
Domain Specific Formal Languages
Preliminaries

Francesco Tiezzi

University of Camerino
francesco.tiezzi@unicam.it

A.A. 2017/2018

F. Tiezzi (Unicam) DSFL 1 / 28

Set Notation

A ⊆ B every element of A is in B

A ⊂ B if A ⊆ B and there is one element of B not in A

A ⊆ B and B ⊆ A implies A = B

A ∪ B = {x | x ∈ A or x ∈ B} (
⋃

i∈I Ai)

A ∩ B = {x | x ∈ A and x ∈ B} (
⋂

i∈I Ai)

A \ B = {x | x ∈ A and x 6∈ B}

A× B = {(a, b) | a ∈ A and b ∈ B} ordered pairs (×n
i=1Ai)

2A = {X | X ⊆ A} powerset

F. Tiezzi (Unicam) DSFL 2 / 28

Set Notation

A ⊆ B every element of A is in B

A ⊂ B if A ⊆ B and there is one element of B not in A

A ⊆ B and B ⊆ A implies A = B

A ∪ B = {x | x ∈ A or x ∈ B} (
⋃

i∈I Ai)

A ∩ B = {x | x ∈ A and x ∈ B} (
⋂

i∈I Ai)

A \ B = {x | x ∈ A and x 6∈ B}

A× B = {(a, b) | a ∈ A and b ∈ B} ordered pairs (×n
i=1Ai)

2A = {X | X ⊆ A} powerset

F. Tiezzi (Unicam) DSFL 2 / 28

Relations

R ⊆ A× B is a relation on sets A and B (R ⊆ ×n
i=1Ai)

(a, b)∈R ≡ R(a, b) ≡ aRb notation

IdA = {(a, a) | a∈A} (identity)

R−1 = {(y , x) | (x , y)∈R} ⊆ B × A (inverse)

R1 · R2 = {(x , z) | ∃ y ∈B. (x , y)∈R1 ∧∧ (y , z)∈R2} ⊆ A× C (composition)

Some basic constructions:

R0 = IdA

Rn+1 = R · Rn

R∗ =
⋃

n≥0 Rn

R+ =
⋃

n≥1 Rn

Note that: R1 = R · R0 = R, R∗ = IdA ∪ R+ and

R+ = {(x , y) | ∃n,∃x1, . . . , xn with xiRxi+1 (1 ≤ i ≤ n − 1), x1 = x , xn = y}
F. Tiezzi (Unicam) DSFL 3 / 28

Relations

R ⊆ A× B is a relation on sets A and B (R ⊆ ×n
i=1Ai)

(a, b)∈R ≡ R(a, b) ≡ aRb notation

IdA = {(a, a) | a∈A} (identity)

R−1 = {(y , x) | (x , y)∈R} ⊆ B × A (inverse)

R1 · R2 = {(x , z) | ∃ y ∈B. (x , y)∈R1 ∧∧ (y , z)∈R2} ⊆ A× C (composition)

Some basic constructions:

R0 = IdA

Rn+1 = R · Rn

R∗ =
⋃

n≥0 Rn

R+ =
⋃

n≥1 Rn

Note that: R1 = R · R0 = R, R∗ = IdA ∪ R+ and

R+ = {(x , y) | ∃n,∃x1, . . . , xn with xiRxi+1 (1 ≤ i ≤ n − 1), x1 = x , xn = y}
F. Tiezzi (Unicam) DSFL 3 / 28

Relations

R ⊆ A× B is a relation on sets A and B (R ⊆ ×n
i=1Ai)

(a, b)∈R ≡ R(a, b) ≡ aRb notation

IdA = {(a, a) | a∈A} (identity)

R−1 = {(y , x) | (x , y)∈R} ⊆ B × A (inverse)

R1 · R2 = {(x , z) | ∃ y ∈B. (x , y)∈R1 ∧∧ (y , z)∈R2} ⊆ A× C (composition)

Some basic constructions:

R0 = IdA

Rn+1 = R · Rn

R∗ =
⋃

n≥0 Rn

R+ =
⋃

n≥1 Rn

Note that: R1 = R · R0 = R, R∗ = IdA ∪ R+ and

R+ = {(x , y) | ∃n,∃x1, . . . , xn with xiRxi+1 (1 ≤ i ≤ n − 1), x1 = x , xn = y}
F. Tiezzi (Unicam) DSFL 3 / 28

Properties of Relations

Binary Relations

A binary relation R ⊆ A× A is (same set A)

reflexive: if ∀x ∈ A, (x , x) ∈ R,
symmetric: if ∀x , y ∈ A, (x , y) ∈ R ⇒ (y , x) ∈ R,
antisymmetric: if ∀x , y ∈ A, (x , y) ∈ R ∧∧ (y , x) ∈ R ⇒ x = y ;
transitive: if ∀x , y , z ∈ A, (x , y) ∈ R ∧∧ (y , z) ∈ R ⇒ (x , z)∈R

Closure of Relations

S = R ∪ IdA the reflexive closure of R
S = R ∪ R−1 the symmetric closure of R
S = R+ the transitive closure of R
S = R∗ the reflexive and transitive closure of R

F. Tiezzi (Unicam) DSFL 4 / 28

Properties of Relations

Binary Relations

A binary relation R ⊆ A× A is (same set A)

reflexive: if ∀x ∈ A, (x , x) ∈ R,
symmetric: if ∀x , y ∈ A, (x , y) ∈ R ⇒ (y , x) ∈ R,
antisymmetric: if ∀x , y ∈ A, (x , y) ∈ R ∧∧ (y , x) ∈ R ⇒ x = y ;
transitive: if ∀x , y , z ∈ A, (x , y) ∈ R ∧∧ (y , z) ∈ R ⇒ (x , z)∈R

Closure of Relations

S = R ∪ IdA the reflexive closure of R
S = R ∪ R−1 the symmetric closure of R
S = R+ the transitive closure of R
S = R∗ the reflexive and transitive closure of R

F. Tiezzi (Unicam) DSFL 4 / 28

Special Relations

A relation R is

an order if it is reflexive, antisymmetric and transitive

an equivalence if it is reflexive, symmetric and transitive

a preorder if it is reflexive and transitive

Examples

orders: less-than-or-equal-to (6) on R, set inclusion (⊆),. . .

equivalences: equal-to (=) on R, congruent-mod-n, . . .

preorders: reachability in directed graphs, some subtyping,. . .

Kernel relation

Given a preorder R its kernel, defined as K = R ∩ R−1, is an
equivalence relation

F. Tiezzi (Unicam) DSFL 5 / 28

Special Relations

A relation R is

an order if it is reflexive, antisymmetric and transitive

an equivalence if it is reflexive, symmetric and transitive

a preorder if it is reflexive and transitive

Examples

orders: less-than-or-equal-to (6) on R, set inclusion (⊆),. . .

equivalences: equal-to (=) on R, congruent-mod-n, . . .

preorders: reachability in directed graphs, some subtyping,. . .

Kernel relation

Given a preorder R its kernel, defined as K = R ∩ R−1, is an
equivalence relation

F. Tiezzi (Unicam) DSFL 5 / 28

Special Relations

A relation R is

an order if it is reflexive, antisymmetric and transitive

an equivalence if it is reflexive, symmetric and transitive

a preorder if it is reflexive and transitive

Examples

orders: less-than-or-equal-to (6) on R, set inclusion (⊆),. . .

equivalences: equal-to (=) on R, congruent-mod-n, . . .

preorders: reachability in directed graphs, some subtyping,. . .

Kernel relation

Given a preorder R its kernel, defined as K = R ∩ R−1, is an
equivalence relation

F. Tiezzi (Unicam) DSFL 5 / 28

Equivalence Classes and Quotient Set

Examples of equivalence relations: R ⊆ A× A (reflexive, symmetric,
transitive)

Example: R = {(x , y) ∈ N×N | (x ≡ y) mod 3}

R(7, 7), R(7,1), R(1, 7), R(7,10), R(1,10) , . . .

[0] = {0, 3, 6, 9, . . .} equivalence classes:

[1] = {1, 4, 7, 10, . . .} - have a representative

[2] = {2, 5, 8, 11, . . .} - are disjoint

F. Tiezzi (Unicam) DSFL 6 / 28

Equivalence Classes and Quotient Set

Examples of equivalence relations: R ⊆ A× A (reflexive, symmetric,
transitive)

Example: R = {(x , y) ∈ N×N | (x ≡ y) mod 3}

R(7, 7),

R(7,1), R(1, 7), R(7,10), R(1,10) , . . .

[0] = {0, 3, 6, 9, . . .} equivalence classes:

[1] = {1, 4, 7, 10, . . .} - have a representative

[2] = {2, 5, 8, 11, . . .} - are disjoint

F. Tiezzi (Unicam) DSFL 6 / 28

Equivalence Classes and Quotient Set

Examples of equivalence relations: R ⊆ A× A (reflexive, symmetric,
transitive)

Example: R = {(x , y) ∈ N×N | (x ≡ y) mod 3}

R(7, 7), R(7,1), R(1, 7),

R(7,10), R(1,10) , . . .

[0] = {0, 3, 6, 9, . . .} equivalence classes:

[1] = {1, 4, 7, 10, . . .} - have a representative

[2] = {2, 5, 8, 11, . . .} - are disjoint

F. Tiezzi (Unicam) DSFL 6 / 28

Equivalence Classes and Quotient Set

Examples of equivalence relations: R ⊆ A× A (reflexive, symmetric,
transitive)

Example: R = {(x , y) ∈ N×N | (x ≡ y) mod 3}

R(7, 7), R(7,1), R(1, 7), R(7,10), R(1,10)

, . . .

[0] = {0, 3, 6, 9, . . .} equivalence classes:

[1] = {1, 4, 7, 10, . . .} - have a representative

[2] = {2, 5, 8, 11, . . .} - are disjoint

F. Tiezzi (Unicam) DSFL 6 / 28

Equivalence Classes and Quotient Set

Examples of equivalence relations: R ⊆ A× A (reflexive, symmetric,
transitive)

Example: R = {(x , y) ∈ N×N | (x ≡ y) mod 3}

R(7, 7), R(7,1), R(1, 7), R(7,10), R(1,10) , . . .

[0] = {0, 3, 6, 9, . . .} equivalence classes:

[1] = {1, 4, 7, 10, . . .} - have a representative

[2] = {2, 5, 8, 11, . . .} - are disjoint

F. Tiezzi (Unicam) DSFL 6 / 28

Equivalence Classes and Quotient Set

Examples of equivalence relations: R ⊆ A× A (reflexive, symmetric,
transitive)

Example: R = {(x , y) ∈ N×N | (x ≡ y) mod 3}

R(7, 7), R(7,1), R(1, 7), R(7,10), R(1,10) , . . .

[0] = {0, 3, 6, 9, . . .} equivalence classes:

[1] = {1, 4, 7, 10, . . .} - have a representative

[2] = {2, 5, 8, 11, . . .} - are disjoint

F. Tiezzi (Unicam) DSFL 6 / 28

Equivalence Classes and Quotient Set

Examples of equivalence relations: R ⊆ A× A (reflexive, symmetric,
transitive)

Example: R = {(x , y) ∈ N×N | (x ≡ y) mod 3}

R(7, 7), R(7,1), R(1, 7), R(7,10), R(1,10) , . . .

[0] = {0, 3, 6, 9, . . .} equivalence classes:

[1] = {1, 4, 7, 10, . . .} - have a representative

[2] = {2, 5, 8, 11, . . .} - are disjoint

An equivalence class is a subset C of A such that

x , y ∈C ⇒ (x , y) ∈ R consistent and

x ∈C ∧∧ (x , y)∈R ⇒ y ∈C saturated

F. Tiezzi (Unicam) DSFL 6 / 28

Equivalence Classes and Quotient Set

Examples of equivalence relations: R ⊆ A× A (reflexive, symmetric,
transitive)

Example: R = {(x , y) ∈ N×N | (x ≡ y) mod 3}

R(7, 7), R(7,1), R(1, 7), R(7,10), R(1,10) , . . .

[0] = {0, 3, 6, 9, . . .} equivalence classes:

[1] = {1, 4, 7, 10, . . .} - have a representative

[2] = {2, 5, 8, 11, . . .} - are disjoint

The quotient set QR
A of A modulo R is a partition of A

is the set of equivalence classes induced by R on A

Example: R = {(x , y) ∈ N×N | (x ≡ y) mod 3}
QR

N = { [0], [1], [2] }

F. Tiezzi (Unicam) DSFL 6 / 28

Functions

Partial Functions

A partial function is a relation f ⊆ A× B such that

∀x , y , z . (x , y)∈ f ∧∧ (x , z)∈ f ⇒ y = z

We denote partial function by f : A⇁ B

Total Functions

A (total) function is a partial function f : A⇁ B such that

∀x ∃y . (x , y)∈ f

We denote total function by f : A→ B

Functions (total or partial) can be monotone, continuous, injective,
surjective, bijective, invertible...

F. Tiezzi (Unicam) DSFL 7 / 28

Functions

Partial Functions

A partial function is a relation f ⊆ A× B such that

∀x , y , z . (x , y)∈ f ∧∧ (x , z)∈ f ⇒ y = z

We denote partial function by f : A⇁ B

Total Functions

A (total) function is a partial function f : A⇁ B such that

∀x ∃y . (x , y)∈ f

We denote total function by f : A→ B

Functions (total or partial) can be monotone, continuous, injective,
surjective, bijective, invertible...

F. Tiezzi (Unicam) DSFL 7 / 28

Functions

Partial Functions

A partial function is a relation f ⊆ A× B such that

∀x , y , z . (x , y)∈ f ∧∧ (x , z)∈ f ⇒ y = z

We denote partial function by f : A⇁ B

Total Functions

A (total) function is a partial function f : A⇁ B such that

∀x ∃y . (x , y)∈ f

We denote total function by f : A→ B

Functions (total or partial) can be monotone, continuous, injective,
surjective, bijective, invertible...

F. Tiezzi (Unicam) DSFL 7 / 28

Induction Principle

Mathematical Induction

To prove that P(n) holds for every natural number n ∈ N, prove

1 P(0)

2 for any k ∈ N, P(k) implies P(k + 1)

Example: Show that sum(n) =
∑n

i=1 i =
n(n+1)

2
for every n ∈ N

(1) sum(0) = 0(0+1)
2

= 0 base case

(2) to show:
∑n

i=1 i =
n(n+1)

2
implies

∑n+1
i=1 i = (n+1)(n+2)

2

assume sum(n) = n(n+1)
2

, for a generic n

sum(n + 1) = sum(n) + (n + 1) = properties of summation

= n(n+1)
2

+ (n + 1) inductive hypothesis

= (n+1)(n+2)
2

qed

F. Tiezzi (Unicam) DSFL 8 / 28

Induction Principle

Mathematical Induction

To prove that P(n) holds for every natural number n ∈ N, prove

1 P(0)

2 for any k ∈ N, P(k) implies P(k + 1)

Example: Show that sum(n) =
∑n

i=1 i =
n(n+1)

2
for every n ∈ N

(1) sum(0) = 0(0+1)
2

= 0 base case

(2) to show:
∑n

i=1 i =
n(n+1)

2
implies

∑n+1
i=1 i = (n+1)(n+2)

2

assume sum(n) = n(n+1)
2

, for a generic n

sum(n + 1) = sum(n) + (n + 1) = properties of summation

= n(n+1)
2

+ (n + 1) inductive hypothesis

= (n+1)(n+2)
2

qed

F. Tiezzi (Unicam) DSFL 8 / 28

Induction Principle

Mathematical Induction

To prove that P(n) holds for every natural number n ∈ N, prove

1 P(0)

2 for any k ∈ N, P(k) implies P(k + 1)

Example: Show that sum(n) =
∑n

i=1 i =
n(n+1)

2
for every n ∈ N

(1) sum(0) = 0(0+1)
2

= 0 base case

(2) to show:
∑n

i=1 i =
n(n+1)

2
implies

∑n+1
i=1 i = (n+1)(n+2)

2

assume sum(n) = n(n+1)
2

, for a generic n

sum(n + 1) = sum(n) + (n + 1) = properties of summation

= n(n+1)
2

+ (n + 1) inductive hypothesis

= (n+1)(n+2)
2

qed

F. Tiezzi (Unicam) DSFL 8 / 28

Induction Principle

Mathematical Induction

To prove that P(n) holds for every natural number n ∈ N, prove

1 P(0)

2 for any k ∈ N, P(k) implies P(k + 1)

Example: Show that sum(n) =
∑n

i=1 i =
n(n+1)

2
for every n ∈ N

(1) sum(0) = 0(0+1)
2

= 0 base case

(2) to show:
∑n

i=1 i =
n(n+1)

2
implies

∑n+1
i=1 i = (n+1)(n+2)

2

assume sum(n) = n(n+1)
2

, for a generic n

sum(n + 1) = sum(n) + (n + 1) = properties of summation

= n(n+1)
2

+ (n + 1) inductive hypothesis

= (n+1)(n+2)
2

qed

F. Tiezzi (Unicam) DSFL 8 / 28

Playful digression

Some “advanced” proof methods

1 Proof by obviousness: So evident it need not to be mentioned

2 Proof by general agreement: All in favor?

3 Proof by majority: When general agreement fails

4 Proof by plausibility: It sounds good

5 Proof by intuition: I have this feeling. . .

6 Proof by lost reference: I saw it somewhere

7 Proof by obscure reference: It appeared in the Annals of Polish
Math. Soc. (1854, in polish)

8 Proof by logic: It is on the textbook, hence it must be true

9 Proof by intimidation: Who is saying that it is false!?

10 Proof by authority: Don Knuth said it was true

11 Proof by deception: Everybody please turn their backs. . .

12 Proof by divine word: Lord said let it be true

F. Tiezzi (Unicam) DSFL 9 / 28

Playful digression

Some “advanced” proof methods

1 Proof by obviousness: So evident it need not to be mentioned

2 Proof by general agreement: All in favor?

3 Proof by majority: When general agreement fails

4 Proof by plausibility: It sounds good

5 Proof by intuition: I have this feeling. . .

6 Proof by lost reference: I saw it somewhere

7 Proof by obscure reference: It appeared in the Annals of Polish
Math. Soc. (1854, in polish)

8 Proof by logic: It is on the textbook, hence it must be true

9 Proof by intimidation: Who is saying that it is false!?

10 Proof by authority: Don Knuth said it was true

11 Proof by deception: Everybody please turn their backs. . .

12 Proof by divine word: Lord said let it be true

F. Tiezzi (Unicam) DSFL 9 / 28

Playful digression

Some “advanced” proof methods

1 Proof by obviousness: So evident it need not to be mentioned

2 Proof by general agreement: All in favor?

3 Proof by majority: When general agreement fails

4 Proof by plausibility: It sounds good

5 Proof by intuition: I have this feeling. . .

6 Proof by lost reference: I saw it somewhere

7 Proof by obscure reference: It appeared in the Annals of Polish
Math. Soc. (1854, in polish)

8 Proof by logic: It is on the textbook, hence it must be true

9 Proof by intimidation: Who is saying that it is false!?

10 Proof by authority: Don Knuth said it was true

11 Proof by deception: Everybody please turn their backs. . .

12 Proof by divine word: Lord said let it be true

F. Tiezzi (Unicam) DSFL 9 / 28

Playful digression

Some “advanced” proof methods

1 Proof by obviousness: So evident it need not to be mentioned

2 Proof by general agreement: All in favor?

3 Proof by majority: When general agreement fails

4 Proof by plausibility: It sounds good

5 Proof by intuition: I have this feeling. . .

6 Proof by lost reference: I saw it somewhere

7 Proof by obscure reference: It appeared in the Annals of Polish
Math. Soc. (1854, in polish)

8 Proof by logic: It is on the textbook, hence it must be true

9 Proof by intimidation: Who is saying that it is false!?

10 Proof by authority: Don Knuth said it was true

11 Proof by deception: Everybody please turn their backs. . .

12 Proof by divine word: Lord said let it be true

F. Tiezzi (Unicam) DSFL 9 / 28

Playful digression

Some “advanced” proof methods

1 Proof by obviousness: So evident it need not to be mentioned

2 Proof by general agreement: All in favor?

3 Proof by majority: When general agreement fails

4 Proof by plausibility: It sounds good

5 Proof by intuition: I have this feeling. . .

6 Proof by lost reference: I saw it somewhere

7 Proof by obscure reference: It appeared in the Annals of Polish
Math. Soc. (1854, in polish)

8 Proof by logic: It is on the textbook, hence it must be true

9 Proof by intimidation: Who is saying that it is false!?

10 Proof by authority: Don Knuth said it was true

11 Proof by deception: Everybody please turn their backs. . .

12 Proof by divine word: Lord said let it be true

F. Tiezzi (Unicam) DSFL 9 / 28

Playful digression

Some “advanced” proof methods

1 Proof by obviousness: So evident it need not to be mentioned

2 Proof by general agreement: All in favor?

3 Proof by majority: When general agreement fails

4 Proof by plausibility: It sounds good

5 Proof by intuition: I have this feeling. . .

6 Proof by lost reference: I saw it somewhere

7 Proof by obscure reference: It appeared in the Annals of Polish
Math. Soc. (1854, in polish)

8 Proof by logic: It is on the textbook, hence it must be true

9 Proof by intimidation: Who is saying that it is false!?

10 Proof by authority: Don Knuth said it was true

11 Proof by deception: Everybody please turn their backs. . .

12 Proof by divine word: Lord said let it be true

F. Tiezzi (Unicam) DSFL 9 / 28

Playful digression

Some “advanced” proof methods

1 Proof by obviousness: So evident it need not to be mentioned

2 Proof by general agreement: All in favor?

3 Proof by majority: When general agreement fails

4 Proof by plausibility: It sounds good

5 Proof by intuition: I have this feeling. . .

6 Proof by lost reference: I saw it somewhere

7 Proof by obscure reference: It appeared in the Annals of Polish
Math. Soc. (1854, in polish)

8 Proof by logic: It is on the textbook, hence it must be true

9 Proof by intimidation: Who is saying that it is false!?

10 Proof by authority: Don Knuth said it was true

11 Proof by deception: Everybody please turn their backs. . .

12 Proof by divine word: Lord said let it be true

F. Tiezzi (Unicam) DSFL 9 / 28

Playful digression

Some “advanced” proof methods

1 Proof by obviousness: So evident it need not to be mentioned

2 Proof by general agreement: All in favor?

3 Proof by majority: When general agreement fails

4 Proof by plausibility: It sounds good

5 Proof by intuition: I have this feeling. . .

6 Proof by lost reference: I saw it somewhere

7 Proof by obscure reference: It appeared in the Annals of Polish
Math. Soc. (1854, in polish)

8 Proof by logic: It is on the textbook, hence it must be true

9 Proof by intimidation: Who is saying that it is false!?

10 Proof by authority: Don Knuth said it was true

11 Proof by deception: Everybody please turn their backs. . .

12 Proof by divine word: Lord said let it be true

F. Tiezzi (Unicam) DSFL 9 / 28

Playful digression

Some “advanced” proof methods

1 Proof by obviousness: So evident it need not to be mentioned

2 Proof by general agreement: All in favor?

3 Proof by majority: When general agreement fails

4 Proof by plausibility: It sounds good

5 Proof by intuition: I have this feeling. . .

6 Proof by lost reference: I saw it somewhere

7 Proof by obscure reference: It appeared in the Annals of Polish
Math. Soc. (1854, in polish)

8 Proof by logic: It is on the textbook, hence it must be true

9 Proof by intimidation: Who is saying that it is false!?

10 Proof by authority: Don Knuth said it was true

11 Proof by deception: Everybody please turn their backs. . .

12 Proof by divine word: Lord said let it be true

F. Tiezzi (Unicam) DSFL 9 / 28

Playful digression

Some “advanced” proof methods

1 Proof by obviousness: So evident it need not to be mentioned

2 Proof by general agreement: All in favor?

3 Proof by majority: When general agreement fails

4 Proof by plausibility: It sounds good

5 Proof by intuition: I have this feeling. . .

6 Proof by lost reference: I saw it somewhere

7 Proof by obscure reference: It appeared in the Annals of Polish
Math. Soc. (1854, in polish)

8 Proof by logic: It is on the textbook, hence it must be true

9 Proof by intimidation: Who is saying that it is false!?

10 Proof by authority: Don Knuth said it was true

11 Proof by deception: Everybody please turn their backs. . .

12 Proof by divine word: Lord said let it be true

F. Tiezzi (Unicam) DSFL 9 / 28

Playful digression

Some “advanced” proof methods

1 Proof by obviousness: So evident it need not to be mentioned

2 Proof by general agreement: All in favor?

3 Proof by majority: When general agreement fails

4 Proof by plausibility: It sounds good

5 Proof by intuition: I have this feeling. . .

6 Proof by lost reference: I saw it somewhere

7 Proof by obscure reference: It appeared in the Annals of Polish
Math. Soc. (1854, in polish)

8 Proof by logic: It is on the textbook, hence it must be true

9 Proof by intimidation: Who is saying that it is false!?

10 Proof by authority: Don Knuth said it was true

11 Proof by deception: Everybody please turn their backs. . .

12 Proof by divine word: Lord said let it be true

F. Tiezzi (Unicam) DSFL 9 / 28

Playful digression

Some “advanced” proof methods

1 Proof by obviousness: So evident it need not to be mentioned

2 Proof by general agreement: All in favor?

3 Proof by majority: When general agreement fails

4 Proof by plausibility: It sounds good

5 Proof by intuition: I have this feeling. . .

6 Proof by lost reference: I saw it somewhere

7 Proof by obscure reference: It appeared in the Annals of Polish
Math. Soc. (1854, in polish)

8 Proof by logic: It is on the textbook, hence it must be true

9 Proof by intimidation: Who is saying that it is false!?

10 Proof by authority: Don Knuth said it was true

11 Proof by deception: Everybody please turn their backs. . .

12 Proof by divine word: Lord said let it be true

F. Tiezzi (Unicam) DSFL 9 / 28

Inductively Defined Sets

basis: the set I of initial elements of S
induction: rules R for constructing elements in S from elements in S
closure: S is the least set containing I and closed w.r.t. R

Natural numbers

I = {0}, R1 : if X ∈ S then s(X) ∈ S

S = {0, s(0), s(s(0)), . . .}

S = Lists(N), lists of numbers in N

I = {[]}, R1 : if X ∈ S and n ∈ N then [n|X] ∈ S

S = {[], [0], [1], [2], . . . , [0, 0], [0, 1], [0, 2], . . . , [1, 0], [1, 1], [1, 2], . . .}

n-ary trees

I = {ε}, R1 : if X1, . . . ,Xn ∈ S then t(X1, . . . ,Xn) ∈ S

S = {ε, t(ε), t(ε, ε), . . . , t(t(ε)), . . . , t(ε, t(t(ε), ε), t(ε, ε, ε)), . . .}

F. Tiezzi (Unicam) DSFL 10 / 28

Inductively Defined Sets

basis: the set I of initial elements of S
induction: rules R for constructing elements in S from elements in S
closure: S is the least set containing I and closed w.r.t. R

Natural numbers

I = {0}, R1 : if X ∈ S then s(X) ∈ S

S = {0, s(0), s(s(0)), . . .}

S = Lists(N), lists of numbers in N

I = {[]}, R1 : if X ∈ S and n ∈ N then [n|X] ∈ S

S = {[], [0], [1], [2], . . . , [0, 0], [0, 1], [0, 2], . . . , [1, 0], [1, 1], [1, 2], . . .}

n-ary trees

I = {ε}, R1 : if X1, . . . ,Xn ∈ S then t(X1, . . . ,Xn) ∈ S

S = {ε, t(ε), t(ε, ε), . . . , t(t(ε)), . . . , t(ε, t(t(ε), ε), t(ε, ε, ε)), . . .}

F. Tiezzi (Unicam) DSFL 10 / 28

Inductively Defined Sets

basis: the set I of initial elements of S
induction: rules R for constructing elements in S from elements in S
closure: S is the least set containing I and closed w.r.t. R

Natural numbers

I = {0}, R1 : if X ∈ S then s(X) ∈ S

S = {0, s(0), s(s(0)), . . .}

S = Lists(N), lists of numbers in N

I = {[]}, R1 : if X ∈ S and n ∈ N then [n|X] ∈ S

S = {[], [0], [1], [2], . . . , [0, 0], [0, 1], [0, 2], . . . , [1, 0], [1, 1], [1, 2], . . .}

n-ary trees

I = {ε}, R1 : if X1, . . . ,Xn ∈ S then t(X1, . . . ,Xn) ∈ S

S = {ε, t(ε), t(ε, ε), . . . , t(t(ε)), . . . , t(ε, t(t(ε), ε), t(ε, ε, ε)), . . .}

F. Tiezzi (Unicam) DSFL 10 / 28

Inductively Defined Sets

basis: the set I of initial elements of S
induction: rules R for constructing elements in S from elements in S
closure: S is the least set containing I and closed w.r.t. R

Natural numbers

I = {0}, R1 : if X ∈ S then s(X) ∈ S

S = {0, s(0), s(s(0)), . . .}

S = Lists(N), lists of numbers in N

I = {[]}, R1 : if X ∈ S and n ∈ N then [n|X] ∈ S

S = {[], [0], [1], [2], . . . , [0, 0], [0, 1], [0, 2], . . . , [1, 0], [1, 1], [1, 2], . . .}

n-ary trees

I = {ε}, R1 : if X1, . . . ,Xn ∈ S then t(X1, . . . ,Xn) ∈ S

S = {ε, t(ε), t(ε, ε), . . . , t(t(ε)), . . . , t(ε, t(t(ε), ε), t(ε, ε, ε)), . . .}

F. Tiezzi (Unicam) DSFL 10 / 28

Structural Induction

Let us consider a set S inductively defined by a set
C = {c1, . . . , cn} of constructors of arity {a1, . . . , an} with

I = {ci () | ai = 0}
Ri : if X1, . . . ,Xai ∈ S then ci (X1, . . . ,Xai) ∈ S

To prove that P(x) holds for every x ∈ S , it is sufficient to prove
that

for every constructor ck ∈ C and

for every s1, . . . , sk ∈ S , where k is the arity of ck

P(s1), . . . ,P(sk) =⇒ P
(
ck (s1, . . . , sk)

)
Notice that the base case is the one dealing with constructors of arity 0

i.e. with constants

F. Tiezzi (Unicam) DSFL 11 / 28

Structural Induction: example

Prove that sum(`) ≤ max(`) ∗ len(`), for every ` ∈ Lists(N)

where

sum(`) is the sum of the elements in the list `

max(`) is the greatest element in ` (with max([]) = 0)

len(`) is the number of elements in `

F. Tiezzi (Unicam) DSFL 12 / 28

Structural Induction: example

Exercise: prove sum(`) ≤ max(`) ∗ len(`), for every ` ∈ Lists(N)

sum([]) = 0 len([]) = 0

sum([n|X]) = n + sum(X) len([n|X]) = 1 + len(X)

max([]) = 0

max([n|X]) = n if max(X) ≤ n

(a)

max([n|X]) = max(X) if n < max(X)

(b)

(1) sum([]) ≤ max([]) ∗ len([])

0 ≤ 0 ∗ 0 applying definitions

(2) assume sum(`) ≤ max(`) ∗ len(`) inductive hyp.

prove sum([n|`]) ≤ max([n|`]) ∗ len([n|`]) for any n ∈ N

(a) n + sum(`) ≤ n ∗ (1 + len(`)) if max(`) ≤ n applying definitions

sum(`) ≤hyp max(`) ∗ len(`) ≤(a) n ∗ len(`) QED

(b) n + sum(`) ≤ max(`) + max(`) ∗ len(`)) if n < max(`) applying definitions

A ≤ B and C ≤ D imply A + C ≤ B + D QED

F. Tiezzi (Unicam) DSFL 13 / 28

Structural Induction: example

Exercise: prove sum(`) ≤ max(`) ∗ len(`), for every ` ∈ Lists(N)

sum([]) = 0 len([]) = 0

sum([n|X]) = n + sum(X) len([n|X]) = 1 + len(X)

max([]) = 0

max([n|X]) = n if max(X) ≤ n

(a)

max([n|X]) = max(X) if n < max(X)

(b)

(1) sum([]) ≤ max([]) ∗ len([])

0 ≤ 0 ∗ 0 applying definitions

(2) assume sum(`) ≤ max(`) ∗ len(`) inductive hyp.

prove sum([n|`]) ≤ max([n|`]) ∗ len([n|`]) for any n ∈ N

(a) n + sum(`) ≤ n ∗ (1 + len(`)) if max(`) ≤ n applying definitions

sum(`) ≤hyp max(`) ∗ len(`) ≤(a) n ∗ len(`) QED

(b) n + sum(`) ≤ max(`) + max(`) ∗ len(`)) if n < max(`) applying definitions

A ≤ B and C ≤ D imply A + C ≤ B + D QED

F. Tiezzi (Unicam) DSFL 13 / 28

Structural Induction: example

Exercise: prove sum(`) ≤ max(`) ∗ len(`), for every ` ∈ Lists(N)

sum([]) = 0 len([]) = 0

sum([n|X]) = n + sum(X) len([n|X]) = 1 + len(X)

max([]) = 0

max([n|X]) = n if max(X) ≤ n

(a)

max([n|X]) = max(X) if n < max(X)

(b)

(1) sum([]) ≤ max([]) ∗ len([])

0 ≤ 0 ∗ 0 applying definitions

(2) assume sum(`) ≤ max(`) ∗ len(`) inductive hyp.

prove sum([n|`]) ≤ max([n|`]) ∗ len([n|`]) for any n ∈ N

(a) n + sum(`) ≤ n ∗ (1 + len(`)) if max(`) ≤ n applying definitions

sum(`) ≤hyp max(`) ∗ len(`) ≤(a) n ∗ len(`) QED

(b) n + sum(`) ≤ max(`) + max(`) ∗ len(`)) if n < max(`) applying definitions

A ≤ B and C ≤ D imply A + C ≤ B + D QED

F. Tiezzi (Unicam) DSFL 13 / 28

Structural Induction: example

Exercise: prove sum(`) ≤ max(`) ∗ len(`), for every ` ∈ Lists(N)

sum([]) = 0 len([]) = 0

sum([n|X]) = n + sum(X) len([n|X]) = 1 + len(X)

max([]) = 0

max([n|X]) = n if max(X) ≤ n (a)

max([n|X]) = max(X) if n < max(X)

(b)

(1) sum([]) ≤ max([]) ∗ len([])

0 ≤ 0 ∗ 0 applying definitions

(2) assume sum(`) ≤ max(`) ∗ len(`) inductive hyp.

prove sum([n|`]) ≤ max([n|`]) ∗ len([n|`]) for any n ∈ N

(a) n + sum(`) ≤ n ∗ (1 + len(`)) if max(`) ≤ n applying definitions

sum(`) ≤hyp max(`) ∗ len(`) ≤(a) n ∗ len(`) QED

(b) n + sum(`) ≤ max(`) + max(`) ∗ len(`)) if n < max(`) applying definitions

A ≤ B and C ≤ D imply A + C ≤ B + D QED

F. Tiezzi (Unicam) DSFL 13 / 28

Structural Induction: example

Exercise: prove sum(`) ≤ max(`) ∗ len(`), for every ` ∈ Lists(N)

sum([]) = 0 len([]) = 0

sum([n|X]) = n + sum(X) len([n|X]) = 1 + len(X)

max([]) = 0

max([n|X]) = n if max(X) ≤ n (a)

max([n|X]) = max(X) if n < max(X) (b)

(1) sum([]) ≤ max([]) ∗ len([])

0 ≤ 0 ∗ 0 applying definitions

(2) assume sum(`) ≤ max(`) ∗ len(`) inductive hyp.

prove sum([n|`]) ≤ max([n|`]) ∗ len([n|`]) for any n ∈ N

(a) n + sum(`) ≤ n ∗ (1 + len(`)) if max(`) ≤ n applying definitions

sum(`) ≤hyp max(`) ∗ len(`) ≤(a) n ∗ len(`) QED

(b) n + sum(`) ≤ max(`) + max(`) ∗ len(`)) if n < max(`) applying definitions

A ≤ B and C ≤ D imply A + C ≤ B + D QED
F. Tiezzi (Unicam) DSFL 13 / 28

Inference Systems

1 I can be written as
t

(for any t∈ I)

2 Ri can be written as
p1 · · · pn

q

Meaning: ` t and if ` p1, . . . ,` pn then ` q

Example: rational numbers Q

0 ∈ N 1 ∈ D

k ∈ N

k + 1 ∈ N

k ∈ D

k + 1 ∈ D

k ∈ N, h ∈ D

k/h ∈ Q

A derivation:
0 ∈ N

1 ∈ N

1 ∈ D

2 ∈ D

1/2 ∈ Q

` 1/2 ∈ Q Question:
why do we
need the rules
in Red?

F. Tiezzi (Unicam) DSFL 14 / 28

Inference Systems

1 I can be written as
t

(for any t∈ I)

2 Ri can be written as
p1 · · · pn

q

Meaning: ` t and if ` p1, . . . ,` pn then ` q

Example: rational numbers Q

0 ∈ N 1 ∈ D

k ∈ N

k + 1 ∈ N

k ∈ D

k + 1 ∈ D

k ∈ N, h ∈ D

k/h ∈ Q

A derivation:
0 ∈ N

1 ∈ N

1 ∈ D

2 ∈ D

1/2 ∈ Q

` 1/2 ∈ Q Question:
why do we
need the rules
in Red?

F. Tiezzi (Unicam) DSFL 14 / 28

Inference Systems

1 I can be written as
t

(for any t∈ I)

2 Ri can be written as
p1 · · · pn

q

Meaning: ` t and if ` p1, . . . ,` pn then ` q

Example: rational numbers Q

0 ∈ N 1 ∈ D

k ∈ N

k + 1 ∈ N

k ∈ D

k + 1 ∈ D

k ∈ N, h ∈ D

k/h ∈ Q

A derivation:
0 ∈ N

1 ∈ N

1 ∈ D

2 ∈ D

1/2 ∈ Q

` 1/2 ∈ Q Question:
why do we
need the rules
in Red?

F. Tiezzi (Unicam) DSFL 14 / 28

More on Inductively Defined Sets

SI ,R = {x | ` x} the set of all finitely derivable elements

R(X) = {y |
x1 · · · xn

y
and x1, . . . xn∈X} one step derivation

X is closed under R if R(X) ⊆ X called a (pre-)fixed point

R is monotonic if A⊆B ⇒ R(A)⊆R(B)

S0 = R0(∅) = ∅
S1 = R1(∅) = R(∅) S0 ⊆ S1 ⊆ S2 ⊆ . . .
S2 = R2(∅) = R(R(∅))

...

S ,
⋃

i∈N S i S closed under R R(S) = S S least R-closed set

F. Tiezzi (Unicam) DSFL 15 / 28

More on Inductively Defined Sets

SI ,R = {x | ` x} the set of all finitely derivable elements

R(X) = {y |
x1 · · · xn

y
and x1, . . . xn∈X} one step derivation

X is closed under R if R(X) ⊆ X called a (pre-)fixed point

R is monotonic if A⊆B ⇒ R(A)⊆R(B)

S0 = R0(∅) = ∅
S1 = R1(∅) = R(∅) S0 ⊆ S1 ⊆ S2 ⊆ . . .
S2 = R2(∅) = R(R(∅))

...

S ,
⋃

i∈N S i S closed under R R(S) = S S least R-closed set

F. Tiezzi (Unicam) DSFL 15 / 28

Constructing Inductively Defined Sets – an example
fib(0) = 0
fib(1) = 1
fib(n + 2) = fib(n + 1) + fib(n)

fib : N→ N

(0, 0) ∈ Fib (1, 1) ∈ Fib

(n + 1, a) ∈ Fib (n, b) ∈ Fib

(n + 2, a + b) ∈ Fib

R(X) = {y |
x1 · · · xn

y
and x1, . . . xn∈X} one step derivation

S0 = ∅ = ∅
S1 = R(S0) = {(0, 0), (1, 1)}
S2 = R(S1) = {(0, 0), (1, 1), (2, 1)}
S3 = R(S2) = {(0, 0), (1, 1), (2, 1), (3, 2)}
S4 = R(S3) = {(0, 0), (1, 1), (2, 1), (3, 2), (4, 3)}
S5 = R(S4) = {(0, 0), (1, 1), (2, 1), (3, 2), (4, 3), (5, 5)}
S6 = R(S5) = {(0, 0), (1, 1), (2, 1), (3, 2), (4, 3), (5, 5), (6, 8)}
S7 = R(S6) = {(0, 0), (1, 1), (2, 1), (3, 2), (4, 3), (5, 5), (6, 8), (7, 13)}

.

.

. a sequence of partial functions (under-) approximating fib

S ,
⋃

i∈N S i

this limit is exactly the (total) function fib

S0 ⊆ S1 ⊆ S2 ⊆ . . .

F. Tiezzi (Unicam) DSFL 16 / 28

Constructing Inductively Defined Sets – an example
fib(0) = 0
fib(1) = 1
fib(n + 2) = fib(n + 1) + fib(n)

fib : N→ N

(0, 0) ∈ Fib (1, 1) ∈ Fib

(n + 1, a) ∈ Fib (n, b) ∈ Fib

(n + 2, a + b) ∈ Fib

R(X) = {y |
x1 · · · xn

y
and x1, . . . xn∈X} one step derivation

S0 = ∅ = ∅
S1 = R(S0) = {(0, 0), (1, 1)}
S2 = R(S1) = {(0, 0), (1, 1), (2, 1)}
S3 = R(S2) = {(0, 0), (1, 1), (2, 1), (3, 2)}
S4 = R(S3) = {(0, 0), (1, 1), (2, 1), (3, 2), (4, 3)}
S5 = R(S4) = {(0, 0), (1, 1), (2, 1), (3, 2), (4, 3), (5, 5)}
S6 = R(S5) = {(0, 0), (1, 1), (2, 1), (3, 2), (4, 3), (5, 5), (6, 8)}
S7 = R(S6) = {(0, 0), (1, 1), (2, 1), (3, 2), (4, 3), (5, 5), (6, 8), (7, 13)}

.

.

. a sequence of partial functions (under-) approximating fib

S ,
⋃

i∈N S i

this limit is exactly the (total) function fib

S0 ⊆ S1 ⊆ S2 ⊆ . . .

F. Tiezzi (Unicam) DSFL 16 / 28

Constructing Inductively Defined Sets – an example
fib(0) = 0
fib(1) = 1
fib(n + 2) = fib(n + 1) + fib(n)

fib : N→ N

(0, 0) ∈ Fib (1, 1) ∈ Fib

(n + 1, a) ∈ Fib (n, b) ∈ Fib

(n + 2, a + b) ∈ Fib

R(X) = {y |
x1 · · · xn

y
and x1, . . . xn∈X} one step derivation

S0 = ∅ = ∅
S1 = R(S0) = {(0, 0), (1, 1)}
S2 = R(S1) = {(0, 0), (1, 1), (2, 1)}
S3 = R(S2) = {(0, 0), (1, 1), (2, 1), (3, 2)}
S4 = R(S3) = {(0, 0), (1, 1), (2, 1), (3, 2), (4, 3)}
S5 = R(S4) = {(0, 0), (1, 1), (2, 1), (3, 2), (4, 3), (5, 5)}
S6 = R(S5) = {(0, 0), (1, 1), (2, 1), (3, 2), (4, 3), (5, 5), (6, 8)}
S7 = R(S6) = {(0, 0), (1, 1), (2, 1), (3, 2), (4, 3), (5, 5), (6, 8), (7, 13)}

.

.

. a sequence of partial functions (under-) approximating fib

S ,
⋃

i∈N S i

this limit is exactly the (total) function fib

S0 ⊆ S1 ⊆ S2 ⊆ . . .

F. Tiezzi (Unicam) DSFL 16 / 28

Constructing Inductively Defined Sets – an example
fib(0) = 0
fib(1) = 1
fib(n + 2) = fib(n + 1) + fib(n)

fib : N→ N

(0, 0) ∈ Fib (1, 1) ∈ Fib

(n + 1, a) ∈ Fib (n, b) ∈ Fib

(n + 2, a + b) ∈ Fib

R(X) = {y |
x1 · · · xn

y
and x1, . . . xn∈X} one step derivation

S0 = ∅ = ∅
S1 = R(S0) = {(0, 0), (1, 1)}
S2 = R(S1) = {(0, 0), (1, 1), (2, 1)}
S3 = R(S2) = {(0, 0), (1, 1), (2, 1), (3, 2)}
S4 = R(S3) = {(0, 0), (1, 1), (2, 1), (3, 2), (4, 3)}
S5 = R(S4) = {(0, 0), (1, 1), (2, 1), (3, 2), (4, 3), (5, 5)}
S6 = R(S5) = {(0, 0), (1, 1), (2, 1), (3, 2), (4, 3), (5, 5), (6, 8)}
S7 = R(S6) = {(0, 0), (1, 1), (2, 1), (3, 2), (4, 3), (5, 5), (6, 8), (7, 13)}

.

.

. a sequence of partial functions (under-) approximating fib

S ,
⋃

i∈N S i

this limit is exactly the (total) function fib

S0 ⊆ S1 ⊆ S2 ⊆ . . .

F. Tiezzi (Unicam) DSFL 16 / 28

Constructing Inductively Defined Sets – an example
fib(0) = 0
fib(1) = 1
fib(n + 2) = fib(n + 1) + fib(n)

fib : N→ N

(0, 0) ∈ Fib (1, 1) ∈ Fib

(n + 1, a) ∈ Fib (n, b) ∈ Fib

(n + 2, a + b) ∈ Fib

R(X) = {y |
x1 · · · xn

y
and x1, . . . xn∈X} one step derivation

S0 = ∅ = ∅
S1 = R(S0) = {(0, 0), (1, 1)}
S2 = R(S1) = {(0, 0), (1, 1), (2, 1)}
S3 = R(S2) = {(0, 0), (1, 1), (2, 1), (3, 2)}
S4 = R(S3) = {(0, 0), (1, 1), (2, 1), (3, 2), (4, 3)}
S5 = R(S4) = {(0, 0), (1, 1), (2, 1), (3, 2), (4, 3), (5, 5)}
S6 = R(S5) = {(0, 0), (1, 1), (2, 1), (3, 2), (4, 3), (5, 5), (6, 8)}
S7 = R(S6) = {(0, 0), (1, 1), (2, 1), (3, 2), (4, 3), (5, 5), (6, 8), (7, 13)}

.

.

. a sequence of partial functions (under-) approximating fib

S ,
⋃

i∈N S i this limit is exactly the (total) function fib

S0 ⊆ S1 ⊆ S2 ⊆ . . .

F. Tiezzi (Unicam) DSFL 16 / 28

Constructing Inductively Defined Sets – an example
fib(0) = 0
fib(1) = 1
fib(n + 2) = fib(n + 1) + fib(n)

fib : N→ N

(0, 0) ∈ Fib (1, 1) ∈ Fib

(n + 1, a) ∈ Fib (n, b) ∈ Fib

(n + 2, a + b) ∈ Fib

R(X) = {y |
x1 · · · xn

y
and x1, . . . xn∈X} one step derivation

S0 = ∅ = ∅
S1 = R(S0) = {(0, 0), (1, 1)}
S2 = R(S1) = {(0, 0), (1, 1), (2, 1)}
S3 = R(S2) = {(0, 0), (1, 1), (2, 1), (3, 2)}
S4 = R(S3) = {(0, 0), (1, 1), (2, 1), (3, 2), (4, 3)}
S5 = R(S4) = {(0, 0), (1, 1), (2, 1), (3, 2), (4, 3), (5, 5)}
S6 = R(S5) = {(0, 0), (1, 1), (2, 1), (3, 2), (4, 3), (5, 5), (6, 8)}
S7 = R(S6) = {(0, 0), (1, 1), (2, 1), (3, 2), (4, 3), (5, 5), (6, 8), (7, 13)}

.

.

. a sequence of partial functions (under-) approximating fib

S ,
⋃

i∈N S i this limit is exactly the (total) function fib

S0 ⊆ S1 ⊆ S2 ⊆ . . .

F. Tiezzi (Unicam) DSFL 16 / 28

Languages

Strings over an alphabet

Let Γ be an alphabet (a finite nonempty set of symbols).
The set Strings(Γ) is inductively defined as follows:

I = Γ ∪ {ε},
R1 : if x , y ∈Strings(Γ) then xy ∈Strings(Γ)

xy is the concatenation of the strings x and y (εx = xε = x)

Notation: Γ∗ = Strings(Γ) (star closure of an alphabet)

An example

Γ = {a, b}, Strings(Γ) = {ε, a, b, aa, ab, ba, bb, aaa, . . .}

Languages

A language on Γ is any subset L ⊆ Γ∗

They can be defined inductively through formal grammars

F. Tiezzi (Unicam) DSFL 17 / 28

Languages

Strings over an alphabet

Let Γ be an alphabet (a finite nonempty set of symbols).
The set Strings(Γ) is inductively defined as follows:

I = Γ ∪ {ε},
R1 : if x , y ∈Strings(Γ) then xy ∈Strings(Γ)

xy is the concatenation of the strings x and y (εx = xε = x)

Notation: Γ∗ = Strings(Γ) (star closure of an alphabet)

An example

Γ = {a, b}, Strings(Γ) = {ε, a, b, aa, ab, ba, bb, aaa, . . .}

Languages

A language on Γ is any subset L ⊆ Γ∗

They can be defined inductively through formal grammars

F. Tiezzi (Unicam) DSFL 17 / 28

Languages

Strings over an alphabet

Let Γ be an alphabet (a finite nonempty set of symbols).
The set Strings(Γ) is inductively defined as follows:

I = Γ ∪ {ε},
R1 : if x , y ∈Strings(Γ) then xy ∈Strings(Γ)

xy is the concatenation of the strings x and y (εx = xε = x)

Notation: Γ∗ = Strings(Γ) (star closure of an alphabet)

An example

Γ = {a, b}, Strings(Γ) = {ε, a, b, aa, ab, ba, bb, aaa, . . .}

Languages

A language on Γ is any subset L ⊆ Γ∗

They can be defined inductively through formal grammars

F. Tiezzi (Unicam) DSFL 17 / 28

Grammars

A grammar is a 4-tuple G = 〈T ,NT ,S ,P〉 where

1 terminals T

2 nonterminals NT (T ∩ NT = ∅)
3 start symbol S ∈ NT

4 productions P ⊆ (T ∪ NT)∗ × (T ∪ NT)∗

if (u, v) ∈ P then u has at least a nonterminal symbol

(u, v) is also written as u → v

(u, v1), (u, v2), . . . , (u, vn) ∈ P also written as

u → v1 | v2 | . . . | vn

or
u ::= v1 | v2 | . . . | vn Backus-Naur Normal Form (BNF)

F. Tiezzi (Unicam) DSFL 18 / 28

Grammars

A grammar is a 4-tuple G = 〈T ,NT ,S ,P〉 where

1 terminals T

2 nonterminals NT (T ∩ NT = ∅)
3 start symbol S ∈ NT

4 productions P ⊆ (T ∪ NT)∗ × (T ∪ NT)∗

if (u, v) ∈ P then u has at least a nonterminal symbol

(u, v) is also written as u → v

(u, v1), (u, v2), . . . , (u, vn) ∈ P also written as

u → v1 | v2 | . . . | vn

or
u ::= v1 | v2 | . . . | vn Backus-Naur Normal Form (BNF)

F. Tiezzi (Unicam) DSFL 18 / 28

Grammars

A grammar is a 4-tuple G = 〈T ,NT ,S ,P〉 where

1 terminals T

2 nonterminals NT (T ∩ NT = ∅)
3 start symbol S ∈ NT

4 productions P ⊆ (T ∪ NT)∗ × (T ∪ NT)∗

if (u, v) ∈ P then u has at least a nonterminal symbol

(u, v) is also written as u → v

(u, v1), (u, v2), . . . , (u, vn) ∈ P also written as

u → v1 | v2 | . . . | vn

or
u ::= v1 | v2 | . . . | vn Backus-Naur Normal Form (BNF)

F. Tiezzi (Unicam) DSFL 18 / 28

Grammars – derivation relation

G = 〈T ,N,S ,P〉

s = lur t = lv r u → v

s ⇒ t
for any production u → v in P

⇒∗ is the reflexive and transitive closure of ⇒

Grammars and Languages

The language generated by G is the following set of string of
terminal symbols

L(G) = {w ∈ T ∗ | S ⇒∗ w }

F. Tiezzi (Unicam) DSFL 19 / 28

Grammars – example

T = {a, b, c} NT = {S ,B} start symbol: S

S → aBSc | abc Ba→ aB Bb → bb

A derivation:

S ⇒ aBSc ⇒ aBaBScc ⇒ aBaBabccc ⇒

⇒ aaBBabccc ⇒ aaBaBbccc ⇒ aaaBBbccc ⇒

⇒ aaaBbbccc ⇒ aaabbbccc ∈ {a, b, c}∗

L(G) = {anbncn | n ≥ 1}

F. Tiezzi (Unicam) DSFL 20 / 28

Grammars – example

T = {a, b, c} NT = {S ,B} start symbol: S

S → aBSc | abc Ba→ aB Bb → bb

A derivation:

S

⇒ aBSc ⇒ aBaBScc ⇒ aBaBabccc ⇒

⇒ aaBBabccc ⇒ aaBaBbccc ⇒ aaaBBbccc ⇒

⇒ aaaBbbccc ⇒ aaabbbccc ∈ {a, b, c}∗

L(G) = {anbncn | n ≥ 1}

F. Tiezzi (Unicam) DSFL 20 / 28

Grammars – example

T = {a, b, c} NT = {S ,B} start symbol: S

S → aBSc | abc Ba→ aB Bb → bb

A derivation:

S ⇒ aBSc

⇒ aBaBScc ⇒ aBaBabccc ⇒

⇒ aaBBabccc ⇒ aaBaBbccc ⇒ aaaBBbccc ⇒

⇒ aaaBbbccc ⇒ aaabbbccc ∈ {a, b, c}∗

L(G) = {anbncn | n ≥ 1}

F. Tiezzi (Unicam) DSFL 20 / 28

Grammars – example

T = {a, b, c} NT = {S ,B} start symbol: S

S → aBSc | abc Ba→ aB Bb → bb

A derivation:

S ⇒ aBSc ⇒ aBaBScc

⇒ aBaBabccc ⇒

⇒ aaBBabccc ⇒ aaBaBbccc ⇒ aaaBBbccc ⇒

⇒ aaaBbbccc ⇒ aaabbbccc ∈ {a, b, c}∗

L(G) = {anbncn | n ≥ 1}

F. Tiezzi (Unicam) DSFL 20 / 28

Grammars – example

T = {a, b, c} NT = {S ,B} start symbol: S

S → aBSc | abc Ba→ aB Bb → bb

A derivation:

S ⇒ aBSc ⇒ aBaBScc ⇒ aBaBabccc

⇒

⇒ aaBBabccc ⇒ aaBaBbccc ⇒ aaaBBbccc ⇒

⇒ aaaBbbccc ⇒ aaabbbccc ∈ {a, b, c}∗

L(G) = {anbncn | n ≥ 1}

F. Tiezzi (Unicam) DSFL 20 / 28

Grammars – example

T = {a, b, c} NT = {S ,B} start symbol: S

S → aBSc | abc Ba→ aB Bb → bb

A derivation:

S ⇒ aBSc ⇒ aBaBScc ⇒ aBaBabccc ⇒

⇒ aaBBabccc

⇒ aaBaBbccc ⇒ aaaBBbccc ⇒

⇒ aaaBbbccc ⇒ aaabbbccc ∈ {a, b, c}∗

L(G) = {anbncn | n ≥ 1}

F. Tiezzi (Unicam) DSFL 20 / 28

Grammars – example

T = {a, b, c} NT = {S ,B} start symbol: S

S → aBSc | abc Ba→ aB Bb → bb

A derivation:

S ⇒ aBSc ⇒ aBaBScc ⇒ aBaBabccc ⇒

⇒ aaBBabccc ⇒ aaBaBbccc

⇒ aaaBBbccc ⇒

⇒ aaaBbbccc ⇒ aaabbbccc ∈ {a, b, c}∗

L(G) = {anbncn | n ≥ 1}

F. Tiezzi (Unicam) DSFL 20 / 28

Grammars – example

T = {a, b, c} NT = {S ,B} start symbol: S

S → aBSc | abc Ba→ aB Bb → bb

A derivation:

S ⇒ aBSc ⇒ aBaBScc ⇒ aBaBabccc ⇒

⇒ aaBBabccc ⇒ aaBaBbccc ⇒ aaaBBbccc

⇒

⇒ aaaBbbccc ⇒ aaabbbccc ∈ {a, b, c}∗

L(G) = {anbncn | n ≥ 1}

F. Tiezzi (Unicam) DSFL 20 / 28

Grammars – example

T = {a, b, c} NT = {S ,B} start symbol: S

S → aBSc | abc Ba→ aB Bb → bb

A derivation:

S ⇒ aBSc ⇒ aBaBScc ⇒ aBaBabccc ⇒

⇒ aaBBabccc ⇒ aaBaBbccc ⇒ aaaBBbccc ⇒

⇒ aaaBbbccc

⇒ aaabbbccc ∈ {a, b, c}∗

L(G) = {anbncn | n ≥ 1}

F. Tiezzi (Unicam) DSFL 20 / 28

Grammars – example

T = {a, b, c} NT = {S ,B} start symbol: S

S → aBSc | abc Ba→ aB Bb → bb

A derivation:

S ⇒ aBSc ⇒ aBaBScc ⇒ aBaBabccc ⇒

⇒ aaBBabccc ⇒ aaBaBbccc ⇒ aaaBBbccc ⇒

⇒ aaaBbbccc ⇒ aaabbbccc ∈ {a, b, c}∗

L(G) = {anbncn | n ≥ 1}

F. Tiezzi (Unicam) DSFL 20 / 28

Grammars – example

T = {a, b, c} NT = {S ,B} start symbol: S

S → aBSc | abc Ba→ aB Bb → bb

A derivation:

S ⇒ aBSc ⇒ aBaBScc ⇒ aBaBabccc ⇒

⇒ aaBBabccc ⇒ aaBaBbccc ⇒ aaaBBbccc ⇒

⇒ aaaBbbccc ⇒ aaabbbccc ∈ {a, b, c}∗

L(G) = {anbncn | n ≥ 1}

F. Tiezzi (Unicam) DSFL 20 / 28

Abstract and Concrete Syntax

When providing the syntax of programming languages we need to
worry about precedence of operators or grouping of statements to
distinguish, e.g., between:

(3 + 4) ∗ 5 and 3 + (4 ∗ 5),

while p do (c1; c2) and (while p do c1); c2

Thus, e.g., for arithmetic expressions we have grammars with
parenthesis:

E ::= n | (E) | E + E | E − E | E ∗ E | E/E

or more elaborate grammars specifying the precedence of operators
(like the next one . . .)

F. Tiezzi (Unicam) DSFL 21 / 28

Abstract and Concrete Syntax

E ::= E + T | E − T | T (expressions)
T ::= T ∗ P | T/P | P (terms)
P ::= N | (E) (atomic expressions)
N ::= D N | D (numbers)
D ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 (digits)

When defining the semantics of programming languages, we
are only concerned with the meaning of their constructs, not
with the theory of how to write programs

We thus resort to abstract syntax that leaves us the task of
adding enough parentheses to programs to ensure they can be
built-up in a unique way

Abstract syntax specifies the parse trees of a language; it is the job
of concrete syntax to provide enough information through
parentheses or precedence rules for a string to parse uniquely

F. Tiezzi (Unicam) DSFL 22 / 28

Abstract and Concrete Syntax

E ::= E + T | E − T | T (expressions)
T ::= T ∗ P | T/P | P (terms)
P ::= N | (E) (atomic expressions)
N ::= D N | D (numbers)
D ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 (digits)

When defining the semantics of programming languages, we
are only concerned with the meaning of their constructs, not
with the theory of how to write programs

We thus resort to abstract syntax that leaves us the task of
adding enough parentheses to programs to ensure they can be
built-up in a unique way

Abstract syntax specifies the parse trees of a language; it is the job
of concrete syntax to provide enough information through
parentheses or precedence rules for a string to parse uniquely

F. Tiezzi (Unicam) DSFL 22 / 28

From Parsing to Execution

Concrete Syntax
defines−−−−→ Statements 2 + 3 ∗ 4

↓ Parse ↓

Abstract Syntax
defines−−−−→ Syntax Trees

+

*

43

2

↓ Execute ↓

Semantics
defines−−−−→ Meaning of

Syntax Trees
14

F. Tiezzi (Unicam) DSFL 23 / 28

From Parsing to Execution

Concrete Syntax
defines−−−−→ Statements 2 + 3 ∗ 4

↓ Parse ↓

Abstract Syntax
defines−−−−→ Syntax Trees

+

*

43

2

↓ Execute ↓

Semantics
defines−−−−→ Meaning of

Syntax Trees
14

F. Tiezzi (Unicam) DSFL 23 / 28

From Parsing to Execution

Concrete Syntax
defines−−−−→ Statements 2 + 3 ∗ 4

↓ Parse ↓

Abstract Syntax
defines−−−−→ Syntax Trees

+

*

43

2

↓ Execute ↓

Semantics
defines−−−−→ Meaning of

Syntax Trees
14

F. Tiezzi (Unicam) DSFL 23 / 28

Labelled Transition Systems

A labelled transition system is a 4-tuple S = 〈Q,A,→, q0〉 such
that

1 states Q

2 actions A

3 transitions → ⊆ Q × A× Q

q
a−→ q′ denotes (q, a, q′)∈→

4 initial state q0 ∈ Q

Semantics: traces

τ : a0a1a2a3a4a5a6 . . .

τ : coin in cancel return coin in coin in choose release . . .

Vending machine:

startstart 25¢

50¢fail

chosen

coin in

coin in
cancel

choose

cancel
release

return

F. Tiezzi (Unicam) DSFL 24 / 28

Labelled Transition Systems

A labelled transition system is a 4-tuple S = 〈Q,A,→, q0〉 such
that

1 states Q

2 actions A

3 transitions → ⊆ Q × A× Q

q
a−→ q′ denotes (q, a, q′)∈→

4 initial state q0 ∈ Q

Semantics: traces

τ : a0a1a2a3a4a5a6 . . .

τ : coin in cancel return coin in coin in choose release . . .

Vending machine:

startstart 25¢

50¢fail

chosen

coin in

coin in
cancel

choose

cancel
release

return

F. Tiezzi (Unicam) DSFL 24 / 28

Labelled Transition Systems

A labelled transition system is a 4-tuple S = 〈Q,A,→, q0〉 such
that

1 states Q

2 actions A

3 transitions → ⊆ Q × A× Q

q
a−→ q′ denotes (q, a, q′)∈→

4 initial state q0 ∈ Q

Semantics: traces

τ : a0a1a2a3a4a5a6 . . .

τ : coin in cancel return coin in coin in choose release . . .

Vending machine:

startstart 25¢

50¢fail

chosen

coin in

coin in
cancel

choose

cancel
release

return

F. Tiezzi (Unicam) DSFL 24 / 28

LTS-based Semantics of Arithmetic Expressions

m ◦ n = k

m ◦ n
◦−→ k

(op)
E1

◦′−→ E ′1

E1 ◦ E2
◦′−→ E ′1 ◦ E2

(rl)
E2

◦′−→ E ′2

E1 ◦ E2
◦′−→ E1 ◦ E ′2

(rr)

(4+(7∗3))/(6−1)
∗−→ (4+21)/(6−1)

+−→ 25/(6−1)
−−→ 25/5

/−→ 5

7 ∗ 3 = 21

7 ∗ 3
∗−→ 21

4 + (7 ∗ 3)
∗−→ 4 + 21

(4 + (7 ∗ 3))/(6− 1)
∗−→ (4 + 21)/(6− 1)

4 + 21 = 25

4 + 21
+−→ 25

(4 + 21)/(6− 1)
+−→ 25/(6− 1)

similarly for − and /

F. Tiezzi (Unicam) DSFL 25 / 28

LTS-based Semantics of Arithmetic Expressions

m ◦ n = k

m ◦ n
◦−→ k

(op)
E1

◦′−→ E ′1

E1 ◦ E2
◦′−→ E ′1 ◦ E2

(rl)
E2

◦′−→ E ′2

E1 ◦ E2
◦′−→ E1 ◦ E ′2

(rr)

(4+(7∗3))/(6−1)
∗−→ (4+21)/(6−1)

+−→ 25/(6−1)
−−→ 25/5

/−→ 5

7 ∗ 3 = 21

7 ∗ 3
∗−→ 21

4 + (7 ∗ 3)
∗−→ 4 + 21

(4 + (7 ∗ 3))/(6− 1)
∗−→ (4 + 21)/(6− 1)

4 + 21 = 25

4 + 21
+−→ 25

(4 + 21)/(6− 1)
+−→ 25/(6− 1)

similarly for − and /

F. Tiezzi (Unicam) DSFL 25 / 28

LTS-based Semantics of Arithmetic Expressions

m ◦ n = k

m ◦ n
◦−→ k

(op)
E1

◦′−→ E ′1

E1 ◦ E2
◦′−→ E ′1 ◦ E2

(rl)
E2

◦′−→ E ′2

E1 ◦ E2
◦′−→ E1 ◦ E ′2

(rr)

(4+(7∗3))/(6−1)
∗−→ (4+21)/(6−1)

+−→ 25/(6−1)
−−→ 25/5

/−→ 5

7 ∗ 3 = 21

7 ∗ 3
∗−→ 21

4 + (7 ∗ 3)
∗−→ 4 + 21

(4 + (7 ∗ 3))/(6− 1)
∗−→ (4 + 21)/(6− 1)

4 + 21 = 25

4 + 21
+−→ 25

(4 + 21)/(6− 1)
+−→ 25/(6− 1)

similarly for − and /

F. Tiezzi (Unicam) DSFL 25 / 28

Finite State Automata as language recognizers

A finite state automaton M is a 5-tuple M = 〈Q, Γ,→, q0,F 〉 s.t.

1 states Q finite !

2 alphabet Γ

3 transitions → ⊆ Q × Γ× Q

q
a−→ q′ denotes (q, a, q′)∈→

4 initial state q0 ∈ Q

5 accepting states F ⊆ Q

p
w

=⇒ q iff p
a1−→ p1

a2−→ . . .
an−→ pn = q w = a1 · · · an

Semantics of Finite State Automata

The language accepted by a Finite State Automata is the set:

L(M) = {w ∈ Γ∗ | q0
w

=⇒ q and q∈F }

F. Tiezzi (Unicam) DSFL 26 / 28

Finite State Automata as language recognizers

A finite state automaton M is a 5-tuple M = 〈Q, Γ,→, q0,F 〉 s.t.

1 states Q finite !

2 alphabet Γ

3 transitions → ⊆ Q × Γ× Q

q
a−→ q′ denotes (q, a, q′)∈→

4 initial state q0 ∈ Q

5 accepting states F ⊆ Q

p
w

=⇒ q iff p
a1−→ p1

a2−→ . . .
an−→ pn = q w = a1 · · · an

Semantics of Finite State Automata

The language accepted by a Finite State Automata is the set:

L(M) = {w ∈ Γ∗ | q0
w

=⇒ q and q∈F }

F. Tiezzi (Unicam) DSFL 26 / 28

Finite State Automata as language recognizers

A finite state automaton M is a 5-tuple M = 〈Q, Γ,→, q0,F 〉 s.t.

1 states Q finite !

2 alphabet Γ

3 transitions → ⊆ Q × Γ× Q

q
a−→ q′ denotes (q, a, q′)∈→

4 initial state q0 ∈ Q

5 accepting states F ⊆ Q

p
w

=⇒ q iff p
a1−→ p1

a2−→ . . .
an−→ pn = q w = a1 · · · an

Semantics of Finite State Automata

The language accepted by a Finite State Automata is the set:

L(M) = {w ∈ Γ∗ | q0
w

=⇒ q and q∈F }

F. Tiezzi (Unicam) DSFL 26 / 28

Some Regular Bit-Strings – Γ={0, 1}

even1start odd1

0

1

0

1

even0start odd0

1

0

1

0

L(A1) = {w | even number of 1’s} L(A2) = {w | odd number of 0’s}

F. Tiezzi (Unicam) DSFL 27 / 28

Some Regular Bit-Strings – Γ={0, 1}

even1start odd1

0

1

0

1

even0start odd0

1

0

1

0

L(A1) = {w | even number of 1’s} L(A2) = {w | odd number of 0’s}

e0e1start e0o1

o0e1 o0o1

1

0

1

00

1

0

1

L(A1) ∪ L(A2)
F. Tiezzi (Unicam) DSFL 27 / 28

Some Regular Bit-Strings – Γ={0, 1}

even1start odd1

0

1

0

1

even0start odd0

1

0

1

0

L(A1) = {w | even number of 1’s} L(A2) = {w | odd number of 0’s}

e0e1start e0o1

o0e1 o0o1

1

0

1

00

1

0

1

L(A1) ∩ L(A2)
F. Tiezzi (Unicam) DSFL 27 / 28

Some Regular Bit-Strings – Γ={0, 1}

even1start odd1

0

1

0

1

even0start odd0

1

0

1

0

L(A1) = {w | even number of 1’s} L(A2) = {w | odd number of 0’s}

e0e1start e0o1

o0e1 o0o1

1

0

1

00

1

0

1

L(A1) \ L(A2)
F. Tiezzi (Unicam) DSFL 27 / 28

Some Regular Bit-Strings – Γ={0, 1}

even1start odd1

0

1

0

1

even0start odd0

1

0

1

0

L(A1) = {w | even number of 1’s} L(A2) = {w | odd number of 0’s}

e0e1start e0o1

o0e1 o0o1

1

0

1

00

1

0

1

L(A2) \ L(A1)
F. Tiezzi (Unicam) DSFL 27 / 28

Some Regular Bit-Strings – Γ={0, 1}

even1start odd1

0

1

0

1

even0start odd0

1

0

1

0

L(A1) = {w | even number of 1’s} L(A2) = {w | odd number of 0’s}

regular languages are closed
w.r.t. the operations of ∩, ∪,
\, complement, reversal,
concatenation, star closure,
. . .

F. Tiezzi (Unicam) DSFL 27 / 28

Regular Languages

Chomsky Grammar Abstract

Hierarchy Restriction Language Machine

Type 0 unrestricted recursively enumerable Turing machines

Type 1 αAβ → αγβ context sensitive linear bounded automata

Type 2 A→ γ context free nondeterministic

pushdown automata

Type 3 A→ a A→ aB regular finite state automata

with A, B ∈ NT , and a ∈ T and α, β, γ ∈ (T ∪ NT)∗

F. Tiezzi (Unicam) DSFL 28 / 28

