Master of Science in Computer Science - University of Camerino Compilers A. Y. 2018/2019 Written Test of 23rd July 2019 (Appello V) Teacher: Luca Tesei

NOTE: Regular expressions should be written using the usual rules of precedence: the * operator has precedence on concatenation, which has precedence on the | operator. The notation $(r)^+$ can be used with the usual meaning.

EXERCISE 1 (10 points)

Consider the following automaton:

- 1. Express the language accepted by the automaton using a regular expression
- 2. Is the given automaton minimum? If not, give a minimal equivalent automaton.

EXERCISE 2 (10 points)

Consider the following grammar:

- 1. Write formally the language generated by the grammar as a set of strings.
- 2. Prove that the grammar is not SLR(1).

EXERCISE 3 (12 points)

Consider a language of expressions defined recursively as follows:

(i) a, b, and c are expressions;

(ii) if e is an expression then a(e), b(e) and c(e) are expressions.

Your tasks are:

- 1. Give an LL(1) grammar for the language and provide the parsing table for the top-down parser.
- 2. Define a Syntax Directed Translation Scheme based on the given grammar. The SDT has to compute, for the starting symbol, three attributes: $n_{\mathbf{a}}$, $n_{\mathbf{b}}$ and $n_{\mathbf{c}}$. The values of the attributes must be the number of *a*'s, *b*'s and *c*'s that occur before an open bracket in the expression. For instance, for the expression a(a(b(a(c(b(c))))))) it must result $n_{\mathbf{a}} = 3$, $n_{\mathbf{b}} = 2$ and $n_{\mathbf{c}} = 1$.