
Master of Science in Computer Science - University of Camerino

Formal Languages and Compilers A. Y. 2018/2019

Written Test of 21st February 2019 (Appello II)

Teacher: Luca Tesei

NOTE: Regular expressions should be written using the usual rules of precedence: the ⇤ operator has

precedence on concatenation, which has precedence on the | operator. The notation (r)+ can be used

with the usual meaning.

EXERCISE 1 (10 points)

Consider the following automaton:

0 1 2

ε

a,b

a,b

c

dc

1. Express the language accepted by the automaton using a regular expression

2. Is the automaton deterministic? Justify your answer and if the answer is no, then give an equivalent

deterministic automaton.

3. Is the given deterministic automaton minimum? Justify your answer.

SOLUTION

There are three possible paths leading to an accepting state: c⇤, c⇤(a|b)+cd⇤ and c⇤d⇤. Putting all together
in a unique regular expression we get:

c⇤(✏ | (a|b)+c)d⇤

The automaton is not deterministic because it contains an ✏-transition. By using the subset construction

algorithm we get the following equivalent deterministic automaton (represented as a table). A is the initial

state, A and C are accepting states:

a b c d
A = {0, 2} B B A C
B = {1} B B C
C = {2} C

The resulting automaton has three states. We can complete the automaton by adding a dead state and

we can proceed with the partition refinement algorithm to minimise it. The result is that no states can

be equivalent, so the automaton is already minimum.

EXERCISE 2 (12 points)

Consider the following grammar:

S ! bSb | aAbB
A ! cA | cb
B ! aBc | ca

1. Write formally the language generated by the grammar as a set of strings.

2. Is the grammar LR(1)? Justify your answer and, if the answer is yes, give the table of a bottom-up

shift-reduce parser for the grammar.

SOLUTION

L = {bn a cm c b b ak c a ck bn | n,m, k � 0}

Let us first try to determine if the grammar is SLR(1). If this is true, then it is also LR(1). The following

is the canonical collection of LR(0) items.

I0 =
S 0 ! ·S
S ! ·bSb
S ! ·aAbB

I1 = goto(I0, S) = S 0 ! S·

I2 = goto(I0, b) =
S ! b · Sb
S ! ·bSb
S ! ·aAbB

I3 = goto(I0, a) =
S ! a · AbB
A ! ·cA
A ! ·cb

I4 = goto(I2, S) = S ! bS · b
goto(I2, b) = I2

goto(I2, a) = I3
I5 = goto(I3, A) = S ! aA · bB

I6 = goto(I3, c) =

A ! c · A
A ! c · b
A ! cA·
A ! ·cb

I7 = goto(I4, b) = S ! bSb·

I8 = goto(I5, b) =
S ! aAb · B
B ! ·aBc
B ! ·ca

I9 = goto(I6, A) = A ! cA·
I10 = goto(I6, b) = A ! cb·
goto(I6, c) = I6
I11 = goto(I8, B) = S ! aAbB·

I12 = goto(I8, a) =
B ! a · Bc
B ! ·aBc
B ! ·ca

I13 = goto(I8, c) = B ! c · a
I14 = goto(I12, B) = B ! aB · c

goto(I12, a) = I12
goto(I12, c) = I13

I15 = goto(I13, a) = B ! ca·
I16 = goto(I14, c) = B ! aBc·

There are no conflicts in the states, thus the grammar is SLR(1). We have FOLLOW(S) = {$, b},
FOLLOW(A) = {b} and FOLLOW(B) = {c, b, $}. The table for the corresponding deterministic bottom-

up shift-reduce parser is the following:

a b c $ S A B
0 s3 s2 1

1 acc

2 s3 s2 4

3 s6 5

4 s7

5 s8

6 s10 s6 9

7 r1 r1

8 s12 s13 11

9 r3

10 r4

11 r2 r2

12 s12 s13 14

13 s15

14 s16

15 r6 r6 r6

16 r5 r5 r5

EXERCISE 3 (10 points)

Consider a language of types. A type can be integer, real or record. record types contain fields that

can have type integer, real or record. As an example consider the following two type expressions of this

language: real and
rec

i: real,
j: rec

k: integer,
l: real

endrec,
m: integer

endrec

1. Define a Syntax Directed Translation Scheme suitable to be implemented during top-down parsing

for this language. The SDT has to construct, during the parsing, a structure that, for the examples

given above, should look like the following figure:

The following operations can be used to construct the structure, whose pointers are called StructPointer:

• newType : String ⇥ StructPointer ! StructPointer, e.g. newType(real, null) creates
a structure representing the simple type real (the first example given);

• newField : String⇥ StructPointer⇥ StructPointer ! StructPointer,
e.g. newField(l,newType(real, null), null) creates the sub-structure corresponding to the

field l in the bottom-right part of the figure above.

For identifiers, the token id can be used and the corresponding attribute id.name can be used to obtain

the string of the lexeme of the identifier.

SOLUTION

The solution is in the following pages.

¥31
Let us define a suitable grammar for the Cengage

To integer I need s

S → re aid : T R

R →

, id : T R tenda

The grammer is LLC 2) ;
the following is the bearing table

in
:÷÷µ:fit .

: m .

S Souci . . .

R Ros
,
id . . Rs endue

Bessy on this LL (2) grammar we can derive an SDT

thet au be implemented during the top - down penny .

We define for Symbols T
,
S and R e synthesized

attribute p
C for pointer) of type Stunt Pointer

.

The SDT is the following

Tms integer I T . p = new Type (
"

integer
"

,
mace) }

To red I T . p = new Type (
"

red
"

,
nice) }

To S f T . p -

-

S
. p }

S → re id : T R f S .p= new Type (" uc
"

,

new Field (id .name
,
T

. p
,
R

. p)) }

Rn
, id : T Rz f R . p

-

- new Field (id . name
,
Tp

,

R2
. p) }

Rs endure{ R . p = mule }

