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NOTE: Regular expressions should be written using the usual rules of precedence: the ⇤ operator has

precedence on concatenation, which has precedence on the | operator. The notation (r)+ can be used

with the usual meaning.

EXERCISE 1 (10 points)

Consider the following automaton:
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1. Express the language accepted by the automaton using a regular expression

2. Is the given automaton minimum? If not, give a minimal equivalent automaton.

SOLUTION

A regular expression that denote the language accepted by the automaton is:

(a | b)⇤ c (a | b) c⇤ a+

The given automaton is deterministic. To answer the question about minimality, let us try to minimise it

to see if some states can be considered equivalent.

First of all let us add a fake state d that will be act as dead state and then we can start the partition

refinement algorithm for the minimisation. The first partition is: (0 1 2 3 4 d) and (5). The following

transitions:

0
a�! 1 3

a�! 5

1
a�! 2 4

a�! 5

2
a�! 4

d
a�! d

induce the split of the first group (0 1 2 3 4 d) into (0 1 2 d) and (3 4) because the latter states, in corre-

spondence of the same label of the transition, end up in a state that belong to a di↵erent group of the

one reached by the former ones. Other alphabet symbols do not distinguish further states. The first step

of minimisation finishes with the new partition: (0 1 2 d), (3 4) and (5).



At the second step we observe that states 3 and 4 cannot be distinguished by any transition, thus for

this step their group remain the same. Instead, regarding group (0 1 2 d) we notice that:

0
a�! 1 0

b�! 0

1
a�! 2 1

b�! 1

2
a�! 4 2

b�! 3

d
a�! d d

b�! d

Thus, state 2 can be distinguished from the others in its group by the transitions of symbol a and b.
Symbol c does not induce any di↵erence. The new partition at the end of step 2 is (0 1 d), (2), (3 4) and
(5).

At the third step, again states 3 and 4 cannot be distinguished. Instead, for the first group we have:

0
c�! 2

1
c�! 2

d
c�! d

Thus, state d can be distinguished from state 1 and 2. Symbols a and b do not induce other di↵erences.

The new partition is: (0 1), (2), (3 4), (5) and (d).
At the fourth step we observe that both states 3, 4 and states 0, 1 are still indistinguishable. Therefore

the algorithm stops because no further splits are possibile. If we don’t draw state d, a minimal automaton

is the following one:

0 1 5
a

{a, b}

c {a, b}
2 3 4

c a

EXERCISE 2 (10 points)

Consider the following grammar:

S ! aA | B | ✏
A ! aA | C
C ! aCb | ✏
B ! CD
D ! bD | b

1. Write formally the language generated by the grammar as a set of strings.

2. Prove that the grammar is not SLR(1).

SOLUTION

The language generated by the grammar is:

L(S) = {✏} [ {an am bm | n > 0,m � 0} [ {am bm bn | m � 0, n > 0}
= {✏} [ {an bm | n > m � 0} [ {an bm | 0  n < m}
= {✏} [ {an bm | n,m � 0, n 6= m}

The proof that the grammar is not SLR(1) is in the following page.
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EXERCISE 3 (12 points)

Consider a language of expressions defined recursively as follows:

(i) a, b, and c are expressions;

(ii) if e is an expression then a(e), b(e) and c(e) are expressions.

Your tasks are:

1. Give an LL(1) grammar for the language and provide the parsing table for the top-down parser.

2. Define a Syntax Directed Translation Scheme based on the given grammar. The SDT has to

compute, for the starting symbol, three attributes: na, nb and nc. The values of the attributes

must be the number of a’s, b’s and c’s that occur before an open bracket in the expression. For

instance, for the expression a(a(b(a(c(b(c)))))) it must result na = 3, nb = 2 and nc = 1.

SOLUTION

To obtain an LL(1) grammar we avoid left-recursion:

S ! aS 0 | bS 0 | cS 0

S 0 ! (S) | ✏

It results FOLLOW(S) = FOLLOW(S 0) = {$, )}. The table for the predictive parser is the following one:

a b c ( ) $
S S ! aS 0 S ! bS 0 S ! cS 0

S 0 S 0 ! (S) S 0 ! ✏ S 0 ! ✏

Since there are not multiply defined entries, the grammar is LL(1).

We define a simple SDT resulting from an SDD with only synthesised attributes. We define the three

attributes for both symbols S and S 0
plus a boolean synthesised attribute ` for the symbol S 0

. This `
attribute is needed to signal that the base case of the recursion occurred, therefore the corresponding

symbol should not be counted. The SDT follows:

S ! a S 0 {S.na = S 0.na + if (S 0.`) then 0 else 1; S.nb = S 0.nb; S.nc = S 0.nc}
S ! b S 0 {S.na = S 0.na; S.nb = S 0.nb + if (S 0.`) then 0 else 1; S.nc = S 0.nc}
S ! c S 0 {S.na = S 0.na; S.nb = S 0.nb; S.nc = S 0.nc + if (S 0.`) then 0 else 1}
S 0 ! ( S ) {S 0.na = S.na; S 0.nb = S.nb;S 0.nc = S.nc; S 0.` = false}
S 0 ! ✏ {S 0.na = 0; S 0.nb = 0;S 0.nc = 0; S 0.` = true}


