Foundational Calculi for Network Aware
Programming
— An Assessment from a Programming Perspective —

GIANLUIGI FERRARI

Dipartimento di Informatica, Universita di Pisa

and

ROSARIO PUGLIESE

Dipartimento di Sistemi e Informatica, Universita di Firenze
and

EMILIO TUOSTO

Dipartimento di Informatica, Universita di Pisa

We classify and evaluate a number of foundational calculi for network-aware programming. The
benefits and drawbacks of each calculus and its appropriateness to express metaphors for network-
aware programming are evaluated along three different guidelines: the programming abstractions
the calculus suggests; the underlying programming model; the security mechanisms provided.
This evaluation will help in understanding the potentials and the advantages of using foundational
calculi in the design of new programming languages for network-aware programming.

Categories and Subject Descriptors: [[:

General Terms: Design, Languages, Security, Theory
Additional Key Words and Phrases: Programming Languages, Mobile Code, Network-Aware
Programming, Foundational Calculi, Computation Models

1. INTRODUCTION

Highly distributed systems and networks have now become a common platform for
wide-area network (WAN) applications which use network facilities to access remote
recourses and services. WAN applications distinguish themselves from traditional
distributed applications not only in terms of scalability (huge number of users and
nodes), connectivity (both availability and bandwidth), heterogeneity (operating

Author’s addresses: G. Ferrari, Dipartimento di Informatica, C.so Italia 40, 56125 Pisa, Italy,
e-mail: giangi@di.unipi.it;

R. Pugliese Dipartimento di Sistemi e Informatica, Via Lombroso 6/17, 50134 Florence, Italy,
e-mail: pugliese@dsi.unifi.it;

E. Tuosto, Dipartimento di Informatica, C.so Italia 40, 56125 Pisa, Italy, e-mail:
etuosto@di.unipi.it.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

2 . GIANLUIGI FERRARI et al.

systems and application software) and autonomy (of administration domains hav-
ing strong control of their resources), but particularly in terms of the ability of
dealing with dynamic and unpredictable changes of their network environment (e.g.
availability of network connectivity, lack of resources, node failures, network recon-
figurations and so on). The crucial point is that WAN applications are network-
aware: WAN applications are aware of the sites (administrative domains) where
they are currently located and of how they can cross and move to other sites.
Several researchers have proposed to use mobility as the basic mechanism to
support network-aware programming, namely to program WAN applications. In
the literature the term mobility is used to denote different mechanisms, ranging
from simple mechanisms, which only provide the ability of downloading code for
execution (e.g. [Arnold and Gosling 1997]), to more sophisticated ones, which
support migration of entire computations (e.g. [White 1996; Acharya et al. 1997;
Lange and Oshima 1998]). We can distinguish among at least five forms of mobility:

- mobile computing concerns computations that are executed on mobile devices
- mobile net concerns dynamic reconfiguration of networks;

- mobile code concerns migration (or downloading) and evaluation of executable
code;

- mobile process concerns migration of both code and state;

- mobile agents concerns migration of code, state and authority to act on behalf of
a principal on a wide-area network.

A number of useful WAN applications have been developed by experienced pro-
grammers using standard programming paradigms (e.g. Client-Server); however
such applications are often a collections of ad hoc modules glued together with ad
hoc mechanisms without any (semantic) foundation. Semantic foundations could
play a central role to prove and to certify correctness of WAN applications. Hence,
a key challenge is to identify what programming abstractions are most suitable
for network-aware programming and to provide foundational and effective tools to
support the development and certification (establishing and proving correctness) of
WAN applications.

Foundational calculi have been used to provide formal foundations to the design
of programming languages. A foundational calculus is both a kernel program-
ming language and a computational model for describing and reasoning about the
behaviour of programs. It provides a formal basis to identify and generate new
programming abstractions and analytical tools. A well-known example of founda-
tional calculus for programming languages is provided by the A-calculus (and its
enrichments).

Network-aware programming has prompted the study of the foundations of pro-
gramming languages with advanced features including mechanisms for agent mo-
bility, for managing security, and for coordinating and monitoring the use of re-
sources. Recently, some foundational calculi have been designed that tackle most of
the phenomena related to network-aware programming. Their programming mod-
els encompass abstractions to represent the execution contexts of the net where
applications roam and run, and mechanisms to support the specification and the
implementation of security policies.

ACM Transactions on Document Formatting, Vol. 7, No. 7, 2007.

Foundational Calculi for Network Aware Programming . 3

This paper aims at analyzing a few foundational calculi for network-aware pro-
gramming and at demonstrating how these calculi can be used as a basis in the
design of new programming languages. We have chosen to focus on a list of repre-
sentative foundational calculi that have been proposed in the literature. In partic-
ular, we evaluate and compare:

—The Distributed 7-calculus: D [Hennessy and Riely 1998; ; Riely and Hennessy
1999;],

—The Distributed join-calculus: Djoin [Fournet and Gonthier 1996; Fournet
et al. 1996; Abadi et al. 1998],

—The KLAIM kernel calculus: KLAIM [De Nicola et al. 1998; 1999; De Nicola et al.
2000],

—The Ambient calculus: Ambient [Cardelli and Gordon 2000; 1999; Cardelli et al.
1999].

To discuss the differences among the calculi, we do not consider a common formal
framework. Instead, we propose to evaluate each calculus and its appropriateness to
express metaphors for network-aware programming along three different guidelines:

—The programming abstractions the calculus suggests;
—The underlying programming model;
—The security mechanisms provided.

The rest of the paper is organized as follows. In Section 2, we briefly review
the m-calculus and its asynchronous variant; both calculi can be considered as the
common building blocks for all the other foundational calculi we are concerned with
in the paper. These calculi, together with some simple programming examples, are
presented in Sections 3, 4, 5 and 6. In Section 7, by means of a case study taken from
an e-commerce scenario, we compare the programming abstractions of the calculi in
terms of their suitability for structuring network-aware applications. In Section 8,
we describe the security mechanisms provided by the calculi. In Section 9, we
evaluate and compare the calculi. In Section 10, we briefly point out some related
work.

2. w-CALCULUS AND ASYNCHRONOUS #-CALCULUS

The 7w-calculus [Milner et al. 1992] is the best known example of core calculus for
mobility. The calculus is centered around the notion of naming: mobility is achieved
via name passing. Hereafter, we assume as given an infinite set of names A and
use lowercase latin letters (a,b,...,z,y,...) as meta-variables over N. As usual
we identify two terms if one can be obtained from the other by alpha-renaming;
indeed all the semantics issues will be defined up to the congruence induced by
alpha-renaming, also when this is not explicitly mentioned.

The syntaz of the m-calculus! is given in Table I. A process may be the void pro-
cess, a process prefixed by an output action, a process prefixed by an input action,
the (unbounded) replication of a process, the parallel composition of processes, the

1Here we do not consider the non-deterministic sum operator because it is not used by any of the
foundational calculi for network-aware programming.

ACM Transactions on Document Formatting, Vol. 7, No. 7, 2007.

4 . GIANLUIGI FERRARI et al.

Table I. (sum-free) n-calculus syntax

p = 0 Null process

| ab.p Output

| a(b).p Input

| p Replication

\ plq Composition

\ (va)p Restriction

\ [a=b]p Matching

| [a # blp Mismatching

Table II. w-calculus structural congruence

(MoNOID) | is associative and commutative, and 0 is its identity
(scopE) plva)g = (va)(plq) ifa¢fn(p)
(RES) (va) (wb)p = (vb) (va)p
(N1L1) (va)o = 0
(N1L2) 0 = 0
(BANG) b = »plp
(MATCH) [a=alp = p

scope restriction of a name, or a process guarded by an equality or by an inequal-
ity between names. The prefix and the restriction combinators a(b).— and (vb) —
act as binders for name b with scope the argument process. However, they have
different natures: in the first case, b indicates the placeholders where the received
name must be placed; in the second case, b is a new, private name. Notions of free
names of a process p, £n(p), of bound names of p, bn(p), and of substitution arise
as expected; n(p) = fn(p) U bn(p) is the set of names of p. We shall write £n(p, q)
in place of fn(p) U fn(q) (similarly for bn(-) and n(-)). Finally, in a(b) and in @b, a
is called the subject and b is called the object.

We assume the following syntactic conventions: ab.p | ¢ stands for (ab.p) | g,
a(b).p | gfor (a(b).p) | ¢,'p | gfor (!p) | ¢, (va)p | gfor (va)p) | gand (vai...am)p
for (vay)...(vam)p. Moreover, trailing occurrences of 0 shall usually be omitted.
Hereafter, a name declared fresh in a statement is assumed to be different from any
other name there occurring.

The operational semantics of the w-calculus is defined using a structural congru-
ence and a reduction relation. The structural congruence, =, is defined as the least
congruence relation over processes that satisfies the axioms in Table II. The struc-
tural congruence basically provides an equational algebra for manipulating and re-
arranging processes, thus simplifying the operational rules that define the reduction
relation. For instance, process a(b).bc | (vd)ad is rearranged to (vd)(a(b).be | a@d)
by opening the scope of the v operator. Moreover, structural congruence performs
some garbage collection of dead processes and handles replication (!p stands for an
unlimited number of copies of p running in parallel) and equality on names.

The reduction relation is defined by the rules in Table III. Rule (CoM) says that
an output and an input action with the same subject do synchronize. When the
communication takes place, the output is consumed and the object of the output
(i.e. the name exchanged in the communication) replaces the free occurrences
(placeholders) of the object of the input action in its continuation process. Rules
(PAR), (RES) and (MISM) state that the behaviour of a process is context invariant.
Finally, rule (CONG) ensures that the structural equivalence does not modify the

ACM Transactions on Document Formatting, Vol. 7, No. 7, 2007.

Foundational Calculi for Network Aware Programming . 5

Table III. w-calculus reduction relation

p—p

(com) a(b).p | ac.g — ple/b] | q (PAR) —————

plg—1p|q
pP—9q p—p a#b
(RES) - (MISM) ——M
(va)p — (va)q [a #blp — p'

p=q ¢q—q¢ 4 =7
(cong)

behaviour of processes.

The asynchronous m-calculus [Honda and Tokoro 1991; Boudol 1992; Amadio
et al. 1996], 7, for short, is a simple variant of the w-calculus where asynchrony
is achieved by imposing the void continuation to the output actions. In other
words, the (synchronous) m-calculus uses both input and output actions as prefixes
while 7, has only input actions. Although from a theoretical point of view m, is
less expressive than w-calculus [Palamidessi 1997], 7, is still enough expressive in
practice [Honda and Tokoro 1991].

The operational semantics of 7, can be defined like that of 7-calculus; the only
difference is that rule (coM) is replaced by rule

(comy,) a(b).p | ac — plc/b].

The calculi considered in this paper build up on the polyadic versions of w-calculus
[Milner 1993] and m,. In these variants, tuples of names can be exchanged in
communications. We will use ~ to denote a tuple of objects and {} to denote the
set of the components of =. The input and output prefixes of polyadic m-calculus

can then be written as a(b) and a{b), respectively (when b is empty, they become a
and @()).

To simplify the presentation of the examples, in all the calculi we consider in
this paper, we assume the existence of a set of basic data types, such as integers,
strings and booleans, that can be exchanged in communications. Moreover, when
defining terms, we will sometimes write A £tto assign the name A to the term t.
After that, A can be used in place of ¢ to make other term definitions shorter. This
notation is not intended to increase the expressive power of the languages (thus,
for instance, A cannot occur in t) but only as a useful shorthand.

The w-calculus and its asynchronous variant 7, can naturally describe networks
which reconfigure their communication linkages (net mobility)2. In the following
example, borrowed from [Milner et al. 1992], we show three processes that dynam-
ically change their connections. This example also shows that alpha-renaming is
crucial to avoid captures of free names when the scope of the restriction operator
changes. Consider the following 7, process

S=c(z)p| (va)@alq|r)

2However, process mobility can be elegantly codified [Sangiorgi 1992].

ACM Transactions on Document Formatting, Vol. 7, No. 7, 2007.

6 . GIANLUIGI FERRARI et al.

,,,,,,,,,,,,,,,,,,,,,,,,

scope of a scope of b

Fig. 1. Evolution of process S

and suppose that a occurs free in p and in ¢, and not in r. Let b ¢ fn(p | 7 | ¢) and
b # ¢; by using alpha-renaming and (SCOPE), we can rearrange S as follows:

S = (vb)(c(x)-p | eb | glb/a] | 7).

In this rearrangement the scope of the (private) name a is extruded to process p,
and an alpha-conversion is necessary to avoid clashes with the free occurrences of
a in p (which actually denote a different channel). To this aim, we take a fresh
(i.e. not used before) name b and change the bound occurrences of a with b in
(calq|m).

Now, by applying the reduction rules (COM,), (PAR) and (RES) and the structural
law (MONOID), we get the reduction

S — (vb)(p[b/=] | glb/a] | 7).

As a consequence of the communication at ¢, a new link (i.e. a new communication
channel) is established between the existing processes p and ¢. This is obtained by
sending the private name b by which p and ¢ may interact. The behaviour of S is
pictorially represented in Figure 1.

3. DISTRIBUTED 7-CALCULUS

The Distributed n-calculus (D7 for short) [Hennessy and Riely 1998] extends the
polyadic m-calculus with explicit locations, located channels and with primitives
for process mobility. Locations reflect the idea of having administrative domains
and located channels can be thought of as channels under the control of certain
authorities.

The syntaz® of the calculus is in Table IV. To improve readability, we will use
a, b, ¢ ... as channel names, and h, k, £, ... as location names; we use e, f, ...
when the distinction does not play any role. Intuitively, a system consists of a
set of allocated threads, £[p], running independently in parallel, where the scope of
some channel and location names can be restricted. Threads are essentially polyadic
m-calculus processes that can additionally create new locations or names ((v e)p)
and migrate to other locations (£ :: p). In D= tuples of allocated channels and
location names can be transmitted over channels. The conditional (if) corresponds

3In this section we do not consider the D7 type system and its application to security. Therefore,
we removed all the type expressions in the grammar while maintaining the “original” semantics.

ACM Transactions on Document Formatting, Vol. ?, No. 7, 2007?.

Foundational Calculi for Network Aware Programming . 7

Table IV. D7 syntax

Systems P—-R = 0 Null system
| P|Q Composition
| (ve)P Restriction
| £[p] Allocated thread

Threads p—r = 0 Null process
| plyq Composition
| (ve)p Restriction
| uip Migration
| w(U).p Output
| u(X).p Input
| p Replication
| if u = v then p else ¢ Conditional

Identifiers u —w = e |z

Pattens X —Z = x| z[#] | X

Values U-W o= wu|wd | U

Table V. D structural equivalence
(NIL) £[0] 0
(spLiT) fpla] = £p]] €]
(ITR) fq'pl = Lp]|Lp]
(vewc) {(va)p] = (va){[p]
(NEWL) Lvk)p] = (vk)p] ifk #1¢
(exTR) Q[(ve)P = (ve)(Q|P) ifeg fn(Q)

to the matching and mismatching operators of the w-calculus. The definitions of
free and bound names are similar to those for 7-calculus. By convention, £ :: p | ¢
will stand for (£ :: p) | g.

The operational semantics exploits a structural equivalence, =, which is the least
equivalence relation over processes that is closed under composition and restriction,
and satisfies the laws in Table V and the corresponding laws for D7 systems of laws
(MoNoOID) and (RES) in Table II. The laws in Table V are essentially obtained by
tailoring 7-calculus laws to D7 systems.

The reduction relation is defined by the rules in Table VI plus the corresponding
rules for D7 systems of rules (PAR), (RES) and (CONG) in Table III. Rule (MOVE)
says that an agent p can move from location £ to k. Rule (COMM) says that two
processes can communicate by performing complementary input and output actions
at the same channel but only if they are located at the same location. This rule
assumes the existence of a pattern substitution mechanism. We will not define this
mechanism formally as it is the intuitive one, i.e. patterns and values are tuples
with the same structure. The conditional behaves as expected (rules (THEN) and
(ELSE)). Notice that the conditional can be expressed in terms of the composition
of the matching and mismatching constructs of the 7-calculus.

To give a flavour of the D7 programming model we show the code of a mobile
counter, Cnt, that initially runs at location h. The counter is initialized to value n

ACM Transactions on Document Formatting, Vol. 7, No. 7, 2007.

8 . GIANLUIGI FERRARI et al.

Table VI. D= reduction relation

(MOVE) Lk=p] — Kk[p]

(comm) aU).p] | fa(X).q] —> Lp] | g{U/X}]
(THEN) [([if e=ethenpelseq] — {[p]

(ELSE) life=dthenpelseq) — {q ife#d

and uses the global names inc, dec, val and jmp to interact with the environment*:

Cnt £ h[(vai)@(h).i(n)
| la(£).i(x).L :: (ve)e(z)
| line(z]y]).c(x)-
| ldec(z[y]).c(z).(¢(z — :
| wal(z[y]).c(z).(&(x) | 2 :: y{z)
)l)]jmp(ﬁ’) o(x).h all').i{z)

The counter can be regarded as an abstract object: a process willing to interact
with Cnt can only use the interface, i.e. the global channel names inc, dec, val
and jmp, and has no control over the private channels a and i. Clients can require
standard services (i.e. inc, dec and val) by transmitting an allocated channel (z[y]);
Cnt will return the result of the service at the channel y located at z. Clients
can also ask the counter to move to a different location by sending the destination
location at channel jmp.

We now explore the evolution of the counter. First, we rewrite process Cnt as

hl (vai)(ah).i(n) | la().i(z).L = (ve)(Ele) | C))]

z).c{x + 1).z :: g()
c 1 :

where

CE line(z[y]).c(z). .z
| ldec(zly]).c(z).(e{x — 1) | 2 = 7())
| wal (2[y]).c(x)-(c() | z = Y(z))
| jmp(L").c(x).h = a{l'y.i{x).
Two atomic steps (local synchronizations over channels a and ¢) are used to set

the initial location h of the counter and to initialize it with the value n. A further
step is needed to actually install it and obtain:

W (vai)((ve)(en) | C) | la(l).i(z)L:: (ve)(e(e) | C)) .

A possible client for the counter is process

m[h :: val{m[v]) | Q]-

The client requires the service val by sending to the counter location A a process
that asks for the service and provides a return allocated channel m[v]. The counter
will send the result back to the client by spawning the mobile process m :: v{n')
that moves itself to the client location m and delivers the value n' of the counter
at channel v.

4In our examples we will abbreviate (v a1)...(v an)P by (v a1 ...a,)P.

ACM Transactions on Document Formatting, Vol. 7, No. 7, 2007.

Foundational Calculi for Network Aware Programming . 9

Another possible client is process
m[h :: jmp(l") | Q).

The client calls for the counter to change its location by sending to the counter
location h a process that asks for the service at channel jmp and provides the new
location £" for counter. Let

C'2 line(zly)) .c(z).E
| 'dec(z[y])-c(x).(c(z — 1) | z 7))
| wal (z[y]).c(x)-(<(

The resulting computation is

h[(vai)((vo)(Eln) | C) [a(O)-i(2)L :: (vo)(&(z) | C))] | m[h == jmp(e") | Q]
—" hl(vai)((ve)(C | hoa(l”).i(n) | la(l).i(z).€ : (v e)(ez) | O))] | m[Q
—" h[wai)((ve)C' | £7:: (ve)(eln) | C) | la(f).iz).L :: (ve)(e(z) | O))] | m[Q]

— h[(vai)(v)C" | la(l).i(z). = (v) (e(x) | C))] | m[Q] | t =z (ve)(eln) | O)

As a consequence of the interaction with the client, the counter changes its loca-
tion, but leaves its original definition, together with some dangling services C' that
cannot be used anymore, at the old location h. Each time the counter is demanded
to change location, it forwards the request to its original definition at location h.

Notice that to access a remote resource (e.g. the counter) one has to know
where it is located and that thread definitions (i.e. replications) never change their
location.

4. DISTRIBUTED JOIN-CALCULUS

The join-calculus [Fournet and Gonthier 1996] is an “extended subset” of 7,
which combines the three operators for input, restriction and replication into a
single operator, called definition, that has the additional capability of describing
atomic joint reception of values from different communication channels. The Dis-
tributed join-calculus (Djoin for short) [Fournet et al. 1996] adds abstractions
to express process distribution and process mobility.

The syntaz of the calculus (taken from [Fournet et al.]) is given in Table VII.
A set of location names L, ranged over by a, b, ..., and such that LNN = 0 is
additionally assumed. Location names can be exchanged in communications. We
will use ¢ and ¢ to denote finite strings of location names, i.e. elements of L£*.

A net is a multiset of located solutions. A located solution, D +, P, consists of
a location label ¢, of a multiset of running processes P and of a multiset of active
rules D, which define the possible reductions of processes. A process may send an
asynchronous message on a name, define new names and reaction rules, fork in
parallel components and move its execution to another location using go. A defi-
nition is composed of reaction rules, J > P, and location constructors, a[D : P],
separated by the A operator. J > P triggers the execution of process P when the
join-pattern J is recognized; a[D : P] defines a new (sub)location a.

Definitions are the binding mechanism for names. A definition entirely describes
the behaviour of its defined names. Hence, a process that receives a channel name
may use it to send messages but cannot add new behaviours (i.e. elementary
clauses) for that name. Definitions have a strict lezical discipline (i.e. the behaviour

ACM Transactions on Document Formatting, Vol. 7, No. 7, 2007.

10 . GIANLUIGI FERRARI et al.

Table VII. Djoin syntax

Nets S, T = Dbk, P Located solution

| S|T Distributed CHAM
Processes P,Q == z(v) Asynchronous message

| def D in P Local definition

| P|Q Parallel composition

| go (a); P Migration request

| 0 Null process
Definition D,E = JpP Elementary clause

| a[D : P] Location constructor

| DAE Simultaneous definition
Join patterns J, J’ = z(?) Asynchronous reception

J|J Joining messages

Names vwo' u= oz Channel names (z € N)

| a Locations names (a € L)

of names is statically defined). The received variables, rv(J), are the names to
which the sent messages are bound; the defined variables in a join pattern or in a
definition, dv(J) and dv(D), are the names that are bound by the construct; the
free variables, £v(P) and fv(D), are all the names which are not bound. Received,
defined and free variables can be easily defined, as expected, by structural induction.
Their definitions are in Table VIII, where & denotes disjoint union. For instance,
according to the lexical scoping, in def z(7)> P, in P the scope of the received
variables {0} is P, whereas the scope of the defined variable z extends to the whole
definition (i.e. both P, and P»). Moreover, in (D F, P) || S the scope of D extends
to the whole net.

It is possible to define a sublocation relation over £* by saying that if ¢ is a prefix
of ¢ then I, is a sublocation of F,,. This means that at any time of the computation
there is a tree of locations. Each location corresponds to a single physical site and
if a location a occurs in the subtree of a location b, then a is on the same site as
b. The fact that the same location cannot be given to two different sites, together
with the fact that communication channels can be defined only once (a peculiar
feature of the join-calculus), leads to the notion of well-formed nets. Formally,
a net is well-formed if it respects the following two syntactical conditions:

—uniqueness of locations: a location a is defined only once in any definition D (i.e.
there is exactly one local solution F-,5 for each location name a appearing in a
label);

—umniqueness of receptors: a defined channel x may only appear in the join-patterns
of one location.

The operational semantics of Djoin was originally presented in [Fournet et al.
1996] in the style of a distributed chemical abstract machine [Berry and Boudol
1992] (that is, one chemical abstract machine for each location in the tree). Here,
in order to preserve the presentation style, we give an alternative formulation in
terms of structural rules and reduction semantics (see, also, [Levy 1997]). From the
chemical metaphor, we maintain the simplifying assumption that the presentation of

ACM Transactions on Document Formatting, Vol. 7, No. 7, 2007.

Foundational Calculi for Network Aware Programming . 11

Table VIII. Defined, received and free variables

T av(a(@) L' {a} rv(a (7)) < i)
av(J | J') f qw(I)yUav(J’) (I | J) e v () wrv(J)
D: av(J > P) def 4o() (7 > P) ey uEv(p) — ()
av(D A E) def goDyuav(B) tv(DAE) D) utv(E)
av(alD : P)) def rywav(D) #v(a[D : P)) {2} Uv(D) U £u(P)
P fv(a(d)) def 12} U {5} fv(go (a);P) % (a} Utu(P)
£v(0) def g (P | Q) def £ (P U £v(Q)
fv(def D in P) % (£v(P) Utv(D)) — av(D)

Table IX. Djoin structural equivalence

(101N) Fo PI1Q =+, PQ

(NuLL) Fo 0 = by

(anD) DANEVF, = D,Eby

(DEF) Fo def D in P = Dogy by Pogy range(ogy) fresh
(Loc) alD: P+, = F, ||[{D}tpa {P} afrozen

every rule assumes an implicit context and only involve those parts of (the multisets
in) located solutions that change by the effect of the presented rule.

The structural equivalence, =, is the least equivalence relation that is closed
under composition of located solutions, of multisets of definitions and of multisets
of processes, and satisfies the laws in Table IX. The first three structural laws state
that | and A are commutative and associative operators, and that 0 is the identity
of parallel composition. Law (DEF) allows processes to activate reaction rules. The
side condition is necessary to avoid name clashes: o4y replaces all the names defined
by D, dv(D), with names fresh with respect to the set of names defined in the rest of
the net. Finally, law (LOC) introduces a new location whenever location a is frozen
that, by definition, means that there is no other solution in the net annotated with
a string of the form a1 (i.e., there are no sublocations of pa in the net). Both
side conditions are necessary to preserve well-formedness.

The reduction relation is defined by the rules in Table X plus the corresponding
rules for the Djoin operators |, A and || of rule (PAR) (with the obvious side condi-
tions for avoiding name clashes with the rest of the net) and the corresponding rule
for Djoin nets of rule (CONG) in Table III. Rule (JOIN) activates a (guarded) pro-
cess when a matching join-pattern is recognized. Rule (COMM) says that in order
to emit on a given remote channel, it is first necessary to ship the message to the
remote location where the channel is defined. Message transport is deterministic,
point-to-point (because of uniqueness of name definitions) and transparent to the
processes in the net. Finally, rule (MOVE) says that a location (and all its subloca-
tions) can move to another existing location. In fact, locations are used to express
mobile agents (by mapping agents to locations)®.

5Locations have been introduced in [Fournet et al. 1996] mainly as a tool to provide a simple
model of failures in distributed systems. In the absence of failures, the execution of processes is
independent of locations.

ACM Transactions on Document Formatting, Vol. 7, No. 7, 2007.

12 . GIANLUIGI FERRARI et al.

Table X. Djoin reduction relation
(J01N) Jp> Pty Jorv — J D> Pty Pory

(comm) Fo x(@) ||J>PF — Fp |[|J D> PF x(d) z € dv(J)

(Move) a[D: Plgo b)iQlFy [[Fyp — Fe [[aA[D: P[Q]Fyp

We end this section with some simple examples of Djoin programming. The first
example consists of a system where a client asks for a service to a remote server.
Assume that s and c are the server and the client location names respectively. The
system can be coded as follows:

SZsp(d,r) > P |r() : O Ack() > Pr : p(v, k)] Fe.

By using the semantic rules we can derive the following computation (here it is
assumed that r & fv(P;))

S = pld,r) > P|r() Fs || k) > P2 Fc p(v, k)
— p{d,r) > P | r() Fs p{v, k) || k() > P k¢
= pld,r) > P r() ks P{o/d} [EQ) || k() > P Fc
— pld,r) > Py | r() ks Pi{o/d} || k() > P2 ke k()

p{d,r) > P | () Fs Pi{v/d} || k) > P Fc P

Channel p is used to send the request to the server. After making the request, the
client waits for the results at channel k.

Our second example shows how to define a counter cnt process in Djoin. The
code of a process with a local definition of cnt is:

def cnt{z, k)>
def inc(k) | count(n) > count{n + 1) | k()
A dec{k | count(n)) > count{n — 1) | k()
A wval(k | count(n)) > count{n) | k{n)
in count(z) | k(inc, dec, val)

in ...

A client process gains the ability of accessing the counter by passing it an ini-
tial value and a continuation channel (e.g. the client may take the form def ...
in ent(5,k)). The counter may be transformed into a mobile counter, mob_cnt, by
allocating channels inc, dec and val at a new location a. The counter, i.e. channels
inc, dec and val, will move as long as location a moves. Location a is a sublocation
of the current location of mob_cnt, but will become a sublocation of b after mov-
ing with go (b), before executing count{z) | k{inc, dec,val). The code of a process
with a local definition of mob_cnt is:

def mob_cni(b, z, k)>
def a[count(n) | inc{k) > count{n + 1) | k()
A count(n) | dec{k) > count{n — 1) | k()
A count(n) | val(k) > count{n) | k(n)
: go (b); count({z) | k(inc, dec,val)]
in 0
in ...

ACM Transactions on Document Formatting, Vol. 7, No. 7, 2007.

Foundational Calculi for Network Aware Programming . 13

We now explore the evolution of a net with the mobile counter definition. First,
let us use D as shorthand for definition

count(n) | inc(k) > count(n + 1) | k()
A count(n) | dec{k) > count{n — 1) | k()
A count(n) | val{k) > count{n) | k{n)
and assume that the net has the following form:
mob_cni(b, z, k)> def a[D : go (b); count{z) | k{inc,dec,val)] in 0 F5 0
l
Dy, iy Fu mob_cent(u, 3, k1)

where the mobile counter is initially located at the server location s and u is the
user location (which contains the definition of the user process and of channels k;
and kg)
By rule (cOoMM), the net can evolve to
mob_cnt(b, z, k)> def a[D : go (b); count(x) | k{inc,dec,val)] in 0
Fs mob_cnt{u, 3, k1)
l

Dkl,kz |—u 0

By rule (JOIN), we get the net

mob_cnt(b, z, k)> def a[D : go (b); count(x) | k{inc,dec,val)] in 0
Fs def a[D : go {u); count(3) | ki (inc, dec,val)] in 0
l

Dk1,k2 Fuo©
which, by rule (DEF), is structurally equivalent to
mob_cn¥(b, z, k)> def a[D : go (b); count(x) | k{inc, dec,val)] in 0,

a[D : go (u); count(3) | ki{inc,dec,val)] Fs0

l
l)liC2 |—u 0

Now, by rule (MOVE), the net reduces to

mob_cni(b, z, k)> def a[D : go (b); count{z) | k{inc,dec,val)] in 0 k5 0
l
D, ks, a[D : count(3) | ki (inc,dec,val)] Fuy O
which, by rule (LOC), is structurally equivalent to

mob_cnt(b, z, k)> def a[D : go (b); count(z) | k{inc,dec,val)] in 0 kg 0
l

Dy, ko Fu k1 (inc, dec,val)

l
D[k /k] Fua count(3)

where the counter has moved to a sublocation ua of user’s location u.

An experimental implementation of Djoin called JoCaml, is available at the URL
http://pauillac.inria.fr/jocaml/. JoCaml integrates the Djoin programming

ACM Transactions on Document Formatting, Vol. 7, No. 7, 2007.

14 . GIANLUIGI FERRARI et al.

Table XI. KLAIM Syntax

Nets N == s, P Single node

| Ny || N2 Net composition
Processes P = 0 Null process

| a.P Action prefizing

| P | P, Process composition

| X Process variable

| AV Process invocation
Actions a u= out(t)Qu Output

| in(t)Qu Input

| read(t)Qu Read

| eval(P)Qu Process creation

| newloc() Node creation
Tuples t u= f| f,t
Fields f o u= V|'Z
Values V u= wv|P| Z
Variables Z 2= z | X | u

model with the Objective Caml programming language. JoCaml programs are trans-
lated in an intermediate code which consists of the Objective Caml intermediate
code extended with libraries to support Djoin constructs.

5. KLAIM

Kram [De Nicola et al. 1998] is an asynchronous higher—order process calculus
which extends the Linda [Gelernter 1985; Carriero and Gelernter 1989] coordination
paradigm (processes communicate via a shared multiset of tuples) to distributed
and mobile processes. Basically, KLAIM is a variant of m, whose actions are the
Linda primitives enriched with information about the addresses of the nodes where
processes and tuples are allocated.

The syntaz of the calculus is reported in Table XI. There are three types of values:
basic values, sites (i.e. net addresses) and processes. Basic values® are simply
elements of the set of names N (we shall use v, v1, v2 ...as generic basic values
and z, y, z ...as generic variables for basic values). We also assume the existence
of a set of sites S (ranged over by s, s1, s2, ...) and of a set of site variables U
(ranged over by u, u1, us ...), that also includes the distinguished variable self.

self is used by processes to refer to their current execution site. Processes can be

defined parametrically by equations of the form A(Z) def P, where A is a process

identifier (A € W, the set of process identifiers) and P is a process which may
contain recursive calls of A (with the obvious parameter passing substitution). For
each process identifier A there exists a single defining equation.

Variables occurring in process terms can be bound by action prefixes and process
equations. More precisely, prefixes in(t)Qu._, read(t)Qu.. and newloc(@) act as

6Here we consider a simplified version of KLAIM that, differently from [De Nicola et al. 1998; 1999;
De Nicola et al. 2000], does not include value ezpressions and localities.

ACM Transactions on Document Formatting, Vol. 7, No. 7, 2007.

Foundational Calculi for Network Aware Programming . 15

binders for variables in the formal fields of ¢ and in {@}, respectively. Definition

A(Z) 4 P is considered as a binder for variables {Z}.

Tuples are (finite) sequences of fields. Fields can be actual fields (i.e. values)
and formal fields. Formal fields are denoted by “! Z”. Notice that the syntactic
category of values does not include sites, hence sites cannot explicitly occur in the
code of processes.

KLAIM processes may perform three different kinds of actions: accessing tuple
spaces (i.e. multisets of tuples), spawning processes and creating new nodes in
a net. The (non-blocking) operation out(¢)@Qu adds the tuple resulting from the
evaluation of ¢ to the tuple space (TS, for short) located at u. Two (possibly
blocking) operations, in(t)@Qu and read(t)Qu, access tuples in the TS located at .
The operation in(t)@Qu evaluates t and looks for a matching tuple ¢’ in the TS at u;
if such a ¢’ exists, it is removed from the TS. The corresponding values of ¢ are then
assigned to the variables in the formal fields of ¢ and the operation terminates. If
no matching tuple is found, the operation is suspended until one is available. The
operation read(¢)@Qu differs from in(¢)@Qu only in that the matching tuple ¢' is not
removed from the TS at u. New threads of executions are dynamically activated
through the operation eval(P)Qu that spawns a process (whose code is given by
P) at the node named u. New nodes in a net can be created through the operation
newloc(@) and then accessed via the site variables @. This operation is not indexed
with a site identifier because it is always executed at the current execution node.

Nets are collections of nodes. A node is a term of the form s ::, P, where
the site s is the node address, P gives the processes running at s, and p is the
allocation environment, namely a function mapping site variables to sites. p links
the locality variables which occur free in P to certain sites. The idea is that
allocation environments act as proxy mechanisms of the nodes in the net. Processes
have not direct access to nodes and can get knowledge of a site either through
their (local) allocation environment or through communication with other processes
(which, again, exploits other allocation environments).

A node s ::;, P is well-formed whenever p(self) = s. A net N of well-formed
nodes is well-formed when, for any pair of nodes s ::, P and s’ :: P', we have that
if s = s’ then p = p'. We will only consider well-formed nets.

The operational semantics models tuples in a tuple space as independent pro-
cesses. To this purpose KLAIM syntax is extended with processes of the form
out(et) to denote evaluated tuples (referred to as et). Tuple spaces are then pro-
cesses in a special form: parallel composition of evaluated tuples. Moreover, to
avoid using environments for storing the bindings of site variables to sites, we allow
processes to refer to sites directly (i.e. sites can occur where free site variables can).

KLAIM operational semantics exploits an evaluation function for tuples, [-],,
that coincides with the identity function a part for the following cases:

[£5t),=1f1p0t], [2],= { A eiomle) — [P1, = P{p}

where P{p} denotes the process term obtained by replacing in P any free occurrence
of each site variable u € dom(p) that is not within the argument of an eval operation
with p(u).

ACM Transactions on Document Formatting, Vol. 7, No. 7, 2007.

16 . GIANLUIGI FERRARI et al.

Table XII. Matching rules
match(V,V) match(!z,v) match(! X, P) match(lu, s)

match(fi, f2) match(fi, f2) match(et,et2)
match(f2, f1) match((fi,et1), (fo, et2))

Table XIII. KLAIM structural equivalence
Ni|[N2 = N2 || M

(N1 || N2) || N3 = Nui || (N2 || Ns)
s, P = s, (P|0)

sip (PL| P2) = sy Py s, Po

A(V) = P[V/Z] if A(Z) % p

We also need a matching predicate, match, defined by the rules in Table XII, that,
given two tuples as arguments, checks whether they do match. Matching occurs
when the argument tuples have the same number of fields and corresponding fields
have matching values or variables: variables match any value of the same type, and
two values match only if they are identical.

The structural equivalence, =, is the least equivalence relation closed under the
rules in Table XIII. The structural laws express that || is commutative and asso-
ciative, that the null process can be safely removed and that it is always possible

to distribute the processes located on the same node over clones of that node. The

last rule deals with process invocation and says that if A(Z) 4" P then invocation

A(V), with V of the same form as Z, behaves like the body P of the process where
Z has been replaced by V.

The reduction relation is defined by the rules in Table XIV plus the corresponding
rule for KLAIM nets of rule (CONG) in Table ITI. We use the following notations: ¢
denotes both sites and site variables; p(£) = s denotes that either £ = s or £ is a site
variable that p maps to site s; [t] , = et denotes that the evaluation of tuple ¢ using
p succeeds, i.e. no component field gives rise to undef, and returns the evaluated
tuple et; st(N) denotes the set of sites (of the nodes) in N; if {s§} = {s1,...,5n}
then I, cgz8" 1[5 /se1z] O denotes the net s1 i, /se1e] O || -+ || 85 22p[s, /se1e] O
where p[s; /self] is the allocation environment p updated with the binding between
self and s;.

Let us now comment on the rules in Table XIV. Rule (OUT) says that the
execution of an out operation adds an evaluated tuple to a tuple space. The local
allocation environment is used both to determine the name of the node where
the tuple must be placed and to evaluate the argument tuple. This implies that
if the argument tuple contains a field with a process, the corresponding field of
the evaluated tuple contains the process resulting from the evaluation of its site
variables. Hence, processes in a tuple are transmitted after the interpretation of
their free site variables through the local allocation environment. This corresponds
to having a static scoping discipline for the (remote) generation of tuples. A dynamic
scoping strategy is adopted for the eval operation, described by rule (EvVAL). In this
case the site variables of the spawned process are not interpreted using the local

ACM Transactions on Document Formatting, Vol. 7, No. 7, 2007.

Foundational Calculi for Network Aware Programming . 17

Table XIV. KLAIM reduction relation
p(l) = ¢ [t], =et

(ouT)
s :2p OUt(t)@QLP || s 0 P — s::p P || 8" 1, (P' | out(et))
o) =5 [t],=et
(EVAL)
s:peval(Q)QLP || s iy PP — sy Pls' iy (P Q)
p(£) = s [t],=et match(et, et’)
()
51 In(t)QLP || &' i:p out(et’) — 511y Plet'/et] || s 11 0
p(f) =5 [t],=et match(et, et')
(READ)
s ::p read(t)QLP || s’ ::p out(et’) — s ::p Plet’[et] || s’ ::, out(et’)
(s} c(s\{sh
(NEW) — —
5 ::p newloc(@).P — s ::p P[5/U] || Ugre 538 2pps7 /se1£] O
N1 — N{ (st(N7)\ st(N1)) Nst(N) =0
(PAR)

N ||N— N{||N

allocation environment: the linking of site variables is done at the remote site. Rule
(IN) says that a process can perform an in action by synchronizing with a process
which represents a matching tuple et’. The result of this synchronization is that
tuple et’ is consumed, i.e. the corresponding process becomes 0, and its values
are used to replace, within the process which has performed the in operation,
the free occurrences of the variables in the corresponding formal fields of et (this
substitution is denoted by [et'/et]). Rule (READ) can be interpreted similarly to
(IN). Only notice that, while in modifies the tuple space at s', read does not; in
the conclusion of rule (READ) the accessed tuple is still at s’. Rule (NEW) describes
the creation of new nodes. Their addresses can be freely chosen among those sites
different from s. The environment of a new node is derived from that of the creating
one with the obvious update for the self variable. Therefore, the new node inherits
all the bindings of the creating node. Rule (PAR) is the analogous for KLAIM nets
of rule (PAR) in Table IIT; the side condition avoids site name clashes when new
nodes are created.

We end this section with some examples of KLAIM programming. The first
example will be also useful to point out the differences between the two forms of
mobility provided by KLAIM. One form is mobility with static scoping: a process
moves along the nodes of a net with a fixed binding of resources. The other form
is mobility with dynamic scoping: process movements break the links to the local
resources. For instance, consider a net consisting of two sites s; and sy. A client
process C is allocated at site s; and a server process S is allocated at site s3. The
server can accept processes for execution. The client sends process @ to the server.
The code of processes is:

ACM Transactions on Document Formatting, Vol. 7, No. 7, 2007.

18 . GIANLUIGI FERRARI et al.

c out(Q)Qu.0

Q def in("foo", !r)@self.out("foo”,z + 1)@self.0

S L' in(1X)@self. X

The behaviour of the processes above depends on the meaning of u and self. It
is the allocation environment that establishes the links between site variables and
sites. Here, we assume that the allocation environment of site si, p1, maps self
into s; and wu into s, while the allocation environment of site sz, ps, maps self
into s,. Finally, we assume that the tuple spaces located at s; and sy both contain
the tuple (“foo”,1). The following KLAIM program represents the net described
above:

s1 :1p, C | out("foo”,1) || s2::p, S| out("foo”,1).

After the execution of out(Q)@u, the tuple space at site sa contains a tuple
where the code of process () is stored. Indeed, it is the process @' that is stored in
the tuple, where:

Q' “in("oo", 1z)@s, .out(foo”, z + 1)@s;.0

as the site variables occurring in @) are evaluated using the environment at site s;
where the action out has been executed. Hence, when executed at the server’s site
the mobile process @ increases tuple "foo” at the client’s site.

To move process () for execution at sy with a dynamic scoping strategy the client
code should be eval(Q)@Qu.0. Indeed, when eval(Q))Qu is executed, @ is spawned
at the remote node without evaluating its site variables according to the allocation
environment p;. Thus, the execution of) will depend only on the allocation
environment p, and @ will increase tuple "foo” at the server’s site.

In our second example a mobile process is used to collect the mailboxes of a user
over distinct nodes (e.g. accounts). The code of the mobile process is:

Fuwd(id, up) % in("mbox", id, lz) @self.
out("mbox-at”, id, self, z)Quy.0
|
read("remote-mbox” , id, lu)Quy,.
eval(Fwd(id, up,))Qu.0

Process Fwd takes as parameters the identificator ¢d and the home address uy of
the user. When executed, it withdraws the ¢d’s mailbox at the current execution
site and sends it to address up; concurrently, it looks for the next site u to visit
and, then, spawns a copy of itself at u.

Consider a net with three sites, s, s; and s2. Assume that process Fwd("ust”, s)
is running at site s which is the home site of the user U("usr”), and that the net
has the following structure:

s U("ust”) | Fwd("ust”,s) |

out("mbox"," usr’’, m) | out("remote-mbox" " usr”,s;) | P ||
51 :1p, out("mbox" " ust”,m1) | out("remote-mbox”," usr”, s2) | Q ||
82 11p, out("mbox" " ust” ,ms) | R

ACM Transactions on Document Formatting, Vol. 7, No. 7, 2007.

Foundational Calculi for Network Aware Programming . 19

Table XV. Ambient syntax

Processes P,Q == (vn)P Restriction

| 0 Inactivity

| P|Q Composition

| P Replication

| M]IP] Ambient

| M.P Capability action

| (z).P Input action

| (M) Output action
Capabilities M = T Variable

| n Name

| in M Can enter M

| out M Can ezxit M

| open M Can open M

| € Empty path

| M.M Path

A possible evolution of this net is illustrated below.

s, U("usr") | Fwd("ust”,s)

| out("mbox"," usr”,m) | out(""remote-mbox"," usr”,s;) | P ||
"o

81 115, out("mbox",” usr”,m;) | out("remote-mbox”," usr”,ss) | Q |

"
89 15, out("mbox"," usr’,ms) | R

s, U("ust”) | in("mbox"," ust”,!z)@self.out("mbox-at”,” usr”, self, z)@s.0
| out("mbox"," usr” ,m) | out(""remote-mbox" " usr”,s1) | P ||

81 12p, out("mbox" " usr” ;my) | out("remote-mbox”," usr”, ss)
Q | Fwd("ust", s) ||

82 i1p, out("mbox"," ust”,ms) | R

i*
s, U("ust") | out("mbox-at”,"” ust”,s,m) | out(""remote-mbox”,” usr”
p n

| out(”"mbox-at”,"” usr”, s1,my) | P ||

81 115, out("remote-mbox”," ust”,s2) | Q ||

82 11p, out("mbox"," usr”,ms) | R | Fwd("usr", s)

751)

An experimental implementation of KrLAIM, called X-KLAIM, can be downloaded
at http://rap.dsi.unifi.it/klaim.html. The implementation consists of two
layers: the X-KLAIM compiler and the intermediate language KLAVA that is ob-
tained by extending the Java language [Arnold and Gosling 1997] with a new pack-
age, called Klava. The Klava package [Bettini et al. 1998] contains all the classes
which implement the X-KLAIM runtime system and operations.

6. AMBIENT

The Ambient calculus [Cardelli and Gordon 2000] relies on the notion of ambient
that can be thought of as a bounded environment where processes cooperate. An
ambient has a name, a collection of local agents and a collection of subambients.
Ambients can be moved as a whole under the control of agents; these are confined
to ambients.

ACM Transactions on Document Formatting, Vol. 7, No. 7, 2007.

20 . GIANLUIGI FERRARI et al.

Table XVI. Ambient structural equivalence
(ReEs AMB) (vn)(m[P]) =m[(vn)P] ifn#m

(Eps) e.P=P (conc) (My.M3).P = Mi.(M>.P)

The syntax of the calculus is reported in Table XV. Ambient processes use
capabilities for controlling interaction. Indeed, by using capabilities, an ambient
can allow other ambients to perform certain operations over it without having to
reveal its actual name (which would give a lot of control over it). A name n is a
capability to enter, exit or create a new copy of an ambient named n. Capability
in M serves for entering into ambient M, out M for exiting out of M and open M
for opening up M. The possession of one or all of these capabilities is insufficient
to reconstruct the original ambient name from which they were extracted. Multiple
capabilities can be combined into paths.

The process primitives (restriction, inactivity, composition and replication) are
derived from m-calculus. We only remark that the restriction operator introduces
new ambient names and, differently from 7-calculus, it does not create new channel
names. Process n[P] is an ambient with name n and process P running inside.
Nothing prevents the existence of two or more ambients with the same name. Pro-
cess M.P executes the action corresponding to capability M and then behaves like
P. Communication is asynchronous and anonymous (no process or communica-
tion channel is explicitly referred), and takes place locally within a single ambient.
The objects that can be communicated are ambient names and capabilities, that
may be thought of as rights to commit some operations on ambient names. An
output action releases an ambient name or a capability into the local ether of the
surrounding ambient. An input action captures an ambient name or a capability
from the local ether and binds it to a variable within a scope. Both restriction and
input actions are binding operators for names and variables, respectively, with the
obvious scopes.

We assume the following syntactic conventions: (z).P | @ stands for ((z).P) | Q,
M.P | Q for (M.P) | Q and nJ] for n[0].

The structural equivalence, =, is the least equivalence relation that satisfies the
rules in Tables II and XVI. The first law in Table XVI permits moving restriction
inside ambients while the last two laws deal with sequences of capabilities.

The reduction relation is given by the rules in Table XVII plus the corresponding
for Ambient processes of rules (PAR), (RES) and (CONG) in Table III. The first
two rules says that ambients are moved from inside an ambient m. In particular,
(IN) says that action in n instructs the ambient named m surrounding in n.P to
enter a sibling ambient named n. If no sibling n can be found, the operation
blocks until a time when such a sibling exists. If more than one n sibling exists,
any one of them can be chosen. Rule (OUT) says that action out m instructs the
ambient n surrounding out m.P to exit out of its parent ambient named m. If the
parent is not named m, the operation blocks until a time when such a parent exists.
Note that when a process P causes its surrounding ambient to move, all the other
processes contained in its ambient are moved too. Rule (OPEN) says that action
open n has the effect of dissolving the boundary of an ambient named n located
at the same level as open n.P, unleashing the ambient’s content. If no ambient n
is found, the operation blocks until a time when such an ambient exists. If more

ACM Transactions on Document Formatting, Vol. 7, No. 7, 2007.

Foundational Calculi for Network Aware Programming . 21

Table XVII. Ambient reduction relation
IN) m[inn.P | Q] | n[R] — n[m[P | Q] | R]

(
(out) minout m.P | Q] | Rl — n[P | Q] | m[R]
(OPEN) open n.P | n[Q] — P | Q

(

COM) (z).P | (M) — P[M/z]
P—Q

(AMB) ——
n[P] — n[Q]

than one ambient n exists, any one of them can be chosen. Rule (COM) states that
communications are local; this means that a process performing an input, (z).P,
and an asynchronous output, (M), synchronize only if they are enclosed within the
same ambient. Rule (AMB) propagates reductions inside nested ambients.

As an example of the expressiveness of the Ambient primitives, let us show how
they can be used to encode objective mowves, i.e. actions that ‘make ambients move
from the outside’ [Cardelli and Gordon 2000]. Objective moves are similar in spirit
to the primitives for mobility of D7 and KLAIM, as opposed to those of Djoin
and Ambient. Informally, mwv in n.P should allow P to enter into ambient n, and,
symmetrically, mv out n.P should allow P to move out of ambient n.

Let us start defining the following ambients

n'[P] £ n[P | 'open enter]
n'[P] £ n[P] | lopen exit
n'l[P] £ n[P | lopen enter] | lopen exit
where enter and exit are assumed to be two distinguished (global) names. Now,

we can define the following ‘objective’ actions

mvinn.P £ (vk)k[in n.enter[out k.(P | open k)]|

mv out n.P £ (vk)k[out n.exit[out k.(P | open k)]]

When these objective actions are used in conjunction with the above defined am-
bients, the operational rules of the calculus allow us to deduce the following reduc-
tions:

mw in n.P | nl1[Q] —* n!'[P | Q]

nl[mv out n.P | Q] —* P | n1[Q]

that correspond to the intended semantics of the objective moves.
We end this section with two short examples. The first example shows how lists

of messages can be implemented in Ambient. The list of messages [[My,..., My]
is represented as the ambient [I[(M;) | HI[(Mz) ... I1[(M,)]...]]. Operations over
lists are defined as:

void 1 = 1M1
cons M1 2 (v k)E[I'"[(M)]] | k'[in L.mv out k.open k.in | | mv out l.open k))

head 1 m = (v k)(m[open k] | mv in I.(z).mv out l.open L.k[in m.(z)))

ACM Transactions on Document Formatting, Vol. 7, No. 7, 2007.

22 . GIANLUIGI FERRARI et al.

tail | £ mvin l.(z).mv out l.open 1.0
where k & fn(M) U {l,m}. For example, with these definitions, we can show that
cons M 1| void 1 —* II[{M) | 1]
Indeed, we have that

cons M 1| void 1

— (v k) (K[IT{M)]] | PI[E![mv out k.open k.in I | mv out l.open k]))
(K[IT{MY]] | U open k.in 1 | k'[mv out l.open K]])
| !M[in 1 | mv out l.open k])

~—
S
=
=
=
=
S
=

—* (v k
= 1[() | 1]

where the last step holds because k does not occur free in I'I[(M) | HI]]].

As last example, consider the case of a process which wants to enter a “secure”
ambient, i.e. an ambient whose name w is restricted. The following program
(borrowed from the firewall example of [Cardelli and Gordon 2000]) describes the
protocol, based on passwords k¥ and k', that allows @) to enter w. The third name
k" is necessary to confine () thus preventing it to interfere with the protocol.

(vw)(wlk[out w.in k'.in w] | open k'.open k".P]) | k'[open k.k"[Q]]

(Viu)(w[k[out w.in k'.in w] | open K'.open k" P] | K'[open k.k"[Q]))
(vw)(wlopen k'.open k".P] | k[in K'in w] | K'[open k.k"[Q]])
(th)(w[open k'.open k".P] | k'[klin w] | open k.k"[Q]])
(Vti)(w[open k'.open k".P] | K'lin w | K"[Q]])

(Vti) (wlopen k'.open k".P | K'[k"[Q]]])

(va)(w[P | Q)

An experimental implementation of the Ambient calculus, called Ambit, can be
found at http://www.luca.demon.co.uk/Ambit/Ambit.html and consists of just
an applet Java. A distributed implementation of the calculus is presented in [Four-
net et al. |. The implementation relies on a formal translation of Ambient in Djoin
and uses JoCaml as implementation language.

7. AN ELECTRONIC MARKETPLACE

We aim at evaluating the calculi presented in the previous sections by also taking
into account their programming abstractions for implementing distributed applica-
tions. To this purpose, in this section we will describe a simple application for the
electronic commerce and present simple implementations in each calculus.

ACM Transactions on Document Formatting, Vol. 7, No. 7, 2007.

Foundational Calculi for Network Aware Programming . 23

Fig. 2. An electronic marketplace scenario

To make the presentations clearer, we assume that each calculus provides pro-
grammers with a typical control structure of programming languages: a conditional
primitive of the form if b then P else @ (written if b then P when @ = 0).
Moreover, since we are mainly interested to mobility control, we make a further
assumption for simplifying data management and suppose that each calculus also
provides programmers with a data type list equipped with the classical operations
over lists: append an element to the end l#e, get the first element hd(l), get the
list after removal of its first element t/(l). Both our simplifying assumptions are
justified by the fact that all the calculi we consider are Turing powerful, hence the
new constructs do not increase their expressive power. Another useful syntactic

convention we will use is the following: if P; for ¢ € {1,...,n} are processes then
n

HPZ' will stand for P, | --- | Pp.

i=1

The scenario we want to model is pictorially represented in Figure 2. A market
place client, Buyer, asks to an information point, Market, for the list of camera
shops that are within a given geographical area. Buyer initially only knows the
Market’s address while, obviously, Market knows the addresses of all camera shops.
Once Buyer has the list, it starts searching for the shop in the list that offers a
certain model of camera at the lowest price. Mobility naturally arises since once
Buyer has obtained the list, it can send the agent Collector that performs the
search. Collector will interact with each shop in the list and compute the lowest
price for the camera. When all the shops in the list have been visited, the agent
will send the result of the search back to Buyer.

The electronic marketplace is a paradigmatic example that shows the advantages
of code mobility with respect to other “more traditional” interaction paradigms.
On the one hand, code mobility permits a higher concurrency degree and increases
asynchrony between clients and servers. For instance, while Collector is running,
Buyer can concurrently perform tasks that do not depend on the result of the
search. Moreover, every execution thread of Collector can potentially run on dif-

ACM Transactions on Document Formatting, Vol. 7, No. 7, 2007.

24 . GIANLUIGI FERRARI et al.

ferent machines. On the other hand, code mobility can also be used in presence of
transient disconnections and network failures because it strictly reduces the num-
ber of times the network is used for remote communications. Indeed, instead of
remotely asking for the price of the wanted camera to each shop, Buyer sends a
process that visits each shop in turn and locally inquires for the camera price.

The implementations of the scenario described above in each of the process calculi
we are considering are presented in the following subsections. We make the following
simplifying assumptions:

—Buyer has no behaviour which does not depend on the result of the search;

— Market only handles camera shops (their number is k);

—each shop can sell n different models of cameras and the wanted one is among
these;

—whenever a camera is not stocked, the shop sets the relative price to maz_price, a
numeric constant that represents a very high price (a price that no Buyer would
ever spend for that camera).

D7 implementation

The buyer process, Buyer, that runs at location b, behaves as follows:

—it sends to location m (that of Market) a request for the list of camera shops
within its geographical area gab, together with a return address collh[res] of the
form location[channel],

—it starts the execution of a mobile process, Collector, which, together with some
initialization values, migrates to location collh, and

—it waits for the result, of the form < price, shop >, of the search at channel best.

Buyer 2 b[(v collh,res,init)
(' m :: sh_list{gab, collh[res])
| collh :: (imit{max_price, nowhere) | Collector)
| best(howmuch, where). ...)]

The (mobile) process Collector iterates the following behaviour:

—it waits for a list of shops at channel res;

—when it receives the list, it reads the actual best price and shop at channel init;

—if the list is empty, it returns the result of the search to the buyer location b at
channel best;

—otherwise, it migrates to the first shop in the list, takes the price of the wanted
camera and activates another copy of itself by passing it the list of the shops that
still must be visited and the appropriate information about best price and shop,
depending on the fact that the new price is lower than the one currently stored
or not.

ACM Transactions on Document Formatting, Vol. 7, No. 7, 2007.

Foundational Calculi for Network Aware Programming . 25

Collector £ res(sl).init(price, where).
if sl = empty then b :: best(price, where)
else hd(sl) :: camera(p).
if p < price then collh :: Tes(tl(sl)).init(p, hd(sl))
else collh :: Fes(tl(sl)).init{price, where)

The jth shop is programmed as a process, Shop;, that is located at s; and behaves
as follows:

—whenever prompted at channel ga_shopj, it sends its geographical area ga; and
position s; to location m at channel sp received along ga_shop;,

—concurrently, at channel camera;, for i € {1,...,n}, it sends the price of the
corresponding camera.

n
Shop; £ s;[lga_shop;(sp).m :: 3p(ga;, s;) | H!camemi(pr{)]

i=1

The market process, Market, located at m, iterates the following behaviour:

—whenever prompted at channel sh_list, it activates a copy of itself for finding
the list of camera shops within the geographical area gab received along channel
sh_list;

—the new copy uses channel sl to manage the shop list and channel ¢ as a counter
for the number of shops with which interaction already took place, and behaves
as follows:

—it asks to each shop handled by Market for its geographical area and position;

—if the geographical area of the shop is gab, the shop position is included in the
list;

—whenever all the k& shops have been considered, the list is returned to the
location and the channel received along channel sh_list.

Market 2 m|[sh_list(gab, z[res]).(v ¢, sl, sp1, .. ., $Pp)
k

(sl{empty) | E(0) | Hsj it ga_shop;(sp;) |
=1
. j
11 spi(ga. s;). if ga; = gab
j=1 _
then si(z).sl(z#s;).c(y).if y=k—1
then sl(w).z :: Tes{w)
else ¢{y + 1)
else c(y)if y=k—1
then sl(w).z :: Tes{w)
else ¢(y + 1)

ACM Transactions on Document Formatting, Vol. 7, No. 7, 2007.

26 . GIANLUIGI FERRARI et al.

The overall system is obtained by composing Buyer, Market and all Shop;, for
Jj €{1,...,k}, in such a way that shops locations s; and channels ga_shop;, used
for initial interaction between Market and Shop;, are not visible to Buyer.

k
System = Buyer | (v s1,...,8k,ga_-shop,...,ga_shopy)(Market | HShopj)
j=1

Djoin implementation

All of the Djoin processes we are going to introduce are given in the form of a
location constructor, hence, technically, they all are definitions.
Let us start describing process Buyer. When location b is created, Buyer

—gives rise to a new location constructor for process Collector and to a reaction
rule that will react whenever the result of the search is found;

—sends a request for the list of camera shops within the geographical area gab,
together with a return address res, at channel sh_list;

—sends the appropriate initialization values to the mobile agent Collector at chan-
nel init.

Buyer = b] Collector
A best{howmuch,where) > . ..
: sh_list{gab,res) | init(mazx_price,nowhere)]

When location c is created, Collector will give rise to a reaction rule that is fired
whenever a shop list sl is returned at channel res and, at the same time, a price
and a shop location are given at channel init. Such a reaction rule allows Collector
to iterate its behaviour until all the shops in sl have been visited. The shop list sl
returned by Market is implemented as a list of pairs of the form < location, name >.
Fach element of a pair can be selected by using the projection operators: - |, returns
the first element and _ |, the second one. Collector uses

—the location of a shop for visiting it and for creating a sublocation ¢ of the shop,
and

—the name of a shop for sending the price request, together with a return channel
ret, to it.

Finally, Collector activates again its reaction rule with values that depend on the
new price for the camera.

Collector = c[res(sl) | init(price, where) 1>
if sl = empty then best(price, where)
else go {((hd(sl) |1)); def ret(p) >
if p < price
then res(tl(sl)) | init{p, hd(sl) |1)
else res(tl(sl)) | init(price, where)
in hd(sl) |2 {camera,ret)
:0]

ACM Transactions on Document Formatting, Vol. 7, No. 7, 2007.

Foundational Calculi for Network Aware Programming . 27

Each shop has two kinds of reactions. Whenever prompted at channel ga_shop;,
the shop returns, along channel sp; received along ga_shop;j, its geographical area
ga;, its location s; and channel shop; at which the price list can be looked at.
Whenever prompted at channel shop;, the shop returns the price of camera at the
return channel ret.

Shop £ s;[ga_shop;(sp;) > sp;{9a;,s;, shop;)
n

A shopj{camera,ret) > H if camera = camera; then ret(pr;)

i=1

:0]

Market is programmed just as a rule that reacts each time the list of the shops
within a given geographical area gab is requested at channel sh_list. The process
activated by the rule behaves like its counterpart in Dz. It uses the same chan-
nels sl and ¢ with the same meaning. The shop list in Djoin is a list of pairs
< location,name >, as we said before.

Market = m[sh_list(gab, res) 1>
k

dEf /\Spj<gaj7sj78hopj> > if ga] = gab

j=t
then app(s;, shop;)
else incr(c)
A sl{z) | app(s, shop) 1> sl{z#(s, shop)) | incr{c)
A sl{z) | send{res) 1> res(x)
A c(y) | iner{c) > c{y + 1)
A c(y) > if y =k then send(res)
k
in ¢(0) | sl{empty) | Hga_shopj(spj)
j=1

:0]

Finally, the system is made by joining the definition of Buyer, Market and Shop;,
for j € {1,...,k}, and by allocating all them at the same initial location. Notation
k

/\Shopj stands for Shop; A --- A Shopg.
j=1

k
System £ Buyer A Market A /\Shopj F. 0

i=j
KLAIM implementation

Process Buyer is parameterized with respect to its geographical area gab, location
name m for the site of Market and the model of camera camera that has to be
searched for. The process behaves as follows:

—it creates a new, private site referred to by variable res where the result of the
search will be waited for;

ACM Transactions on Document Formatting, Vol. 7, No. 7, 2007.

28 . GIANLUIGI FERRARI et al.

—then, it puts a tuple at the tuple space referred to by m to ask for the list of
camera shops within gab;

—finally, it sends for execution at the site referred to by res a process that, whenever
it is able to locally access the list of shops, invokes the mobile agent Collector
by passing it the appropriate initialization values: the list of shops to visit sl, a
price maz_price and a location nowhere to be refined, the model of camera and
the return address.

Buyer(gab, m, camera) ef

newloc(res).out("sh list"”, gab, res)@Qm.
(eval(in("sl”,!sl)@self.
Collector(sl, maz_price,nowhere, camera,res))Qres
| in("best” , lhowmuch, lwhere)Qres. ...)

Process Collector behaves as expected: it visits each shop in the list, computes
the lowest price for the camera (while storing information about the shop that offers
it) and terminates when the list is empty (all shops have been visited). To make
its presentation clearer, we take advantage of the possibility offered by KLAIM to
define processes and give name Test to the process which is argument of the eval
primitive.

Collector(sl, price, where, camera, res) ef
if sl = empty
then out("best”, price, where)@res
else eval(Test(tl(sl), price, where, camera,res))@hd(sl)

Test(sl, price, where, camera,res) def
read(camera, |p)@self.
if p < price
then Collector{sl, p, self, camera,res)
else Collector(sl, price, where, camera, res)

Process Shop;, that represents a single shop, is parameterized with respect to its
geographical area ga and the price of each camera prf offered by the shop. Shop;
behaves as its D7 counterpart and gives information about its geographical area
and its price list.

j i\ def
Shopj(gajapr‘L s ,pr%) =
in("ga_shop”,!sls)@self.out(j, ga;, self)@sls
n

| Hout("camerai”, prl)@self

i=1

Process Market is parameterized with respect to a list of variables uy, ..., u, that
refer to the sites of the shops. When the process is asked for a shop list, it invokes
a copy of itself (in order to be able to serve several requests at the same time)

ACM Transactions on Document Formatting, Vol. 7, No. 7, 2007.

Foundational Calculi for Network Aware Programming . 29

and, concurrently, serves the request by creating a new site, referred to by sls, and
by sending process Mkl for execution at sls. Mkl, a part for the communication
mechanism used, behaves as its Dz counterpart: it computes the shop list sl, by
using counter ¢ for storing the number of shops that have been already considered,
and, when all shops have been taken into account, puts a tuple containing sl at the
site received together with the shop list request.

Market(uy, . .., u) def

in("sh list” lgab, !res)@self.
(Market{uy, .. .,ur) | newloc(sls).eval(Mkl{gab,uy, . .., u))Qsls)

Mkl(gab, s, ..., up) %

out("c",0)@self.out(”sl”, empty)Q@self.
k

H out("ga_shop”, self)@Qu;.in(j,!ga;, lu;)@self.
j=1
if gab = ga; then in("sl",!z)@self.out("sl”, z#u;)@self.
in("c" ly)@self.out("c”,y + 1)@self
else in("c¢",ly)@self.out("c"”,y + 1)@self
| in("c", k)@self.in("sl", lw)@self.out("sl”, w)Qres

The overall system is defined by a net with a node for each of processes Buyer,
Market and Shop;, for j € {1,...,k}. Nodes allocation environments are defined
in such a way that, initially, Buyer can only access to the site of Market while the
latter is able to access to the site of each Shop;.

System = s, 115y /self,sm /m} Buyer{gab,m," camera’)
S T {sm /selE,81 /uiserssn Jun} MOTkEt(U1, . .. ug)
k

” Hsj ‘{s;/self} ShoP] <gajapr{a s aprg)
Jj=1

Ambient implementation

To simplify the presentation, we will make also use of the objective moves together
with the special ambients introduced in Section 6.

Agent Buyer is an ambient called b with inside three concurrent ambients. The
first one, called req-list, moves out of b and into m (the ambient of Market) and
represents the request for the list of camera shops. This ambient contains the
Buyer’s geographical area gab and the capabilities needed for the Market can send
the answer to Collector. The second one, called res, contains process Collector and
its initialization values (price and shop location). The last one, called best, contains
the part of process Buyer that is waiting for the result of the search.

Buyer £ b[(v req,res, bprice, bwhere)
(req.list[(req) | out b.in m.(req''[{gab) | regq!![(in res)])]

| res[bprice[{max_price)] | bwhere[{nowhere)] | Collector]
| best[open res.open bprice.(price).open bwhere.(where)....])

ACM Transactions on Document Formatting, Vol. 7, No. 7, 2007.

30 . GIANLUIGI FERRARI et al.

Process Collector, first, moves its enclosing ambient res out of b, then, iterates the
following behaviour: waits for a list of shops to be visited, opens (public) ambient
pret enclosing the list, reads the list and checks if it is empty, and

—if the list is empty, moves ambient res (that contains the result of the search: a
price and a shop location, each enclosed into an enveloping ambient) into ambient
best and terminates;

—while the list is not empty, reads the actual best price and relative location, moves
ambient res into the first shop in the list, reads the price for the wanted camera
offered by the shop, compares this price with the actual best price, updates the
current information (depending on the result of the comparison) and iterates the
same behaviour.

For reading the price of the wanted camera offered by a shop, a protocol is followed
that relies on (public) ambient pk and is similar to (but simpler than) that described
in Section 6 for the case of a process that wants to enter a “secure” ambient.
Ambients read e done are needed to avoid that the price of the camera can by
mistake be read in place of a list of shops: in practice, read is used for safely
disclosing ambient camera, and done for safely disclosing read after the price has
been assigned to p.

Collector =
out b.open pret.
(z). if £ = empty then in b.in best
else open bprice.(price).open bwhere.(where).in hd(z).
(v read, done) (
pk[out res.in camera.in res.in read)
| read| open camera
| (p).(done[out read]
| out hd(z).if p < price
then (tl(z)) |
bprice[(p)] | bwhere[(hd(z))]
else (tl(z)) |
bprice[{price)] | bwhere[(where)]

)]

| open done.open read)

Each shop provides two different kinds of information. The first kind of infor-
mation, enclosed within ambient ansga, is provided whenever ambient ga_shop can
locally be opened, i.e. whenever a request for the shop geographical area is found.
The second kind of information is the shop’s price list and is dispatched by using
(public) ambient pk (as explained before).

n
Shop; £ s;[lopen ga_shop.ansgalout sj.in m.{(g9a;)] | H!camemi[open Pk | ()]]

i=1

When a request for a list of shops arrives, i.e. ambient req_list can be opened,
Market activates a copy of itself for serving the request. The server process behaves

ACM Transactions on Document Formatting, Vol. 7, No. 7, 2007.

Foundational Calculi for Network Aware Programming . 31

as follows. First, it reads the geographical area of Buyer and the capability res
needed to send the result of the search back. Then, in order to compute the wanted
list of shops, it creates private ambients sl, ¢ and end. Ambients sl and ¢ are used
similarly to the corresponding locations in the D7 implementation. Ambient end is
used as a synchronization mechanism: when it can be opened, the computation of
the list of shops has finished and the result, enclosed into ambient pret, is sent back
to Buyer. Requests to shops for their geographical area are sent by using ambient
ga_shop; shops answers are dispatched by using ambient ansga.

Market =
m][lopen req_list.(rq).mv in rq.(gab).mv out rq.open rq.
mu in rq.(res).mv out rq.open rq.(v sl,c,end)(
st1{fempty)] | ¢ (0)
| H(ga_shoplout m.in s;]
7j=1
| open ansa.(ga;).if gab = ga;
then mv in sl.(x).((z#s;)
| mv out sl.mv in c.(y).
ify=(k-1)
then mv out c.end]]
else (y + 1))
else mv in c.(y).if y = (k — 1) then mv out c.end]] else (y + 1)
| open end.open c.mv in sl.(w).mv out sl.open sl.pret[out m.res.(w)])]

Like for the D7 implementation, the overall system is obtained by composing
Buyer, Market and all Shop;, for j € {1,...,k}, in such a way that ambients s; are
not visible to Buyer.

k
System = Buyer | (v s1,-..,sk)(Market | H Shop;)
i=1

An evaluation of the implementations

In this section, we compare the different implementations according to few param-
eters. We will take into account the expressiveness of the calculi with respect to
resource handling, the accordance with the software architecture of Figure 2 and
with the thin client + application server paradigm that is usually followed in the
design of distributed applications for wide-area networks, and the ease of program-
ming offered by the underlying computational model.

Before describing the evaluation, let us spend a few words on the thin client
+ application server paradigm (TC+AS, for short). Such a scheme consists of a
(typically) remote service invoked by a client. From a logical point of view, the
application server consists of two components. The first one handles the interac-
tions with clients: it is an interface that receives their requests. Here, we abstract
away from the query mechanisms that, in actual implementations, could rely on
query languages (for instance, Java [Arnold and Gosling 1997] provides the module
JDBC for handling database queries). The second server component handles the

ACM Transactions on Document Formatting, Vol. 7, No. 7, 2007.

32 . GIANLUIGI FERRARI et al.

requests and, possibly, returns the results to clients. Clearly, the complexity of the
application heavily relies on the second component. In our example, Buyer behaves
as a client both with respect to Market (the former asks to the latter for a list of
shops) and with respect to the shops (Buyer asks to each Shop in the list for the
price of the wanted camera).

7.0.0.1 Resource Handling.. In the first three implementations, each shop is a
process located at a given location (shops locations are all different) and a shop
price list is implemented as n parallel processes (one for each camera model).

In D, the price of a camera model can be directly accessed at a channel with
the same name of the camera. In Djoin, the price list of shop shop; is implemented
as a process, enabled by the firing of a reaction rule prompted at channel shop;,
which consists of n parallel processes, one for each camera model, each guarded by
a condition on the model of camera. In KLAIM, the price list of a shop is modelled
as a multiset of tuples of the form out(”camera;”,pr]) at the tuple space of the
node where the shop is located (the implementation relies on the non-destructive
KLAIM primitive read that allows processes to access tuples without consuming
them).

In Ambient, each shop is an ambient: price list and information about its geo-
graphical area are implemented as concurrent sub-ambients. The price of a camera
model is accessed by means of ambient migration and of a protocol that also requires
the participation of the shop.

7.0.0.2 Software Architecture.. All the implementations match the logical archi-
tecture in Figure 2. Indeed, Buyer just knows the address of Market, while Market
also knows the shops addresses. Notice that in the Ambient implementation, am-
bients are restricted, not channels as in the other implementations.

7.0.0.3 TC+AS.. All the first three implementations match the paradigm: each
client simply makes its requests to the server (both Market and Shop;) by means
of an output action (as we said before, we abstract from the query mechanisms).

In Djoin, each client just points out its requests at the appropriate channels:
it is the run-time support underlying the language that takes care of dispatching
messages to the corresponding processes (i.e. those processes that define the chan-
nels where messages are transmitted). Hence, client-server interactions are simpler
than those in D7 and in KLAIM, where the client must also know the location of
the server.

In the Ambient implementation, the mechanism that clients must use to call
for services is based on a quite complex previously established protocol that also
requires the server to take part actively in the interaction. The client must know the
address of the server and send an appropriate ambient containing the parameters
for the invocation (such as, e.g., a return capability). The server must handle the
ambient sent by the client.

7.0.0.4 Easy of Programming.. In D7, the possibility of creating restricted allo-
cated channels and of extruding their scope makes it easy to program point-to-point
private communications. However, the lack of recursion in the calculus, makes the
definition of mobile agents not at all satisfactory. Indeed, let us consider agent
Collector. In order to be able to iterate its behaviour while moving among loca-

ACM Transactions on Document Formatting, Vol. 7, No. 7, 2007.

Foundational Calculi for Network Aware Programming . 33

tions, the agent must be defined by using the replication operator. Now, when the
agent’s general definition is instantiated, the new instance is put in parallel with
the agent’s definition. Therefore, whenever the instance migrates, differently from
Djoin and Ambient, the agent’s definition will remain at its original location collh.
Hence, each time the agent behaviour must be iterated to visit a new location, a
message has to be sent to the original location collh for creating a new instance
of Collector. From a logical point of view, this corresponds to a kind of zigzag
movement between the original location collh and those of the shops to visit.

Djoin resembles a functional programming language: reaction rules can be seen
as function definitions, and messages as function invocations. Mobility (of mes-
sages) is implicit in the join-calculus primitives and the Djoin primitive go
for process mobility does not enrich the expressiveness of the calculus. In the
marketplace implementation, this primitive is used to move agent Collector to a
sub-locality of a shop: this is not at all necessary because the interaction between
the agent and the shop could also take place while leaving the agent at its original
location. The point is that, from the one hand, go cannot be used for moving
an agent to the same locality of another one (two agents located at two different
localities can never reach the same locality) and, from the other hand, co-location
is not necessary for communication to take place. We remark that go is useful
particularly to move location trees in case of failures [Fournet et al. 1996).

Kraiv fully exploits process mobility. Moreover, the possibility of associating
names to processes and of invoking them by using the corresponding name sim-
plify program presentation (consider, for instance, processes used as arguments of
operations).

Ambient linguistic mechanisms, from a programming point of view, are too low-
level. The programmer is also in charge of the ambient “routing” and this must be
done step by step.

8. SECURITY MECHANISMS

An effective language for network-aware programming, and the underlying compu-
tational model, should face with security issues since early design stages. Here, with
security we mean the ability of protecting resources and data as regards as secrecy
and integrity. The language and its model should provide mechanisms for support-
ing the specification and the enforcement of security policies. The ideal situation
is that of designing the language together with its secure kernel and to implement
the corresponding secure abstract machine. In other words, security should be
taken into account in the design stages and not considered later on top of exist-
ing infrastructures. Formal semantics plays a crucial rule to prove correctness of
security infrastructures. Furthermore, “secure” programming languages should be
equipped with both a formal calculus and compositional logics in order to be able
to reason about security properties. Interpreters and development environments
for those languages should be equipped with semantic-based verification tools that
programmers may use to prove properties of mobile code. Partial examples of this
principle are provided by the Java Bytecode Verifier and the Proof Carrying Code
approach. In the first approach [Yellin 1995; Stata and Abadi 1999], Java applets
from non local sites are checked by the bytecode verifier before loading. In the

ACM Transactions on Document Formatting, Vol. 7, No. 7, 2007.

34 . GIANLUIGI FERRARI et al.

second approach [Necula 1997; Necula and Lee 1998], a mobile code is equipped
with a proof that the code satisfies certain security constraints.

In this section we focus on the security mechanisms provided by the calculi and
outline their security models. Dw, KLAIM and Ambient rely on access control
policies while Djoin relies on cryptography.

Access Control Policies

Access control policies regulate users’ access to resources on the basis of authoriza-
tion rules which express the type of usages each user is allowed of certain resources.
To specify and enforce access control policies, Dn, KLAIM and Ambient exploit
capability-based type systems.

Capability-based type systems use access types to provide information about ac-
cess rights for resource usages. In general, access types have a hierarchical structure.
The hierarchy of access rights is reflected in the subtype relation (denoted by C).
The underlying idea is that if a process P has access type acl and ac1 is a subtype
of ac2 then P could be considered as having access type ac2 as well. In other words,
P can be safely used in all the cases where a process of type ac2 is expected. The
general principle of capability-based type systems is that

mobile agents are (type) checked before being executed to ensure that they
do not violate the access policies of the current execution site.

In the rest of this section we outline the mechanisms which are adopted to spec-
ify and enforce access control violations by relying on typing information. Rather
than presenting in detail each type system, we focus on an example of D7 program-
ming (mainly borrowed from [Riely and Hennessy]). The same example could be
expressed in KLAIM and, with some more efforts, in Ambient too.

Assume that acent is a location representing a bank account and has methods
to deposit/fetch money and to close the account. The access control policy of the
acent location can be specified by the type

acent : loc{deposit : rwu(int), withdraw : ru(int), close : rw()}.

This type is an abstraction of the accnt behaviour and tells us that acent is a
location providing three channels (methods): deposit, withdraw and close. All these
behaviours have read/write (as flagged by the r and w respectively) capabilities.
The first two methods have an integer parameter, while the last has no parameter.

Access rights restrictions to the acent location are expressed by exploiting the
subtype relation. For instance, an agent whose type is

acent : loc{deposit : w{int)}

has only the write capability w on the method deposit, namely the agent can only
deposit money. Similarly, the type

acent : Loc{deposit : w(int), withdraw : w{int)}

describes the access rights of a process which is allowed to deposit and withdraw
money.

The types above permit capturing and monitoring immediate accesses to loca-
tions/channels without considering information flow among roles. Here with roles

ACM Transactions on Document Formatting, Vol. 7, No. 7, 2007.

Foundational Calculi for Network Aware Programming . 35

we mean classes of users with different rights; for instance, the bank director has
more rights than the employer. Since late 70’s, several studies addressed the prob-
lem of developing theories of information flow [Denning 1976; 1977]. In a capability-
based type system, information flow is naturally modelled by a lattice of security
levels mirroring the levels of security policies among the roles.

In our running example, the lattice of security levels could have the following
form:

sYs
T
dir
T
emp
/‘ N
user user

N /

any

Hence, sys (the role of the system software administrator) is the highest security
level, dir represents the security level of the bank director, emp is the employer
level, user is the security level of clients. Finally, any, the lower security level, is
available to every role in the system. Intuitively, if an agent has security level o
then it can only use capabilities whose security level is at most o. The introduction
of types and security levels in the language is reflected by the operational rules.
For instance, the operational rule for code mobility among locations becomes:

Uk, = ple — klpl, if pCo.
Now, the question we need to answer is:

In which sense do capability-based type systems do ensure that all ac-
cesses are in accordance with the underlying policy?

This corresponds to saying which are the mechanisms that enforce (i.e. implement)
the access policy specified by typing information. This task is performed by the type
checker that verifies that both statically and dynamically loaded software modules
match the access policies of the locations. All agents that have successfully passed
the type checking phase can be downloaded, installed and executed.

The formal treatment starts by specifying security violations as run-time errors
of the form

P L) err k.

Such a predicate states that in a system P a thread during its evolution has violated
the security policy I and this violation occurs at location k. For instance, we have

L[k, :: pls produce an error at £ if p IZ o;

namely, a thread cannot use migration in order to expand its security level. The
next step is to prove that the type system ensures the absence of run-time errors.
To this purpose the following two properties must hold.

Subject Reduction:. Well-typing is preserved by systems evolution.

ACM Transactions on Document Formatting, Vol. 7, No. 7, 2007.

36 . GIANLUIGI FERRARI et al.

Type Safety:. Well-typed systems cannot generate immediate run-time errors,
i.e. they cannot produce violations of the security policy.

The capability-based type systems of Dw, KLAIM and Ambient detect security
violations following this strategy. An innovative aspect of the D7 capability-based
type system is the handling of open networks [Hennessy and Riely |. In an open
network a subset of hosts (localities) may be untrusted. In this case, the structure
of the type system is enriched with

—partial types that label some locations as untrusted;

—run-time type checking to enforce security restrictions for processes coming from
untrusted locations.

Recently, Hennessy and Yoshida [Yoshida and Hennessy 1999] have proposed an
interesting approach to the design of type systems for security. The basic idea of
their proposal is to assign to the migrating process a dependent type: i.e. a type
expression that may be instantiated to particular types depending on the values of
certain parameters. In other words, types of mobile processes depend on the site
where they are running (a similar idea has been used in [De Nicola et al. 2000]
but in a less general framework). In this way types of processes are essentially an
interface whose purpose is to limit the resources that processes can access. When
an agent migrates, the local resources are bound to its interface and, automatically,
the access control is obtained.

Cryptography

In a wide-area network all of the communication channels are not necessarily secure.
Private channels are useful abstractions for secure channels and are used by all the
calculi we have presented. However, actual implementations usually rely on public
channels and enforce security properties by means of encrypted communications.
Shared-key or public-key encryption are adopted to guarantee secrecy and integrity
of messages [Abadi 1999]. This idea is the basis of the security mechanisms pro-
vided by the join-calculus. The innovative contributions of the join-calculus
approach consist of the design of an (intermediate) virtual machine that provides
cryptographic mechanisms and of the mapping from join-calculus (with private
channels) to Sjoin (Secure Join Calculus, [Abadi et al. 1998]), the language of
the virtual machine. The correctness of this framework is ensured by a sound,
fully-abstract translation of the high-level constructs in the low-level cryptographic
primitives (we refer to [Abadi 1999] for a more detailed presentation of the idea
of using full abstraction as a tool for implementing secure systems). In [Fournet
et al. 1996] it is shown that Djoin can be naturally encoded in the join-calculus.
Hence, it is possible to encode Djoin into Sjoin by relying on the mapping from
the join-calculus to Sjoin which we describe in the rest of this section.

Sjoin enriches the join-calculus with cryptographic primitives in the spirit of
Abadi and Gordon’s spi-calculus [Abadi and Gordon 1999]. Table XVIII illustrates
the extensions of join-calculus with cryptographic primitives. The encryption
construct builds a new value by encrypting the tuple of values ¢ under the key v.
The decryption construct tries to decrypt message v with a known key v'. If the
decryption succeeds then P runs with Z replaced by the results of the decryption,

ACM Transactions on Document Formatting, Vol. 7, No. 7, 2007.

Foundational Calculi for Network Aware Programming . 37

Table XVIII. Sjoin syntax

Values v, = ...
| {9}v Encryption

Processes P,Q == ...
| decrypt v using v’ to Z in P else Q Decryption

Definitions D,E = ..
| fresh z Fresh name
| keys 1,2~ Fresh pair of keys

otherwise) will be executed. Definition fresh z introduces the fresh name z.
Definition keys z+, z~ introduces the encryption key z+ and its inverse decryption
key 7. In general, z* differes from z~ (this is the usual hypothesis in public-key
cryptosystems). However, 7 and z~ can coincide (as it happens in shared-key
cryptosystems); in this case, the construct is written key x. In the definition of
the language, there are a few implicit assumptions on the underlying cryptographic
system. We make them explicit below:

(1) A tuple of values ¥ encrypted under a key o', written {0},, can only be de-
crypted using v'. The only way to produce the ciphertext {0}, is to encrypt
o under v'. If v’ is secret, the execution environment cannot guess or forge ¢
(perfect encryption).

(2) There is enough redundancy in the ciphertexts to tell whether decryption of a
value with a given key has actually succeeded or not.

(3) The only way to form a new key is to get a fresh pair of complementary keys.

All communications go through a network interface which consists of two public
channels emit and recv. Processes send messages to the network at channel emit
and receive messages from the network at a continuation channel previously sent
at channel recv. The expression def emit(m) | recv(x) > x(m) in P describes
the behaviour of the nework interface, where P is the parallel composition of all
processes in the network (plus a process that generates noise and prevents traffic
analysis, and a process that makes channels emit and recv public).

In this model, processes in the network need to filter the incoming network mes-
sages. This filtering can be programmed as:

A

let § =filter ¥k in P =
def x(m) > decrypt m using k to § in P else emit(m) | recv{x)
in recv(x)

This process receives a message m from the network at (the continuation) channel
x and attempts to decrypt m with a key k. In case of success, P is executed with
replaced by the result of decryption, otherwise, m is sent back to the network and
a new attempt is done. Notice that this polling strategy is very expensive.

Now, we outline the translation function from join-calculus to Sjoin. We
assume that, for all the join-calculus names x, the mappings = — ==, x — zT
and x — w, are injective maps. Moreover, we use repl P as a shorthand for process
def z() > (P | z()) in z().

The translation mapping relies on two special Sjoin processes defined as follows:

ACM Transactions on Document Formatting, Vol. 7, No. 7, 2007.

38 . GIANLUIGI FERRARI et al.

Table XIX. The translation [-]

On processes
[z@)] = Eufot]
[def D in P] = def J\ keysazt,z” in (def [D] in [] Rz)|[P]
zedv[D] z€dv[D]

On patterns

[o@] = waly?)
E,[5) = defkeykin
(repl emit({k},+)) | let d' = filter k& in (repl emit({0}4))
R, = repl (let k = filter 2~ in def key %’ in

(repl emit({k'}1)) |let § = filter k' in w,(§)).

Processes E,[0] and R, are used by the sender and by the receiver to establish a
session-key k' (for this, a shared key k is used that is exchanged encrypted under
x1), which is then used to encrypt the values ©. Whenever the decryption succeeds,
the decrypted message is sent at the internal channel w, that resides on the same
machine where R, is executed.

Table XIX illustrates the non-trivial cases of the mapping from join-calculus
to Sjoin. Notice that [] automatically associates two keys (z* and z7) to each
defined (i.e. private) channel z and that communication at z is rendered as en-
crypted communication at public channels emit and recv plus local communication
at the internal channel w,,.

As a simple example of this mapping, let us consider the join-calculus process

P £ def z(y1,y2) > 2(y1) in z(u,v)

Process P defines a channel z, that can be thought of as a secure channel, by
attaching to it the definition x{y1,y2) > 2(y1). Thus, whenever a pair y;, y2 occurs
at x, its first component is forwarded at z. In the body of P the pair u, v is sent
at x. By applying the clauses in Table XIX we get the following Sjoin process

[P] = def keys z,z™ in
(def w.(yi,vf) > E.[y}] in Ry) | Ez[u*,v].

Eglut,v™] sends u™ and vt encrypted under zt at channel emit. R, can receive
this message through channel recv, decrypt it using 2~ and forward its content at
the internal channel w,, that can be safely used because w,{(y;",y5) > E.[y;] and
R, are located on the same machine. Hence, although the body z(u,v) and the
definition x(y1,y2) > z(y1) are located on different machines, communication at z
is secure.

9. EVALUATION

In this section we evaluate and compare the foundational calculi we consider in this

paper along the following axes:

—Communication. The communication model takes into account various aspects:
local or remote communications, interaction media (channels, tuples, ether...),

ACM Transactions on Document Formatting, Vol. 7, No. 7, 2007.

Foundational Calculi for Network Aware Programming . 39

explicit naming versus anonymity of the partner, synchronous or asynchronous
interactions.

—Mobility. As mentioned in Section 1, several forms of mobility are possible.
The calculi provide different mobility abstractions which allows (combination of)
code, process, or agent mobility.

—First-class objects. There are some differences with respect to the nature of
objects exchanged in communications.

— Administrative domains. All the calculi offer different abstractions to fit the
notion of administrative domain. Intuitively an administration domain reflects
the idea of having a group of threads running under the control of the same
authority which monitors the use of resources.

—Coordination mechanisms. Coordination is a key concept for modeling and de-
signing network-aware applications. Complex applications are designed and de-
veloped in a structured way, starting from the basic computational components
and adding suitable software modules called coordinators which handle the inter-
actions among the components.

—Security mechanisms. Security policies are a relevant aspect to consider in wide
area distributed programming. Type systems (Dw, KLAIM, Ambient) and cryp-
tography primitives (Djoin) are complementary mechanisms that provide secu-
rity at different level.

We believe that the six criteria listed above are essential to characterize and to
guide the design of network programming languages. Of course, the calculi may be
compared also considering other important features; for instance, KLAIM reserves
particular attention to data (modelled as tuples) and acknoledges the importance
of data as an essential component of programming languages for WAN applications.
Indeed, KLAIM [De Nicola et al. 1998] supports programming of WAN applications
which interact by sharing data. The data and the operations over data available in
the KLAIM system are the Linda [Carriero and Gelernter 1989] ones; however, they
could be based on XML and a query language for XML [Bray et al. 1997].

Table XX summarizes our evaluations.

9.0.0.5 Communications. All the calculi support a local communication model.
KLAIM also provides mechanisms for remote communications: processes can in-
teract by asynchronous distributed object method invocations (as it can be seen
looking at the Klava package [Bettini et al. 1998]). In the other approaches remote
communications can be obtained by a combination of mobility and local communi-
cation

Communication primitives are based on an asynchronous model (WAN applica-
tions are inherently asynchronous systems). The only exception is given by D=
communication mechanism which is local and synchronous. Ambient and KLAIM
communication paradigm is anonymous (tuples have no name and Ambient mes-
sages are communicated through the ether) and, for KLAIM, associative (tuples
are content addressable). Anonymous communications have been advocated [Cabri
et al. 1998b] to be more suitable than the one based on naming (adopted by Dz
and Djoin) to design and develop WAN applications.

ACM Transactions on Document Formatting, Vol. 7, No. 7, 2007.

40 . GIANLUIGI FERRARI et al.
Table XX. Calculi for Network-Aware Programming: An Assessment
Dr Djoin KLAIM Ambient
local local local/remote local
Communication | channel-based channel-based tuple-based message-based
explicit naming explicit naming anonym./assoc. anonymous
synchronous asynchronous asynchronous asynchronous
Mobility process/agent process/code code/process/ agent
agent
First-class capabilities
objects channels/locationg channels/locationg processes/sites and
ambient names
Administrative | flat model hierarchical flat model hierarchical
model model
Domains locations locations tree nodes and ambients
allocation envi-
ronments
Coordination located threads local processes allocation
Mechanisms and and environments ambients
located channels local definitions and nodes
Security types cryptography types types
Mechanisms static/dynamic security archi- | static/dynamic static
tecture
type checking SJoin type checking type checking
Experimental JoCaml X-KLAIM JoCaml
Implementationg Objective-Caml Krava Ambit

Communication primitives can be exploited to coordinate and synchronize pro-
cess activities. Basic synchronization constructs can be represented in each of the
calculi. In this respect, the synchronization mechanism of Djoin appears to be the
more refined: it allows two processes to synchronize on a set of channels (those
channels defined in the join pattern). The uniqueness of join receptor (there is a
single location where synchronization for a given receptor is dealt with) simplifies
the distributed implementation of Djoin synchronization. Moreover, the unique-
ness of join receptor and the join pattern confer to the Djoin programming model a
“functional” feature. For instance, in the first Djoin implementation of the counter
process, a client of the counter calls the (local) “function” cnt by triggering the cor-
responding pattern and passing to cnt an initial value and a continuation.

9.0.0.6 Mobility. In each of the calculi mobility abstractions and migration poli-
cies are under programmer’s control. Both D7 and KLAIM permit process and agent
mobility; additionally, KLAIM permits node mobility (via its higher order commu-
nication mechanism). The Ambient mobility primitives are similar in spirit to those
of Djoin in that they permit movement of nested structures (ambients and trees
of locations, respectively) but, while Djoin permits moving code and processes,
Ambient permits moving data and active computations (i.e. agents). Moreover,
Ambient is the only calculus that also supports mobile computing, in fact ambients
can be also viewed as mobile devices.

9.0.0.7 First-class objects. In each of the calculi, addresses (namely, locations
in D7 and Djoin, sites in KLAIM, and ambients in Ambient) are first class entities.
Furthermore, i) D and Djoin allow channel names to be communicated, i) KLAIM
permits higher order communication in that processes may appear in tuples and can
be downloaded by in/read primitives, and, finally, iii) Ambient allows sequences

ACM Transactions on Document Formatting, Vol. 7, No. 7, 2007.

Foundational Calculi for Network Aware Programming . 41

of capability to be exchanged.

9.0.0.8 Administrative domains. Locations reflect the idea of administrative do-
mains: computations at a certain location are under the control of a specific author-
ity. Despite of the similarities, there are some differences on the way locations are
exploited. In fact, D7 localities are mainly adopted to program migration and to
define allocated channels, i.e. as a way to model the distributed object invocation
mechanisms. Furthermore, a process which needs a non-local channel name (i.e. a
remote resource method), say a, has to know the location where a lays. In Djoin,
instead, there is a more structured location concept: a location is a tree composed
by the root location and its sub-locations. When a process defined on a moves
itself to another site, the whole tree rooted at a moves with the process. Moreover,
in Djoin locations are not necessary for determining the allocation site of remote
channels. It is the communication infrastructure (uniqueness of join receptor) that
worries about determining the service channel site. In this respect, this mechanism
is very close to the CORBA [Group 1998] philosophy, where the network structure is
completely transparent to the applications. In KLAIM, as it happens for Dz and
Djoin, whenever a process knows a site s it may access to the services granted at s.
However, the role of sites in KLAIM differs from that of locations in Dz. Locations
that only host the null process can safely be removed in D7 (the structural law
£[0] = 0) while this is not allowed in KLAIM. Indeed, this corresponds to a different
treatment of net addresses: in KLAIM sites exist independently of the allocated
processes, and, in particular, processes can migrate to or tuples can be placed in a
tuple space at a certain site provided that the site already exists.

Ambient handles net addresses in the same way KLAIM does; however, differently
from the other calculi, in Ambient the knowledge of the name of a location is not
enough to access its service: it is necessary to know the route to the location.

9.0.0.9 Coordination mechanisms. Ambient capabilities provide a full fledged
coordination language to move, compose and rearrange administration domains:
the only way to manipulate the structure of ambients is by using capabilities. How-
ever, since Ambient primitives are asynchronous, a special care is needed to pro-
gram effective coordination policies which control both migration and the delivery
of messages (communication is asynchronous).

The net coordination mechanism of KLAIM relies on allocation environments that
map logical addresses (i.e. variables) to physical ones (i.e. sites). This mechanism
allows applications to have a logical view of the structure of the net without actually
taking care of its (real) physical structure. KLAIM provides a powerful platform
to program network services where the set of available services (coded as tuples in
the tuple spaces) at any given moment may dynamically change. When a service
is not available at a node, it is enough to visit the nodes of the net (by using the
mobility primitives) to find a node which provides the wanted service. Once the
node is found, the service can be downloaded and executed. Some commercial
platforms, such as, e.g., Jini [Edmonds 1999; Arnold et al. 1999], provide similar
computational mechanisms to integrate dynamic network systems.

D provides the notion of system as main coordination mechanism (see Table IV).
A system is a set of allocated threads that are executed in parallel. Allocated
threads use allocated channels that can be viewed as a coordination mechanism:

ACM Transactions on Document Formatting, Vol. 7, No. 7, 2007.

42 . GIANLUIGI FERRARI et al.

the action of receiving the allocated channel £[a] has the effect of making ¢ available
and hence all services provided at that location become available.

In Djoin, nets (see Table VII) and join patterns are the coordination mechanisms
of the language. We remark that the routing mechanism of Djoin is not under
the control of the programmer: it is the underlying support that provides for the
message routing.

9.0.0.10 Security mechanisms. D7, KLAIM and Ambient exploit notions of types
as security mechanism and, a part for Ambient that only adopt static checking, use
both static and dynamic checking in order to gain programmability of access con-
trol policies. Instead, Djoin relies on a lower-level security mechanism based on
cryptography: applications are compiled in an intermediate secure layer, Sjoin,
that encrypts/decrypts the messages exchanged through the network.

The different security models, types for access control and cryptography, are not
conflicting. A secure programming language should have both features. Indeed,
types may be used to program access control policies and reason about properties
of programs; cryptography may ensure authenticity and privacy of messages that
in a wide area network may be violated by malicious intruders or network failures.

10. CONCLUSION AND RELATED WORK

In this paper we evaluated some foundational calculi for mobile programming along
two main guidelines: programming language design and application design. Pro-
gramming language design has been exploited to identify the programming ab-
stractions and paradigms which are directly inspired by these calculi. Application
design has been exploited to understand the potentials of the calculi to support
wide-area network applications.

A topic that has not been fully considered in this paper is failures handling. Since
in asynchronous systems such as the Internet no limits on relative processors speed
and communication delays exist, it is difficult for the owner to exactly determine
whether a mobile agent is lost due to a failure or whether its execution has only
been delayed due to slow processors or communication links. Among the calculi
for network-aware programming we have considered, only Djoin has an explicit
construct to cope with failures: go [Fournet et al. 1996] permits moving location
trees when failures occur.

Related work. A number of distributed extension of the w-calculus have been
proposed to address specific problems of network programming. Here we briefly
remind some proposals.

—The 7, calculus [Amadio and Prasad 1994] has been introduced to model failures
of distributed programs.

—The located m [Amadio 1997; 1999] has been introduced as a formal framework to
model some basic properties of Djoin directly inside the asynchronous 7-calculus
enriched with a specific type discipline.

—The Nomadic m-calculus [Wojciechowski and Sewell 1999; Sewell et al. 1999] has
been introduced to model and study properties of communication infrastructures
of mobile processes.

ACM Transactions on Document Formatting, Vol. 7, No. 7, 2007.

Foundational Calculi for Network Aware Programming . 43

In the last few years, several models and programming languages for mobile
applications in distributed systems and networks have been proposed that rely on
a Linda-like communication paradigm. To deal with such issues as modularity,
naming and security, the original Linda communication paradigm [Gelernter 1985;
Carriero and Gelernter 1989] has firstly been extended by providing support for
multiple tuple spaces [Gelernter 1989]. On the top of this more recent model, a
number of new features have been added which aim at, e.g.,

—adding programmability to tuple spaces by associating reaction rules to commu-
nication events [Minsky and Leitcher 1995; Omicini and Zambonelli 1998; Cabri
et al. 1998b; 1998a],

—dynamically creating private tuple spaces [Scientific Computing Associate 1994],
—allowing processes to transiently share their own tuple spaces [Picco et al. 1999],

—hierarchically structuring tuple spaces [Ciancarini 1991; Carriero et al. 1995;
Omicini and Zambonelli 1998; Bettini et al. 2000],

—restricting (the form of the tuples that can be put into) tuple spaces and the
pattern-matching mechanism [Van Der Goot et al. 1997] or the operations that
processes can perform over tuple spaces [De Nicola et al. 1999; De Nicola et al.
2000].

Ouly a couple of calculi (a part for Djoin) have been proposed in the literature
that resemble the Ambient calculus. The Seal calculus [Vitek and Castagna 1998]
can be roughly described as a w-calculus with hierarchical locations, mobility and
resource access control. Rather than a programming model, the calculus can be
thought of as a substrate for implementing higher level languages and advanced
distributed applications that provides the system programmer with mechanisms
for fully controlling localities and for low-level protection. Recently, to cope with
the interferences that arise when implementing interaction protocols, a variant of
the Ambient calculus have been proposed [Levi and Sangiorgi 2000] that makes
use of co-actions. In such a variant, each Ambient action has a complementary
action and a reduction can occur only whenever two complementary actions do
synchronize.

REFERENCES
ReferencesRef

1997. Proc. of the ACM Symposium on Principles of Programming Languages. ACM Press.

1998. Proc. of 7th International Workshop on Enabling Technologies: Infrastructure for Collab-
orative Enterprises (WET-ICE) ’98. IEEE Computer Society Press.

ABADI, M. 1999. Protection in programming-language translations. In [Vitek and Jensen 1999].
19-34.

ABADI, M., FOURNET, C., AND GONTHIER, G. 1998. Secure implementation of channel abstractions.
In Proc. of LICS’98. IEEE Computer Society Press, 105-116.

ABADI, M. AND GORDON, A. D. 1999. A calculus for cryptographic protocols: The spi-calculus.
Information and Computation 148(1), 1-70.

ACHARYA, A., RANGANATHAN, M., AND SALTZ, J. 1997. Sumatra: A language for resources-aware
mobile programs. In Mobile Object System: Towards The Programmable Internet, J. Vitek and
C. Tschudin, Eds. LNCS , vol. 1222. Springer, 111-130.

AMADIO, R. 1997. An asynchronous model of locality, failures and process mobility. In Proc. of
COORDINATION’97,D. Garlan and D. Le Metayer, Eds. LNCS , vol. 1282. Springer, 374-391.

ACM Transactions on Document Formatting, Vol. 7, No. 7, 2007.

44 . GIANLUIGI FERRARI et al.

AMADIO, R. 1999. On modelling mobility. In /[Metayer 2000]. To appear.

AMADIO, R., CASTELLANI, 1., AND SANGIORGI, D. 1996. On bisimulations for the asynchronous
w—calculus. In Proc. of CONCUR’96, U. Montanari and V. V. Sassone, Eds. LNCS , vol. 1119.
Springer, 147-162.

AMADIO, R. AND PRASAD, S. 1994. Localities and failures. Lecture Notes in Computer Science 880,
205-216.

ARNOLD, K. AND GOSLING, J. 1997. The Java Programming Language. Addison Wesley.

ARNOLD, K., WOLLRATH, A., O’SULLIVAN, B., SCHEIFLER, R., AND WALDO, J. 1999. The Jini
specification. Addison-Wesley, Reading, MA, USA.

BAL, H., BELKHOUCHE, B., AND CARDELLI, L., Eds. 1999. Workshop on Internet Programming
Languages. LNCS , vol. 1686. Springer.

BERRY, G. AND BoupoL, G. 1992. The chemical abstract machine. Theoretical Computer Sci-
ence 96, 1 (Apr.), 217-248.

BETTINI, L., DE NICcOLA, R., FERRARI, G., AND PUGLIESE, R. 1998. Interactive mobile agents in
xklaim. In [wet 1998]. IEEE Computer Society Press, 110-115.

BETTINI, L., LORETI, M., AND PUGLIESE, R. 2000. Structured nets in . In Proc. of the ACM
SAC’2000, Special Track on Coordination Models, Languages and Applications. ACM Press,
174-180.

BoubpoL, G. 1992. Asynchrony and the m-calculus (note). Rapport de Recherche 1702, INRIA
Sophia-Antipolis. May.

Bray, T., PaoLl, J., AND SPERBERG-MCQUEEN, C. 1997. Extensible Markup Language (XML).
The World Wide Web Journal 2, 4, 29-66.

CABRI, G., LEONARDI, L., AND ZAMBONELLI, F. 1998a. How to Coordinate Internet Applications
based on Mobile Agents. In [wet 1998]. IEEE Computer Society Press, Stanford, CA, 104-109.

CABRI, G., LEONARDI, L., AND ZAMBONELLI, F. 1998b. Reactive tuple spaces for mobile agent
coordination. Lecture Notes in Computer Science 1477, 237-77

CARDELLI, L., GHELLI, G., AND GORDON, A. D. 1999. Mobility types for mobile ambients. Lecture
Notes in Computer Science 1644, 23077

CARDELLI, L. AND GORDON, A. D. 1999. Types for mobile ambients. In POPL ’99. Proceedings of
the 26th ACM SIGPLAN-SIGACT on Principles of programming languages, January 20-22,
1999, San Antonio, TX, ACM, Ed. ACM SIGPLAN Notices. ACM Press, New York, NY, USA,
79-92.

CARDELLI, L. AND GORDON, A. D. 2000. Mobile ambients. TCS: Theoretical Computer Sci-
ence 240.

CARRIERO, N. AND GELERNTER, D. 1989. Linda in context. Communications of the ACM 32, 4
(Apr.), 444-458.

CARRIERO, N., GELERNTER, D., AND ZUCK, L. 1995. Bauhaus linda. Lecture Notes in Computer
Science 92/, 66-76.

CIANCARINI, P. 1991. PoliS: a Programming Model for Multiple Tuple Spaces. In Proc. 6th
ACM/IEEE Int. Workshop on Software Specification and Design (IWSSD), C. Ghezzi and
G. Roman, Eds. IEEE Computer Society Press, Como, Italy, 44-51.

CIANCARINI, P., NIERSTRASZ, O., AND YONEzZAWA, A., Eds. 1995. Object-Based Models and Lan-
guages for Concurrent Systems. Lecture Notes in Computer Science, vol. 924. Springer-Verlag,
Berlin.

DE NicoLA, R., FERRARI, G., AND PUGLIESE, R. 1998. KLAIM: A kernel language for agents
interaction and mobility. IEEE Transactions on Software Engineering 24, 5 (May), 315-330.
Special Issue: Mobility and Network Aware Computing.

DE NicoraA, R., FERRARI, G., AND PUGLIESE, R. 1999. Types as specifications of access policies.
[Vitek and Jensen 1999] 1603, 117-146.

DE Nicora, R., FERRARI, G., PUGLIESE, R., AND VENNERI, B. 2000. Types for access control.
TCS: Theoretical Computer Science 240.

DENNING, D. E. 1976. A lattice model of secure information flow. Communications of the
ACM 19(5).

ACM Transactions on Document Formatting, Vol. 7, No. 7, 2007.

Foundational Calculi for Network Aware Programming . 45

DEeNNING, D. E. 1977. Certification of programs for secure information flow. Communications of
the ACM 20(5).

EDMONDS, K. 1999. Core Jini. Prentice Hall.

FOURNET, C. AND GONTHIER, G. 1996. The reflexive CHAM and the join-calculus. In Confer-
ence Record of POPL ’96: The 234 ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. St. Petersburg Beach, Florida, 372-385.

FOURNET, C., GONTHIER, G., LEVY, J., MARANGET, L., AND REMY, D. 1996. A calculus of mobile
processes. In CONCUR ’96: Concurrency Theory, 7th International Conference, U. Montanari
and V. Sassone, Eds. Lecture Notes in Computer Science, vol. 1119. Springer-Verlag, Pisa, Italy,
406-421.

FournET, C., LEVY, J., AND SCHMITT, A. A distributed implementation of ambients. Available
at http://join.inria.fr/ambients.html.

GARLAN, D. AND METAYER, D. L., Eds. 1997. Coordination Languages and Models. LNCS 1282.
Springer-Verlag, Berlin, Germany.

GELERNTER, D. 1985. Generative communications in Linda. ACM Transactions on Programming
Languages and Systems 7, 1 (Jan.), 80-112.

GELERNTER, D. 1989. Multiple tuple spaces in linda. Parle 89, 1.

Group, O. M. 1998. Corba: Architecture and specification. Available at http://www.omg.org.

HENNESSY, M. AND RIELY, J. Type-safe execution of mobile agents in anonymous networks. [Vitek
and Jensen 1999], 95-115.

HENNESSY, M. AND RIELY, J. 1998. Resource access control in systems of mobile agents. In HLCL
’98: High-Level Concurrent Languages (Nice, France, September 12, 1998), U. Nestmann and
B. C. Pierce, Eds. entcs, vol. 16.3. Elsevier Science Publishers, 3-17. Full version as CogSci
Report 2/98, University of Sussex, Brighton.

Honpa, K. AND TOKORO, M. 1991. An object calculus for asynchronous communication. Lecture
Notes in Computer Science 512, 133—147.

LANGE, D. B. AND OsHIMA, M. 1998. Programming and Deploying Mobile Agents with Java
Aglets. Addison-Wesley, Reading, MA, USA.

LEvI, F. AND SANGIORGI, D. 2000. Controlling interference in ambients. In Conference Record
of POPL’00: The 27th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. Boston, Massachusetts, 352-364.

LeEvy, J. J. 1997. Some results in the join-calculus. Lecture Notes in Computer Science 1281,
233-249.

METAYER, D. L., Ed. 2000. Special issue on Coordination. Elsevier Science.

MILNER, R. 1993. The polyadic w-calculus: A tutorial. In Logic and Algebra of Specification, F. L.
Hamer, W. Brauer, and H. Schwichtenberg, Eds. Springer-Verlag, Heidelberg.

MILNER, R., PARROW, J., AND WALKER, D. 1992. A calculus of mobile processes. Information
and Computation 100, 1 (Sept.), 1-77.

MINSKY, N. AND LEITCHER, J. 1995. Law-governed linda as a coordination model. In [Ciancarini
et al. 1995]. 125-146.

NEcCULA, G. C. 1997. Proof-carrying code. In [ACM 1997]. Paris, France.

NEecurA, G. C. AND LEE, P. 1998. The design and implementation of a certifying compiler. In
Proceedings of the 1998 ACM SIGPLAN Conference on Prgramming Language Design and
Implementation (PLDI). 333-344.

OMICINI, A. AND ZAMBONELLI, F. 1998. TuCSoN: a coordination model for mobile information
agents. In Proceedings of the 1st International Workshop on Innovative Internet Information
Sytems (111S°98) (Trondheim (Norway)), T. Schwartz, David G. AND Divitini, Monica AND
Brasethvik, Ed. Department of Computer and Information Science (IDI), NTNU, Pisa (I),
177-187.

PALAMIDESSI, C. 1997. Comparing the expressive power of the synchronous and the asynchronous
m-calculus. In [ACM 1997], ACM, Ed. ACM Press, New York, NY, USA, 256-265.

Picco, G. P., MurpHY, A. L., AND RoMAN, G. 1999. LIME: Linda meets mobility. In Proceedings
of the 21st International Conference on Software Engineering. ACM Press, 368-377.

ACM Transactions on Document Formatting, Vol. 7, No. 7, 2007.

46 . GIANLUIGI FERRARI et al.

RiELy, J. AND HENNESSY, M. Secure resource access for mobile agents. Available at:
http://www.csc.ncsu.edu/faculty/riely/papers.html.

RIELY, J. AND HENNESSY, M. 1999. Trust and Partial Typing in Open Systems of Mobile Agents.
In Proceedings of the 26th ACM SIGPLAN-SIGACT on Principles of programming languages
(POPL’99). 93-104.

SANGIORGI, D. 1992. Expressing mobility in process algebras: First-order and higher-order
paradigms. Ph.D. thesis, Department of Computer Science, University of Edinburgh.

SCIENTIFIC COMPUTING ASSOCIATE, NEW HAVEN, C. 1994. Paradise: User’s guide and reference
manual.

SEWELL, P., WOJCIECHOWSKI, P., AND PIERCE, B. 1999. Location independence for mobile agents.
In /Bal et al. 1999], H. E. Bal, B. Belkhouche, and L. Cardelli, Eds. Incs, vol. 1686. sv. Full
version with title Location-Independent Communication for Mobile Agents: a Two-Level Ar-
chitecture appeared as Technical Report 462, Computer Laboratory, University of Cambridge,
April 1999.

STATA, R. AND ABADI, M. 1999. A type system for Java bytecode subroutines. ACM Transactions
on Programming Languages and Systems 21, 1 (Jan.), 90-137.

VAN DER GOOT, R., SCHAEFFER, J., AND WILSON, G. V. 1997. Safer tuple spaces. [Garlan and
Meétayer 1997], 289-301.

VITEK, J. AND CASTAGNA, G. 1998. Towards a calculus of secure mobile computations. In /Bal
et al. 1999]. Chicago, Illinois.

VITEK, J. AND JENSEN, C. D. 1999. Secure Internet programming: security issues for mobile and
distributed objects. Lecture Notes in Computer Science, vol. 1603. Springer-Verlag Inc., New
York, NY, USA.

WHITE, J. E. 1996. Mobile agents. In Software Agents, J. Bradshaw, Ed. AAAI Press and MIT
Press.

WOJCIECHOWSKI, P. AND SEWELL, P. 1999. Nomadic pict: Language and infrastructure design
for mobile agents. In First International Symposium on Agent Systems and Applications
(ASA’99)/Third International Symposium on Mobile Agents (MA’99). Palm Springs, CA,
USA, 2-12.

YELLIN, F. 1995. Low level security in java. In Fourth International Conference on the World-
Wide Web. MIT, Boston.

YosHIDA, N. AND HENNESSY, M. 1999. Assigning types to processes. CogSci Report 99.02, School
of Cognitive and Computing Sciences, University of Sussex, UK.

ACM Transactions on Document Formatting, Vol. 7, No. 7, 2007.

