputs TOKEN 1 with lexeme a, then stops.

(Compilers) 2. Lexical Analysis CS@UNICAM 64 / 65



Lexical Analysis: How can we do it? Finite State Automata

Summary

Lexical Analysis
Relevant concepts we have encountered:

Tokens, Patterns, Lexemes
Chomsky hierarchy and regular languages
Regular expressions
Problems and solutions in matching strings
DFA and NFA
Transformations

RegExp ! NFA
NFA ! DFA
DFA ! Minimal DFA

Implementation and optimisation of LA

(Compilers) 2. Lexical Analysis CS@UNICAM 65 / 65


	Lexical Analysis: What does a Lexer do?
	Short Notes on Formal Languages
	Lexical Analysis: How can we do it?
	Regular Expressions
	Finite State Automata


