Master of Science in Computer Science - University of Camerino Formal Languages and Compilers A. Y. 2018/2019 Written Test of 21st February 2019 (Appello II) Teacher: Luca Tesei

NOTE: Regular expressions should be written using the usual rules of precedence: the $*$ operator has precedence on concatenation, which has precedence on the | operator. The notation $(r)^{+}$can be used with the usual meaning.

EXERCISE 1 (10 points)

Consider the following automaton:

1. Express the language accepted by the automaton using a regular expression
2. Is the automaton deterministic? Justify your answer and if the answer is no, then give an equivalent deterministic automaton.
3. Is the given deterministic automaton minimum? Justify your answer.

SOLUTION

There are three possible paths leading to an accepting state: $c^{*}, c^{*}(a \mid b)^{+} c d^{*}$ and $c^{*} d^{*}$. Putting all together in a unique regular expression we get:

$$
c^{*}\left(\epsilon \mid(a \mid b)^{+} c\right) d^{*}
$$

The automaton is not deterministic because it contains an ϵ-transition. By using the subset construction algorithm we get the following equivalent deterministic automaton (represented as a table). A is the initial state, A and C are accepting states:

	a	b	c	d
$A=\{0,2\}$	B	B	A	C
$B=\{1\}$	B	B	C	
$C=\{2\}$				C

The resulting automaton has three states. We can complete the automaton by adding a dead state and we can proceed with the partition refinement algorithm to minimise it. The result is that no states can be equivalent, so the automaton is already minimum.

$$
\text { EXERCISE } 2 \text { (12 points) }
$$

Consider the following grammar:

$$
\begin{aligned}
& S \rightarrow b S b \mid a A b B \\
& A \rightarrow c A \mid c b \\
& B \rightarrow a B c \mid c a
\end{aligned}
$$

1. Write formally the language generated by the grammar as a set of strings.
2. Is the grammar $\operatorname{LR}(1)$? Justify your answer and, if the answer is yes, give the table of a bottom-up shift-reduce parser for the grammar.

SOLUTION

$$
L=\left\{b^{n} a c^{m} c b b a^{k} c a c^{k} b^{n} \mid n, m, k \geq 0\right\}
$$

Let us first try to determine if the grammar is $\operatorname{SLR}(1)$. If this is true, then it is also $\operatorname{LR}(1)$. The following is the canonical collection of $\operatorname{LR}(0)$ items.

$I_{0}=\begin{aligned} & S^{\prime} \rightarrow \cdot S \\ & S \rightarrow \cdot b S b \\ & S \rightarrow \cdot a A b B \end{aligned}$	$I_{1}=\operatorname{goto}\left(I_{0}, S\right)=S^{\prime} \rightarrow S$.
$I_{2}=\operatorname{goto}\left(I_{0}, b\right)=\begin{aligned} S & \rightarrow b \cdot S b \\ S & \rightarrow \cdot b S b \\ S & \rightarrow \cdot a A b B \end{aligned}$	$I_{3}=\operatorname{goto}\left(I_{0}, a\right)=\begin{aligned} S & \rightarrow a \cdot A b B \\ A & \rightarrow \cdot c A \\ A & \rightarrow \cdot c b \end{aligned}$
$\begin{aligned} & I_{4}=\operatorname{goto}\left(I_{2}, S\right)=S \rightarrow b S \cdot b \\ & \operatorname{goto}\left(I_{2}, b\right)=I_{2} \end{aligned}$	$\begin{aligned} & \operatorname{goto}\left(I_{2}, a\right)=I_{3} \\ & I_{5}=\operatorname{goto}\left(I_{3}, A\right)=S \rightarrow a A \cdot b B \end{aligned}$
$I_{6}=\operatorname{goto}\left(I_{3}, c\right)=\begin{aligned} A & \rightarrow c \cdot A \\ A & \rightarrow c \cdot b \\ A & \rightarrow c A \cdot \\ A & \rightarrow \\ & c b \end{aligned}$	$I_{7}=\operatorname{goto}\left(I_{4}, b\right)=S \rightarrow b S b$.
$I_{8}=\operatorname{goto}\left(I_{5}, b\right)=\begin{aligned} & S \rightarrow a A b \cdot B \\ & B \rightarrow \cdot a B c \\ & B \rightarrow \cdot c a \end{aligned}$	$\begin{aligned} & I_{9}=\operatorname{goto}\left(I_{6}, A\right)=A \rightarrow c A . \\ & I_{10}=\operatorname{goto}\left(I_{6}, b\right)=A \rightarrow c b . \\ & \operatorname{goto}\left(I_{6}, c\right)=I_{6} \\ & I_{11}=\operatorname{goto}\left(I_{8}, B\right)=S \rightarrow a A b B . \end{aligned}$
$I_{12}=\operatorname{goto}\left(I_{8}, a\right)=\begin{aligned} B & \rightarrow a \cdot B c \\ B & \rightarrow \cdot a B c \\ B & \rightarrow \cdot c a \end{aligned}$	$\begin{aligned} & I_{13}=\operatorname{goto}\left(I_{8}, c\right)=B \rightarrow c \cdot a \\ & I_{14}=\operatorname{goto}\left(I_{12}, B\right)=B \rightarrow a B \cdot c \end{aligned}$
$\begin{aligned} & \operatorname{goto}\left(I_{12}, a\right)=I_{12} \\ & \operatorname{goto}\left(I_{12}, c\right)=I_{13} \end{aligned}$	$\begin{aligned} & I_{15}=\operatorname{goto}\left(I_{13}, a\right)=B \rightarrow c a . \\ & I_{16}=\operatorname{goto}\left(I_{14}, c\right)=B \rightarrow a B c . \end{aligned}$

There are no conflicts in the states, thus the grammar is $\operatorname{SLR}(1)$. We have $\operatorname{FOLLOW}(S)=\{\$, b\}$, $\operatorname{FOLLOW}(A)=\{b\}$ and $\operatorname{FOLLOW}(B)=\{c, b, \$\}$. The table for the corresponding deterministic bottomup shift-reduce parser is the following:

	a	b	c	$\$$	S	A	B
0	s 3	s 2			1		
1				acc			
2	s 3	s 2			4		
3			s 6			5	
4		s 7					
5		s 8					
6		s 10	s 6			9	
7		r 1		r 1			
8	s 12		s 13				11
9		r 3					
10		r 4					
11		r 2		r 2			
12	s 12		s 13				14
13	s 15						
14			s 16				
15		r 6	r 6	r 6			
16		r 5	r 5	r 5			

EXERCISE 3 (10 points)
Consider a language of types. A type can be integer, real or record. record types contain fields that can have type integer, real or record. As an example consider the following two type expressions of this language: real and
rec
i: real,
j: rec
k: integer,
l : real
endrec,
m : integer
endrec

1. Define a Syntax Directed Translation Scheme suitable to be implemented during top-down parsing for this language. The SDT has to construct, during the parsing, a structure that, for the examples given above, should look like the following figure:

The following operations can be used to construct the structure, whose pointers are called StructPointer:

- newType : String \times StructPointer \rightarrow StructPointer, e.g. newType(real, null) creates a structure representing the simple type real (the first example given);
- newField : String \times StructPointer \times StructPointer \rightarrow StructPointer, e.g. newField(l, newType(real, null), null) creates the sub-structure corresponding to the field l in the bottom-right part of the figure above.

For identifiers, the token id can be used and the corresponding attribute id.name can be used to obtain the string of the lexeme of the identifier.

SOLUTION

The solution is in the following pages.

Ex3 Let us define a suitable grammar for the langrage
$T \rightarrow \underline{\text { integer }}|\underline{\text { rel }}| S$
$S \rightarrow$ rec id $: T R$
$R \rightarrow$, id: $T R \mid$ endrec
The grammar is LL(2); the following is the parsing toll

	initepen 2	reel	rec	id			
T	$T \rightarrow$ intern	Tor red	$T \rightarrow S$				

S			$S \rightarrow \underline{\text { rec... }}$					
R								

Basing en this L(2) grammar we can derive au SDT that can be implemented during the top-down parsing.
We define for Symbol T, S and R a synthexzed attribute p (for pointer) of type StructPointer.

The SDT is the following
$T \rightarrow$ integer $\{T . p=$ new Type ("integer", mace) $\}$
$T \rightarrow$ real $\{T \cdot p=\operatorname{new}$ Type ("red", null) \} ~
$T \rightarrow S \quad\{T . p=S . p\}$
$S \rightarrow$ rec id: $T R\left\{\begin{aligned} \text { id } & =\text { new Type ("rec") }\end{aligned}\right.$ new Field (id name, T.p, R.p))\}
$R \rightarrow$, id : $T R_{2} \quad\left\{R_{\cdot p}=\right.$ new Field $(i d$. name,$T \cdot p$, $\left.\left.R_{1}, p\right)\right\}$
$R \rightarrow$ endue $\{R \cdot p=$ mule $\}$

