Master of Science in Computer Science - University of Camerino
 Compilers A. Y. 2018/2019
 Written Test of 23rd July 2019 (Appello V)
 Teacher: Luca Tesei

NOTE: Regular expressions should be written using the usual rules of precedence: the $*$ operator has precedence on concatenation, which has precedence on the | operator. The notation $(r)^{+}$can be used with the usual meaning.

EXERCISE 1 (10 points)

Consider the following automaton:

1. Express the language accepted by the automaton using a regular expression
2. Is the given automaton minimum? If not, give a minimal equivalent automaton.

EXERCISE 2 (10 points)

Consider the following grammar:

$$
\begin{aligned}
& S \rightarrow a A|B| \epsilon \\
& A \rightarrow a A \mid C \\
& C \rightarrow a C b \mid \epsilon \\
& B \rightarrow C D \\
& D \rightarrow b D \mid b
\end{aligned}
$$

1. Write formally the language generated by the grammar as a set of strings.
2. Prove that the grammar is not $\operatorname{SLR}(1)$.

EXERCISE 3 (12 points)

Consider a language of expressions defined recursively as follows:
(i) a, b, and c are expressions;
(ii) if e is an expression then $a(e), b(e)$ and $c(e)$ are expressions.

Your tasks are:

1. Give an $\operatorname{LL}(1)$ grammar for the language and provide the parsing table for the top-down parser.
2. Define a Syntax Directed Translation Scheme based on the given grammar. The SDT has to compute, for the starting symbol, three attributes: $n_{\mathbf{a}}, n_{\mathbf{b}}$ and $n_{\mathbf{c}}$. The values of the attributes must be the number of a 's, b 's and c 's that occur before an open bracket in the expression. For instance, for the expression $a(a(b(a(c(b(c))))))$ it must result $n_{\mathbf{a}}=3, n_{\mathbf{b}}=2$ and $n_{\mathbf{c}}=1$.
